OPERATING SYSTEMS IN A CHANGING
WORLD!

by
Maurice Wilkes |
Olivetti Research, Cambridge, England

The principles by which processes are queued and managed, laid down at the
early SOSP meetings, still remain valid. Since then new insights have led to
-important advances. For example, insights into the user interface have led to
the development of windows and menus. At a different level, authentication—
.the process by which the system can become sure that a person demanding
resources is the person he or she claims to be—has become well understood.
Authentication is the necessary basis on which resource allocation and billing,
as well as security can based.

_Ishall begin with a survey of some of the past lessons that have been learned
and then go on to discuss present research directions.

Process Management

Much early effort was devoted to understanding cooperating processes and
the design of synchronization primitives. This was successful and the days
are now long over when an operating system would stop every few hours, or
every few days, because of some arcane synchronizing error that was hard
to pinpoint. While there is always scope for research, synchronization is no
longer a principal preoccupation of operating systems specialists.

In the 1960s and 1970s, a popular area of research was the analysis of op-
erating systems in terms-of queueing theory. Each resource—files, memory,
processor, etc—had a queue associated with it. This was in days of limited
I/0 bandwidths arid minimal resources generally, and it was natural to view
the passage of tasks through an operating system as being like the movement
of cars in Manhattan on a busy day, with queues at every intersection.

In-my view, queueing theory failed to produce any results of particular value.

1Text of an invited address delivered at SOSP14, December 1993,




This was partly because of its inadequacy as a mathematical discipline. In
order to get results it was usually necessary to assume an exponential proba-
bility distribution; this was particularly unfortunate when analyzing a time-
sharing system, since tasks generated by users tend to fall into two groups,
short and long, giving rise to a bimodal distribution. Nowadays, we have
more resources and more bandwidth and we like to think of tasks moving
through a system like cars moving along a freeway.

An important development of recent years is the concept of threads. Threads
are a development of the long-standing concept of lightweight processes, that
is, processes which can be rapidly created and destroyed without the over-
heads associated with regular processes. Lightweight processes are important
to system designers since they make it possible to use processes freely in the
structuring of a system. Since threads run in the same address space as the
process that spawns them, they can communicate with low overheads.

Interprocess communication may be effected in a time-sharing system either
by passing messages or by making use of shared memory. Lauer and Needham
showed that the two methods are essentially equivalent, and that the choice
between them is largely a matter of convenience. Message passing may also
be used to provide communication between processes running in separate
computers, for example, between a user process running in a workstation
and one running in a file server. Appreciation of this fact led to vigorous
discussion on the subject of remote procedure calls. This discussion—and a
parallel discussion of other communication primitives—drew attention to the
ease with which bandwidth can be lost by inefficient implementation. -

File and Memory Management

Early time-sharing systems had very limited high speed memories, and much
effort was perforce devoted to arriving at a satisfactory paging policy. A
particular problem was the avoidance of thrashing, a situation in which one
process would load pages only to have them overwritten by another process
before it could make any effective use of them. The working set model
developed by Denning proved fruitful in understanding this phenomenon and
in guiding the development of satisfactory paging algorithms. As high speed
memories got larger, paging problems became less acute, and there was less
need for fine-tuning of paging algorithms. However, since that time, high

10




speed memories have increased in speed by a very large factor, but disc
latency has remained much the same. The result is that the solutions arrived
at earlier have failed to scale. I shall return to this subject when I come to
discuss current research directions.

An innovation introduced in MULTICS at MIT was the system of attaching
files to the virtual memory instead of reading from and writing to them in
the conventional manner; such files are said to be mapped on to the virtual
memory. This creates a different way of life for the programmer and its merit '
has never been clearly established.

It is sometimes claimed that attachment of files reduces copying overheads,
but it is hard to see that there is much to choose between the two systems in
this respect. It is true that the contents of an attached file can be modified in
place, without it being necessary to copy the whole file. However, if there is
a requirement for the original form of the file to be preserved—for example,
for restarting purposes—then a copy of it must be made before it is attached.

The problem is not removed by implementing a system—for example, copy-
on-write—in which changes to a file are accumulated in temporary storage
and not written back into the file until a late stage, since the changes do
eventually come to be written back, and a programmer who wishes to preserve
the original contents of a file is still under the necessity of making an advance

copy.

