
Nicholas Cutler

The previous part of this series (Archive
23:10) introduced the concept of regular

expressions and looked at the core features

that they provide for matching patterns in

text. This part will take the concept further

by looking at some more advanced features

and will conclude by showing how you can

use the regular expression library in your

own programs.

Unicode subsets

So far, we have assumed that a letter in

the regular expression, or in the string we

are searching, is just one entity from the

computer’s character set, represented by a

single byte. For most of the time this is a

reasonable assumption, but if you ever

have to handle languages other than

English, or handle non-Roman scripts,

then you will probably have come across

Unicode. Put simply, Unicode aims to

include every character you can think of,

from the familiar Roman alphabet,

through Greek and Cyrillic, to all of the

Chinese and Japanese ideographs.

Although support for Unicode in RISC OS

is rather patchy, PCRE regular expressions

do support it. [See box below]

Not surprisingly, with so many extra

letters and symbols to cope with, the idea

of a character class has grown somewhat.

To begin with, recall that \s would match

any space character, including things like

tabs. This is generally fine, but Unicode

adds a whole host of extra spacing

characters. If we want to include all of

these too then we can use the expression

\p{Zs}. In this case, the \p means “any

Unicode character with a specific

property”, and the parameter in braces is

the code for spacing characters. There are

many other Unicode properties, like

\p{Ll} for lowercase letters and \p{Sc}

for currency symbols. For a full list, refer

to the PCRE documentation.

Regular expressions � Part 2

49 � Archive 23:12 � Christmas 2015

Hazel grew from Acorn roots

PCRE stands for the Perl-Compatible Regular Expressions library. It was written by

Philip Hazel of the University of Cambridge Computing Service, starting in 1997.

PCRE has an exceptionally powerful and flexible syntax, and the library is often

incorporated into open-source programs such as the Apache HTTP server and PHP

scripting language. pcre.org
Nicholas Cutler has now ported PCRE 10.10 to RISC OS as a relocatable module

that can be called via SWIs from almost any language. www.cl.cam.ac.uk/~ncc25/
pcre_riscos.zip

Philip Hazel grew up in the Acorn world, where he wrote a music-typesetting

program called PMS (Philip’s Music Scribe; a commercial version of it was called

Scorewriter). It is written in BCPL, a very rare language for an Archimedes program,

because its initial platform was Acorn’s Cambridge Workstation, which predates the

Archimedes computer. Richard Hallas reviewed PMS in Archive 5:11. Philip continues to

develop it on Unix-like platforms, where it is called PMW (Philip’s Music Writer).

When he retired from the university, Philip wrote From Punched Cards to Flat

Screens, where his life story just about coincides with that of computers. The memoirs

are available as PDF from people.ds.cam.ac.uk/ph10 – the music program is there too.

Archive 23:12 � Christmas 2015 � 49

archivemag.co.uk

If we combine this with some of the

facilities explained in the previous article,

we can look at another practical example:

matching monetary values. Firstly, these

should begin with a currency symbol,

followed by one or more digits. Next, there

may be a decimal point and two further

digits. This gives the expression:
 \p{Sc}\d+(\.\d\d)?

In addition to matching characters

with a specific property, the \p notation

can also be used to match any character

within a given script or alphabet. In this

latter case, there are no codes to

remember, and PCRE will recognize the

usual name for the script. So, for example,

\p{Cyrillic} can be used to match any

letter in the Cyrillic alphabet. The names

used for most scripts should be familiar,

but, once again, if you need a full list then

consult the PCRE documentation.

At this point it is worth mentioning

that one particular script does not always

contain all characters used by that

language. Very often, common spacing and

punctuation symbols used in several

languages or scripts are located elsewhere.

In the above example, for instance, all of

the necessary punctuation marks are

instead found in the familiar Latin

character set. If you need to match these

“shared” characters then you can use the

notation \p{Common}.

