
Software skills for librarians:

Library carpentry

Module 3: Introduction to

programming in Python

Hello world in Python

print("Hello world")

• First line is a comment

• Second line is a statement

• “Hello world” is a string literal

First program in Python

1/23

• Interactively

• From a file

Running python

2/23

•Computers only understand machine code:

A list of numbers or codes representing simple instructions like add

• High-level languages are more natural for humans

• Need to be translated for the computer:

Either compiled or interpreted

• Advantages and disadvantages of each language

Programming languages

3/23

• A series of statements in a given language

• The individual steps needed to complete a task

• A statement can be:

A function call

A control statement like a loop

An expression

Or an assignment

Programs

4/23

• A named container for a piece of data

• Numbers, 42, 3.142

• Strings, “Great expectations”, “Charles Dickens”

• Lists, ["245", "260", "300"]

• Dictionaries, {"245": "Title", "260": "Publisher", "300": "Description"}

• Tuples, ("eng", "ger", "fre")

Variables

5/23

• To use a variable assign to it:

name="Nicholas"

• We can now use that variable:

print("My name is ", name)

• Perform operations on it:

bigname=name.upper()

• Change it:

name="Alan Turing"

Assignments

6/23

• Accessing a single entry marc[1]

• Slicing marc[2:3]

• Concatenation marc+["490", "650"]

• Adding an item marc.append("700")

• Deleting an item marc.pop(4)

• Sorting marc.sort()

• Reversing marc.reverse()

Operations on lists

7/23

• Conditional:

if condition:

 statement block

else:

 statement block

• Be careful with indentation

• Remember the colon!

• One statement per line

Control expressions

8/23

• Iteration:

while condition:

 statement block

for index in list:

 statement block

• List may be a range

• Infinite loops: while True:

• Exit using if exittest: break

Control expressions

9/23

• A named series of statements

• Used frequently in a program

Saves space

Makes code easier to understand

• Can take arguments

• And return a result

Functions

10/23

def fn_name(arguments):

 statement block

 return result

• Arguments are values used in the function

• Names valid only within the function

• Values copied when function is called

Function definition and arguments

11/23

value=fn_name(arguments)

• Arguments are not modified by function

• value is set to return result (if any)

Function calls

12/23

• A Class is a data structure

• And the functions which act on it

• An object is an instance of the class

• For example: a MARC record

• Functions include add field, remove field, display

• Shared between all MARC record objects

Classes and OOP

13/23

• object=class_name()

Calls special method __init__

• Then object.method()

Calls method on object

• Like a function call with extra argument

Initialising objects

14/23

class class_name:

 def __init__(self):

 self.data=0

 def method(self):

• All classes need __init__

• Called when object is created

• Special argument self refers to the object

Defining classes

15/23

• Like standard input and output but on disc

• Can be opened for input, output or both

• Text and binary files

• Sequential files and pointer

Files

16/23

• First open a file: infile=open("name.txt", "r")

outfile=open("new.txt", "w")

• Reading: string=infile.read(n)

string=infile.readline()

list=infile.readlines()

• Writing: outfile.write(string)

outfile.write(list)

• Get current position: p=infile.tell()

• Set current position: p=outfile.seek(p)

• Finally close a file: outfile.close()

Files in action

17/23

• Similar to for loops over a list

• Can be used with any ‘iterable’ object

• Internally calls the next() method

• So: for line in infile:

• Equivalent to: for line in infile.readlines():

• With statement:

with open("name.txt", "r") as fh:

 str=fh.readline()

Iterators

18/23

• Modules are library files

• Collections of code common to several projects

• Can contain: global variables, functions and classes

• Use with import keyword: import math

• Can import selected attributes:

from pymarc import MARCReader

Modules

19/23

• Modules can contain:

Global variables: math.pi

Functions: math.sin(math.pi/2)

Classes: regex=re.compile("\d{10}")

• Similar notation for accessing class methods:

Result depends on whether re is a module or a class

Be careful when choosing names

• Importing a selection loads those attributes into current namespace

Inside modules

20/23

• Errors do sometimes happen!

• Exceptions allow us to handle these gracefully

• Easier than testing for an error after every operation

• Exceptions can also be used for:

Event notification

Handling special cases

Termination conditions

Exceptions

21/23

• Raise an exception when an error occurs:

if not i in dict.keys():

 raise KeyError

• Catch an exception:

try:

 fp=open("name.txt", "r")

except IOError:

 print("File not found")

Using exceptions

22/23

• Learning Python / Mark Lutz — 5th ed.

O’Reilly, 2013 — ISBN 9781449355739

• Python in a nutshell / Alex Martelli — 2nd ed.

O’Reilly, 2006 — ISBN 9780596100469

• Automate the boring stuff with Python / Al Sweigart.

No Starch Press, 2015 — ISBN 9781593275990

Further reading

23/23