A similar problem occurs in database systems in which fixed length records
are updated in place. Here the problem is usually met by making the com-
mitting of changes an operation that is explicitly called for by the user of the
database.

My impression is that there is now little interest now in providing file attach-
ment as a feature for users of time-sharing systems. It is, in any case, not
appropriate when a file server is being used.

Operating systems brought with them the need for memory protection to pre-
vent user programs from interfering with the system and with each other. In
response to this need, hardware designers provided two modes of operation,
namely, user mode and privileged mode. It was widely felt that something
more was needed and the MULTICS system pioneered rings or levels of pro-

11




tection. As a process moved through the rings in an inward direction it
acquired access to more segments of memory. This lead was followed by var-
jous vendors who provided rings of protection as a feature of their hardware.

However, it eventually became clear that the hierarchical protection that
rings provided did not closely match the requirements of the system pro-
grammer and gave little or no improvement on the simple system of having
two modes only. Rings of protection lent themselves to efficient implemen-
tation in hardware, but there was little else to be said for them.

The attractiveness of fine-grained protection remained, even after it was seen
that rings of protection did not provide the answer, and led to much work
being done on capability systems in which the capabilities were bit patterns
recognized by the hardware. This again proved a blind alley and all modern
processors use the simple system of two modes, user mode and privileged
mode.

Hardware support for capabilities was essential if the resulting system was to
run fast enough to have any chance of being acceptable in practice. I could
not, therefore, see any point in work which was done on capability systems
implemented entirely in software. I am not here referring to systems in which
capabilities in the form of sparse bit patterns are passed from one computer
to another across a network. '

UNIX and its History

UNIX has had a complex and strange history. Originating as a system for
a PDP-7 with a small address space and used in a research organization, it
was developed to run on large minicomputers in a networked environment.
It finally emerged as a full scale competitor to the major proprietary sys-
tems, with the advantage—unique among major systems—of being machine
independent. UNIX appealed mostly to users in science and engineering and
had, by the mid 1980s, attained a significant presence in that sector.

The early personal workstations were designed by minicomputer engineers
who were familiar with UNIX. It was natural, therefore, that when they re-
quired an operating system, they should look favorably on UNIX. Indeed,
they had little option, since there was no other machine independent oper-
ating system obviously available. The availability of UNIX, as an operating

12




system independent of the processor instruction set, was a major factor in
enabling workstations with RISC instruction sets to be accepted by the mar-
ket. UNIX has stood up well to the challenge, and at the present time it is
in universal use for personal workstations.

Unfortunately, there were two competing brands of UNIX and not all per-
sonal workstations had the same brand. This situation has become worse,
not better, as time has gone on. This is because some users were not happy
with either of the brands originally available, and some companies did not
find it easy to live with the proprietary problems that they both entailed. In
consequence, a number of attempts were made to produce a version of UNIX
that would be free of proprietary constraints and would achieve dominance,
either because it was manifestly superior to any existing variant or because it
had overwhelmingly strong industrial backing, None of these attempts have
proved successful. All the systems that have resulted have their adherents,
with the result that we now have more brands than ever before. If it turns
out, in the next few years, that UNIX has run its course, it will be largely
because it has been smothered by its variants.

Microsoft have recently introduced a new operating system known as NT,
which is obviously targeted at the UNIX market. Like UNIX it is a general
purpose time-sharing system that can be run on a workstation, but it would
also be entirely at home in the role of providing a departmental time-sharing
system on a large VAX or other minicomputer. It implements threads and
in one version—Windows NT—it provides a modern interface to the user.
Windows NT pays special attention to user authentication and security, ini-
tially to the level of Class C2. The user who creates an object generally
becomes its owner and can specify by means of an access control list how
much use other users may make of it. There is a comprehensive system of re-
source accounting which enables each user to be assigned quotas for memory
usage, number of active objects, and processor time. These are all features
appropriate to a time-sharing system serving a large and diverse population
of users. It is obviously the belief of the designers of NT that such systems
will continue to play a major role in the computing world. As a competitor
to UNIX a strong appeal of NT will be that it is a new system entirely free
from variants, and that moreover it has every prospect of remaining vo.