Negating a property

In common with the idea of negating a

character class, a similar principle applies

with character properties. So just as \s

means any space character, and \S is the

opposite (anything which isn’t white

space), \P matches anything without the

specified property. Thus, for example,

\P{Ll} means “any character which is not

a lowercase letter”. Of couse, this does not

include just uppercase letters, but

punctuation marks, numbers and many

special symbols too. The negation idea

works with script names too, so

\P{Greek} means “anything which is not

in the Greek alphabet”.

Composite characters

Another feature of Unicode is that of

combining characters. This allows us to

add diacritical marks by specifying the

base character, and then the code for the

required mark. So, for example, a letter U

with an umlaut accent would be specified

with the codes 85 followed by 168.

However, as is often the case with Western

European languages, it is also possible to

use the single code 220. If you have to

handle such characters in a regular

expression, then the \X option is useful. It

matches a base character followed by any

number of optional combining characters,

so it works regardless of whether the base

character is written on its own, or with the

combining character too.

Finally, with so many more characters

than we can possibly enter on our

keyboards, it would be helpful to be able to

match a specific symbol by its code

number. The \x option followed by a

hexadecimal number allows us to do just

that. This is also useful for finding control

characters which cannot easily be included

in a string. So \x0A matches linefeeds, and

\x{221A} finds the square root symbol.

Note that the braces are needed if the code

number is more then two digits long.

Limitations

Finally, beware that while PCRE does

offer facilities to handle Unicode, for

reasons of speed the characters recognized

by the familiar classes such as \s or \w do

not expand accordingly. This includes the

otherwise useful \b option which matches

at the start and end of words. Like \w it

50 � Archive 23:12 � Christmas 2015

Regular expressions

fails to recognize non-Roman scripts, and

therefore cannot always recognize the

begining of a new word.

The above has provided a summary of

the facilities specific to Unicode text in

regular expressions. This article will now

continue to look at some more advanced

features which add further power to

regular expressions.

Backreferences

Recall from the first part of this series

that we have already seen how to match an

HTML tag. Now suppose we want to find

any occurrences of one tag followed by its

corresponding closing tag. On its own, a

closing tag could be matched with </\w+>.

However, if we combined this with the

expression for an opening tag, it would

find any opening and closing tag, not only

matched pairs.

To limit ourselves to matching pairs we

need to be able to to say something like

“find the same text that you matched

earlier”. This can be achieved by using

backreferences. Remember also that by

enclosing part of an expression in

parentheses you can capture the matching

text for use later. Combining this with a

backreference will enable us to match an

opening tag, and then refer back to this to

find the corresponding closing tag.

So by using <(\w+)> to match the

opening tag, we can save the tag name for

use later. If this finds the HTML tag,

then the brackets will capture the “font”

part which we can refer to again using the

backreference \1 [a numeral 1 —Ed]. Once

this has been done, the closing tag can be

matched with </\1>. In this case the \1

means “the text matched by the first set of

brackets”. It is also possible to write \2 for

the text matched in the second set of

brackets and so on. Putting all this

together gives the following expression to

find a matching pair of HTML tags:
 <(\w+)>.+</\1>

Double entendre

We’ve now seen that the round

brackets have two possible meanings:

either to group things together, or to

capture a section of matched text for use

later. In many cases this isn’t a problem –

after all, you don’t have to use the

associated backreference if you don’t need

to. However, it can cause some confusion

when you look at your regular expression

some time later.

More seriously, it also carries a small

performance penalty, because the regular-

expression algorithm has to remember

these short sections of text. In a

complicated expression this can slow

things down, so there is also an option to

use “non-capturing” parentheses if you

don’t need to refer back. This is effected by

replacing the normal opening bracket by

the sequence (?: while the closing bracket

is left unchanged.