13




Operating Systems for Personal Workstations

It appears from what I have just said that present thinking—and practice—is
that the appropriate operating system for a high end personal workstation
differs in no respect from the traditional operating system developed in the
- very different environment of large computers and time-sharing. I can see
arguments for believing that this is a natural and proper state of affairs. A
single user workstation needs multitasking both so that the user may run
background tasks and so that the system may accept information coming in
through a network. It can be argued that virtually all of the process handling
facilities, provided in a general purpose time-sharing system, are needed for
these purposes and that virtually nothing could be saved by taking account
of the fact that there is a single user only. Similarly, some protection of
files must be provided in order to protect the user against himself or against
accident and it can be argued, though here I think less convincingly, that a
fully certified security system provides what is needed without either getting
in the user’s way or adding to the overheads of the system. I shall return to
this subject later.

A Range of Operating Systems

The powerful personal workstations that I have been considering constitute
only a small part of the total range of desk top computers. There are also '
PCs, laptops, and even smaller computers; these exist in much larger numbers
than do large workstations. Most of the low end computers—all of those that
are IBM compatible—run MSDOS while the high end run UNIX. Since from
the hardware point of view the computers form a continuous range this makes
an awkward division. :

Historically this division is due to the fact that workstations were devel-
oped by minicomputer engineers, who as I have explained, turned natu-
rally to UNIX as a system known to them. In any case they could hardly
have adopted MSDOS from the PC world, since it would have lacked fea-
tures essential to the high end user—for example file protection and multi-
threading—and these users would have been infuriated by the restriction to
eight letter file names. On the other hand it was this very simplicity and
lack of frills that constituted the real strength of MSDOS in its own proper
sphere.

14




In a column I wrote for the Communications of the ACM I remarked that
it would be too much to expect that a single operating system could be
found that would be suitable both for powerful workstations and also for
laptops, and even smaller computers. I did suggest, however, that as a long
term aim we might hope for a range of operating systems that were, in some
sense, compatible or at least friendly to one another. The family relationship
between the various operating systems would be close enough to permit the
migration up and down the range of files and programs.

There does not appear to be any insuperable difficulty in providing for the
migration of files. The full specification of a filing system might include
file protection and the retention of a full updating history. In a lower level
system these features might not be provided, but that would not prevent the
files themselves from being copied; it would simply mean that some attributes
would be lost. Similarly, when a file was being copied in an upward direction,
default values for some attributes might have to be supplied.

Easy movement of programs in the downward direction would make life easier
for application programmers. They would be able to develop applications on
a workstation equipped with a full operating system and then package them
to run on smaller computers.

In this connection, I might remark that system programmers need more and
more to visualize the requirements of application programmers. The idea,
originating at Xerox PARC, that they would do good work provided that
they were users of the systems they created was a fruitful one in its day, but
something more is now required.

File Servers and Other Servers

Along with workstations and ethernets came the requirement for servers of
various kinds—file servers, print servers, network interface servers, and per-
haps compute servers. An easy way to make a server is to take a workstation
running UNIX and equip it with the necessary software. However, a full
operating system is unnecessary. This along with the need to make servers
highly secure and to maximize throughput—or rather to secure a good com-
promise between throughput and response time—has led to the design of
servers becoming a specialized subject. This is particularly noticeable in the
case of file servers; here effective and reliable error recovery is of the highest

15




importance and so is file security. Performance is optimized by making use
of sophisticated software cacheing systems.

File security, and indeed security generally, presents great problems to the
designer of a traditional time-sharing system serving many users drawn from
diverse, and possibly competing, organizations. In a file server it is relatively
straight forward. This is because users cannot run arbitrary programs in a
file server in the way they can on a general purpose time-sharing system.
All they can do is to invoke one of a small set of services offered by the file
server.