To see an example of this, return to the

example of matching hexadecimal

numbers, as part of an assignment to a

variable. The number itself (after the

equals sign) may begin with either 0x in C

programs or & in Basic, but really the

number or the variable name is the

interesting thing. Using non-capturing

parentheses allows us to group the two

possibilities together without the need to

extract the substring or refer back to it.

The complete expression is:
 (\w+)=(?:0x|&)[0–9A-F]+

If you try this, you’ll see only the first

set of brackets captures the variable name,

and the second set only groups the two

alternatives.

Look-ahead

Thus far, we’ve seen that many

51 � Archive 23:12 � Christmas 2015 Archive 23:12 � Christmas 2015 � 51

Regular expressions

features in regular expressions have a

parallel in programming lanuages, like

alternation and repetition, for example. To

complete the analogy there needs to be a

parallel to the conditional statement. This

is provided by the concept of “look-

ahead”, which in effect allows us to give

instructions like “if the specified substring

matches at this point, then try to match

the following”. To give a simple example,

suppose that I wanted to look for the first

three letters of my name. However,

because I don’t abbreviate my name to

Nick, I’m not interested in that instance.

Using look-ahead I can say “Match Nic

only when it occurs as part of Nicholas”.

This is written as: (?=Nicholas)Nic.

This is perhaps a rather contrived

example, but it does illustrate the point.

Similarly, notice that the look-ahead does

not consume any text, rather like the word-

boundary metacharacters. So the example

only checked to see if my name would

match, and then proceeded to match Nic.

This means that exactly the same effect

could be achieved by writing

Nic(?=holas). In either case, it means

that a subsequent part of the expression is

free to match from the h.

Another important point is that there

are often limitations on the substring in

the brackets. In Perl regular expressions,

for example, the substring cannot be of

variable length, so that you could not write

(?=the|then) or even (?=then?). PCRE,

however, does allow the former, although

the latter is still not permitted.

Look-behind

Having introduced the idea of look-

ahead, it is now possible to mention that

the idea works backwards too, when it is,

unsurprisingly, called look-behind. This is

occasionally useful if you want to match a

string only when it is preceded by a

particular substring. For example, the

expression (?<=\/*)return matches

the word return only when it comes after a

C-style comment delimiter. Run this over

the text of a program and you’ll find all

comments explaining the return value of a

function, but not the actual instruction. In

this case, the look-behind isn’t strictly

necessary unless, of course, the comment

delimiter has already been matched by a

previous part of the expression.

Finally, both look-ahead and -behind

can be negated. This works as before, but

checks that the substring does not

appear. Thus the expression

(?<![A-Z])\.\s finds all

instances of a full-stop and a space

which do not follow capital letters.

Essentially this usefully eliminates

all cases where the full-stop occurs

as part of an abbreviation. As an

alternative, a negated character

class could have been used instead.

Optimizing it

 The above has introduced some

advanced techniques, and by now

you will have some idea of just how

complicated regular expressions can

52 � Archive 23:12 � Christmas 2015

Erratum

In the previous part of this series (Archive 23:10),

I gave an example of using a regular expression to

match internet domain names. This has caused

some confusion, so may I make it clear that the

example was intended only as an academic

exercise.

As I hinted, the expression presented fails to

catch some quite obvious cases. It could be

improved upon with a much more complicated

expression.

I failed to state, though, that it is impossible

to validate domain names with a regular

expression. There are simply too many

possibilities, and the list is constantly expanding!

Regular expressions

get. Although the simple examples shown

here do not take an appreciable time to

match, repeat them several times over, or

try a complicated expression, and the

running time can add up. If this is the

case, a number of optimizations can be

applied to make the expression run as fast

as possible.

• If possible, use the start- and end-of-

line anchors, ^ and $, which constrain

your expression to match only at the

beginning or end of a line. The word-

boundary anchor, \b, can also speed

things up.

• Try to include as much literal text as

possible at the beginning of the expression.

This works like the anchor above, but is

more general. The technique allows the

algorithm to quickly eliminate those

locations where the expression cannot

match. This can also work with

alternations too, so this|that can be

rewritten as th(is|at). Although the two

expressions are the same, the latter is often

faster.

• Take special care with quantifiers.

Sometimes it can be faster to use a

quantifer rather than a repeated character,

so \d{3} is often faster than \d\d\d.

Conversely if we were matching the letter d

rather than “any digit”, the speed

advantage disappears. Similarly, \d\d* is

often faster than \d+.

• Use a character class rather than

alternation. Thus [abc] is quicker than

a|b|c. Of course this trick works only for

a choice between single characters, but

long alternations are also best avoided:

instead, attempt separate matches with

each of the alternatives. Where you can’t

reasonably avoid an alternation, try to put

the most common case first.

• Omit unnecessary brackets: don’t use

a character class for a single letter, for

example. This is an obvious example, but it

can happen unintentionally if you start

modifying an existing expression. Likewise,

the brackets in expressions such as (.)*

are unnecessary, and prevent the algorithm

from applying any internal optimizations it

may have. Also, where parentheses are

necessary, try to use the non-capturing

versions.

• Finally, remember that every time

you use an alternation or a quantifier you

introduce a loop. Nested loops are

sometimes useful, but they can take a long

time to complete. In particular, patterns

like (special|normal)* are often very

slow. It is possible to “unroll” the loop:

rewrite the pattern as normal*(special

normal*)*, which runs much quicker.

Rather than examine specific cases

here, I have included an example

with this article.

Using regular expressions

in�your�own C programs

This article so far has discussed most

aspects of constructing a regular

expression. For those using existing

software tools, this will be sufficient.

However, part of the power of regular

expressions is the ability to automate text-

processing tasks in your own programs.

The following section will explain how to

use the PCRE library functions.

First, note that PCRE is a linkable C

library, so at present it can only be used

from that programming language, and

these notes will assume familiarity with C.

For a more thorough example of PCRE in

use, the source code of my Regex tool is a

53 � Archive 23:12 � Christmas 2015

More on the web

Here are two websites that give tutorials

about regular expressions, as well as

further examples and a library of them:

• regular-expressions.info
• regexlib.com

FILES
Files:

see p.2
å

Archive 23:12 � Christmas 2015 � 53

Regular expressions

good starting point. All of the function

prototypes and definitions are in h.pcre, so

your code will need to include the line

#include “pcre.h”

The first step is to “compile” your

pattern into PCRE’s internal

representation. The necessary function is:

pcre *pcre_compile(const char *pattern,
int options, const char **errptr, int
*erroffset,const unsigned char
*tableptr);

This takes a pointer to your pattern

and returns a pointer to the compiled

representation. The memory for this is

automatically obtained via malloc, so you

should free it when you’ve finished with

the pattern by calling pcre_free. If there

are any errors in the pattern, then a null

pointer is returned, while errptr and

erroffset are set up with a description and

the offset within the pattern.

The options word allows you to select,

among other things, the newline

convention, case-insensitive matching, and

Unicode support. The definitions for these

are found in h.pcre as well. The following

fragment of code is sufficient to compile a

simple pattern:

 #include <stdio.h>

#include <string.h>

#include “pcre.h”

char patt[80];

cont char *errstr;

pcre *regexp;

int opts, errpos;

strcpy(patt, “pattern”);

/* case insensitive and UTF8 */

opts=PCRE_CASELESS|PCRE_UTF8;

regexp=pcre_compile(patt, opts, &errstr,
&errpos, NULL);

if(!regexp)

printf(”Error compiling pattern: %s at
byte %d\n”, errstr, errpos);

Optimize

Having compiled the pattern, it is

possible to optimize it with pcre_study,

although this incurs a further processing

overhead. This may be worthwhile for

particularly complicated patterns, or if you

intend to match the same pattern against

several strings. Whether or not you choose

to optimize the pattern, it is now possible

to match it against the subject string. You

can do it using this function:

int pcre_exec(const pcre *code, const
pcre_extra *extra, const char *subject,
int length, int startoffset, int options,
int *ovector, int ovecsize);

This takes pointers to the compiled

pattern, any extra data produced by

optimization, and the subject string. It

returns the number of captured substrings,

or a negative value in case of an error. The

subject string may contain null bytes, so it

is also necessary to give the length of this

string.