I do not question that a secure time-sharing system can be designed. I would
even agree that it could be implemented in such a way that that the prob-
ability of another user or a penetrator obtaining unauthorized access to a
user’s files would be negligibly small, even taking account of major system
malfunction. However, I believe that such a system would necessarily be im-
plemented on safety-first principles, and would run intolerably slowly. The
optimizations necessary to make the system acceptable would carry with
them many risks of introducing security loop holes, and a detailed certi-
fication of the implementation would be necessary. However eminent the
authority ultimately responsible for the certification, I would be extremely
reluctant to entrust any sensitive information to such a time-sharing system.
I am, however, aware that I am here expressing a personal view and that
there are others do not feel the same way.

However, I believe that the above problem is likely to lose its importance,
since we may soon expect to have, instead of large single computers, groups of
workstations and servers linked by a LAN and connected to the outside world
through one or more gateways. In my view, the unit of security should then
be the group as a whole. The responsibility for security against espionage
or sabotage would rest with the designer of the software for the gateways,
rather than with the designers of the operating systems for the individual
workstations.

16




RESEARCH DIRECTIONS

Structure of an Operating System

In earlier times designers were often attracted by a layered model, often as-
sociating the layers of the model with varying degrees of memory protection.
Such models if rigidly adhered to tended to lead to systems that ran very
slowly. I remember one operating system constructed in this way that was so
slow that an extra year of development time was needed to make it acceptably
fast.

A widely expressed ideal is that an operating system should consist of a small
kernel surrounded by routines implementing the various services that the
operating system provides. The intention is that the kernel should contain
all the code that needs to be certified as safe to run in privileged mode and
that the peripheral routines should run in user mode. When such a system
is implemented, it is found that frequent passage in and out of the kernel
is necessary and that the overheads involved in doing this make the system
run slowly. There is thus an irresistible pressure to put more and more in
the kernel. I am driven reluctantly to the conclusion that the small kernel
approach to the structuring of an operating system is misguided. I would
like to be proved wrong on this.

Recent developments in programming languages have led to modular or
object-oriented models. These free programming languages from the limi-
tations of hierarchical scope rules, and as such I regard them as representing
a major advance. It has long been recognized that an operating system is not
a monolithic program, but is made up of routines for scheduling, handling
interrupts, paging, etc. It would lend itself well to modular or object-oriented
design and I am aware that such designs are being worked on. I would like
to see public identification of the modules and accepted definitions of the
interfaces between them.

A modular or object-oriented operating system would be capable of having
plugged into it modules implementing a variety of different policies. It would
form a valuable tool for the type of experimental research that I shall mention
in the section on software performance.

17




Paging

I remarked above that high speed memories have increased in speed by a very
large factor, but that disc latency has remained much the same. We can no
longer rely on disc transfers being overlapped with useful computation. The
result is that users of top end workstations are now demanding enough high
speed memory to hold their long term working set, so that disc transfers will
be reduced in number. This may be a workable solution at the top end, but
will hardly solve the problem for users of more modest equipment. We need
to look again at policies other than demand paging, even perhaps roll-in/roll-
out policies that take advantage of the high serial transfer rates that can be
sustained when blocks of contiguous words are transferred

The problem is to be seen against the background of probable future develop-
ments in memory systems. Up until now, memories have been growing larger
but not faster. We may expect to see some emphasis put on the development
of faster memory systems for use in top end workstations. Available ap-
proaches are via: 1. chips optimized for speed rather than capacity; 2. chips
designed for streaming; 3. the exploitation, for cacheing purposes, of the
internal line registers to be found in memory chlps The last two approaches
involve software as well as hardware.

Conventional data caches support data locality in one dimension only. For
example, if a matrix is stored by rows, then elements in the same row or in
adjacent rows may find their way into the cache, but elements that are in
adjacent columns will not do so. In high energy physics a numerical algorithm
is as likely to require data words separated by a largish increment in the
address space (referred to as a stride) as to require data words close together
in the address space. Innovators are beginning to turn their thoughts to new
forms of cache (if that word can properly be used to describe them) which
support locality in terms of strides of any length from one upwards. Any
solution to this problem is likely to come from the collaboration of computer
architects, compiler writers, and operating system specialists.

Focus on Software Performance

In the parallel field of processor design, recent years have seen a great empha-
sis placed on the quantitative evaluation of processor performance. This has
been done by running bench marks on processors or on simulated versions

18




of them. Simulation has been important because it has enabled comparative
trials to be made of competing architectures—and of rival features in the
same architecture—without its being necessary to implement the processors
in silicon. The result has been to develop architectures of very great effi-
ciency and to eliminate features which were ineffective, or which overlapped
other features without providing any significant advantage.