Information on the substring that

matched, and any captures, are returned in

the ovector array. This needs to be large

enough to accommodate three integers

each for the substring and any captures. It

may be useful to call pcre_fullinfo to get

the necessary size of the ovector array. You

can either use pcre_malloc to obtain the

memory for ovector or, if the size is known

in advance, declare a static array.

pcre_exec returns the number of pairs

of entries used in ovector. The first pair is

the offsets to the start and end of the string

matched by the entire pattern; the second

pair represents the first captured substring

and so on. If the pattern did not match,

then pcre_exec returns −1.

All this is illustrated in the following

fragment to set up memory, match the

compiled pattern and display the result:

char subj[80], ssub[80];

54 � Archive 23:12 � Christmas 2015

Regular expressions

int subjlen, veclen, rc, *ovec;

strcpy(subj, “subject”);

subjlen=strlen(subj);

/* allocate memory */

rc=pcre_fullinfo(regexp, NULL,
PCRE_INFO_CAPTURECOUNT, &veclen);

veclen=(veclen+1)*3*sizeof(int);

ovec=pcre_malloc(veclen);

/* match regexp */

rc=pcre_exec(regexp, NULL, subj,
subjlen, 0, 0, pcreout, veclen);

if(rc==-1)

printf(”No match!\n”);

else {

/* print matching substring */

pcre_copy_substring(subj, ovec, veclen,
0, ssub, 80);

printf(”Matched %s at byte %d\n”, ssub,
ovec[0]);

}

Compile and link

Finally, once you have written your

program, you will need to compile and link

it with the PCRE library. I normally keep

PCRE along with the other libraries on the

system and set PCRE$path to its location.

Once this has been done, you can compile

your program with the following

command:

cc -c -IC:,PCRE: -o o.regex c.regex

To produce the final executable

program, link it with PCRE and any other

libraries you need, including the shared C

library:

link -aif -Output regex o.regex

PCRE:o.pcrelib C:o.stubs

Summing up

This article completes my series on

regular expressions by looking at some of

the more advanced features, and

summarizing how you can use these

facilities in your own programs. I hope it

has encouraged you to experiment, both

with regular expressions, and with the

PCRE library itself.

As with part 1, I have supplied the

Archive website with a number of

examples you can try using my Regex

program. Go to www.cl.cam.ac.uk/~ncc25/
pcre_riscos.zip to download the source code

of the Regex program and a linkable

version of the PCRE library.

Nicolas Cutler ncc25@cam.ac.uk

Parallel processing in action:
Nicholas and a friend competing
in the Great Ouse marathon.
Being at the front – and facing

backwards – Nicholas had the additional
responsibility of steering!

55 � Archive 23:12 � Christmas 2015 Archive 23:12 � Christmas 2015 � 55

Christmas cheer: Our tame garden robin

Barry and Ann Jerome, about their Christmas card (in colour on back cover):

This robin has been a constant companion in the garden here in Bishops Waltham,

Southampton, for over a year. He first started to follow us when we were gardening,

coming very close to pick up grubs. In the spring the robin had a mate and raised a

family of young. We started to put out live mealworms and soon after he brought the

family to show us and to feed on the mealworms.

About this time we noticed he appeared to be be suffering from a bird illness called gapeworm. We searched

the web and found a herbal remedy: rosemary. We mixed ground rosemary into the birdfood, and he soon

began to recover.

We have continued to feed him with dried mealworms and grated cheese. He now appears when we whistle

and whistles back to us when we feed him.