There has been no move to subject operating systems to a similar penetrat-
ing analysis. To do so is the greatest challenge facing operating systems
specialists at the present time. It is not an easy challenge; software differs
from hardware in very great degree, and it does not follow that, because
quantitative methods have been successful in processor design, they will be
equally successful in operating system design.

If they do nothing else, measurements make people stop and think. For ex-
ample, last May, a former colleague who now works for a company that is
engaged in doing data base type work in C++, told me of an experiment in
compiling the common libraries and client side of their system on a SPARC-
station 10, and also on a 66 MHz 486 running Windows 3.1. In the result the
SPARCstation took a little less than 10 minutes and the 486 took 6 minutes.
The cost ratio of the two systems was ten to one.

1 found this an arresting result. Obviously one should not draw far reaching
conclusions from a single test of this kind. However, following up such a
result, and performing further experiments under carefully controlled condi-
tions, cannot fail to lead to a better understanding of what is going on.

There is, I know, work being done on the quantitative evaluation of system
performance. I hope that more and more research workers will turn to this
subject, and I hope that some of them will take the RISC movement in
processor architecture as a model.

Single User Operating Systems

In spite of what I said above, I am far from happy with the assertion that the
ideal operating system for a personal workstation differs in no way from an
operating system designed to provide a time-sharing service on a minicom-
puter. I feel that that the use of a full scale multiuser time-sharing system
for a personal workstation must be a case of overkill.

19




One can approach the problem by asking what are the minimum facilities
needed to make the user of a personal workstation happy. The philosophy
behind this approach is that, if you carry around facilities and features that
you do not really need, you incur an unnecessary cost.

In a research environment users are likely to place great stress on the quality
of the interactive service they receive; at the same time, they will want to
be able to run one or more background tasks. They will also need network
facilities for mail and file transfers. In research laboratories, many users like
to be able to use other people’s workstations at night or when their owners
are away, and thus secure extra computing power. In some environments this
is undoubtedly an important requirement. The question is whether it could
be provided more simply than by running a multiuser time-sharing system,
such as UNIX, on all workstations.

Personal users are likely to be very interested in that form of security better
called protection or integrity. This will enable them to protect their files and
running programs from accidental damage, whether it arises from their own
actions or from those of other users. They are less likely to be interested in
secrecy. In fact, many scientific users, especially in universities, see no need
for secrecy and would be apprehensive that a system which emphasised it
would prevent them from doing many things that they want to do.

The »O}')eron system, distributed by Niklaus Wirth from ETH Zurich, com-
prises a language and an operating system, both designed on the lean prin-
ciples for which Wirth is well known. Those who feel that there may be a
future for lean operating systems would do well to examine Oberon.

Program Optimization by an Operating System

There are limits to what can be done, either by a compiler or by a human
being, to optimize a program without running it. Major optimization, es-
pecially of a program running on parallel hardware, is usually achieved by
acting on observations made of the behavior of the program as it is run
repeatedly. At present, this must be done by a human being.

There are various simple ways by which an operating system, or rather an
operating system and a compiler working together, could use information
from earlier runs to optimize a program automatically. For example, it might

20




cause a record to be kept of the number of times the various branches in the
program were taken, and then modify the source code so as to minimize this
number. This could be regarded as a form of branch prediction based on
experience with that particular program, rather than on general program
statistics. Similarly, an operating system might keep track of the way that
paging occurred and modify the code so that appropriate prefetching took
place and so that frequently activated code was retained in memory. Clearly
there are issues here affecting the language designer, the operating system
designer, and perhaps the hardware designer also.

I would like to feel that the above approach might lead to improved methods
for automatically optimizing programs that run on parallel hardware. In my
view, significant progress with this problem will only be made if ways can be
found of making use of experience accumulated during the program’s entire
running history. :

Acknowledgement

I am grateful to many colleagues with whom I have had discussions while
preparing this address; in particular, I would like to thank: J.R.Bacon,
R. M. Needham, C. P. Thacker, and N. Wirth.

21







