
A Perspective

on Computer Progress in the Last Five Years

by

Maurice V. Wilkes

Abstract: The paper surveys recent progress under the following head-

ings: workstations, processor design, parallelism, local area networks, UNIX,

computer security, electronic mail and facsimile, and programming lan-

guages. It updates an earlier paper published in 1984 [1].

Five years ago personal computers were already enjoying a great success. The
personal computer, or rather the microprocessor on which it was based, was a
product of the semiconductor industry which needed to find a profitable appli-
cation for VLSI at a time (1970–71) when only a few thousand transistors could
be put on a chip. They started with pocket calculators, went on to logic replace-
ment chips such as might be used in a computer terminal and, as soon as enough
transistors could be put on a chip, ended by re-inventing the computer [2].

The personal computer industry developed as a rapidly expanding bubble on the
side of the mainstream industry. The personal computer market was largely a
new market. Nearly all established computer users continued to do their serious
work on time-sharing systems, which underwent a major improvement as a result
of the spectacular development that took place of low cost minicomputers. Since
1984, we have seen the development of much more powerful personal computers
known as workstations. These are sufficiently powerful to engage the attention
of those who had remained loyal to time-sharing, and it may be said that the
bubble is now merging with the main industry. In fact, workstations may claim
a dual ancestry. On the one hand they are direct descendants of the personal
computer which, as I remarked above, came from the semiconductor industry. On
the other hand, as regards the philosophy behind their use and the kind of user
environment that they provide, they are the natural outcome of the pioneering
work done at Xerox PARC with the Alto and the Dorado.

Personal computers and the earlier workstations appealed to frustrated users
who felt that they had suffered enough from overloaded time-sharing systems
and unsympathetic computer centre managers; these users tended to stress the
independence that having a computer in their own office and under their own
control gave them. This attitude is now changing. The modern workstation user
relies heavily on a local area network and makes use of all the central services
traditionally associated with time-sharing, namely, central filing, printing, mail,

1



etc., except that he is self-sufficient as regards processor cycles. Even there, how-
ever, he may make use of the network to secure extra cycles on other computers,
for example on other people’s workstations, when he needs them. He may even
be glad to use his workstation as a terminal on a time-sharing system that is
available to him on the network. Timesharing systems are no longer endemically
overloaded and system managers know their job better.

The larger workstations now rival in power all but the very largest minicomputers,
and can fill similar roles. It is quite common for a workstation to have attached
to it several terminals to which it provides a time-sharing service. We may expect
that soon the only difference between a workstation and a minicomputer will lie
in the packaging and in the amount of peripheral and communication equipment
that goes with it.

Quite recently we have seen operating systems at last break free from particular
computers. This happened to computer languages 25 years ago and for most
of that time it has been apparent that one day operating systems would do the
same. The breakthrough, as I think it may well be described, has been associated
with the UNIX phenomenon, a subject to which I shall return later.

Processor Design

A major revolution in processor design has taken place with the triumph of the
RISC movement. This movement began with a paper by Patterson and Ditzel,
published in 1980, in which they challenged the principles on which processor
instruction sets were then designed [3]. Instead of a set of complex micropro-
grammed instructions it was better, they asserted, to have a reduced instruction
set consisting of instructions simple enough to be hard wired. They indicated the
principles on which such an instruction set should be designed. They described
a single chip processor being implemented at Berkeley and for which the name
RISC was originally coined. Other papers appeared describing the MIPS at Stan-
ford and the IBM 801 [4, 5]. It appeared that the latter had been in gestation
within IBM research for some time.

RISC processors are almost twice as fast as the processors they displaced. They
can be designed in half the time and take much less space on the silicon chip. The
gain in speed in a RISC processor comes principally from the pipelining which
the particular flavour of RISC instructions makes possible. At an earlier period,
pipelining had been confined to high end machines. In a RISC processor at least
three instructions are in different stages of execution at the same time. For this to
be possible, the high-speed memory, assisted one does not need to say by a cache,
must be able to supply instructions at the required high rate. It was the coming
of memories fast enough to satisfy this criterion that made the RISC movement
possible. In the days of slower memories, the designer attempted to keep the

2



processor busy by packing as much information into each instruction as possible.
However, when he had provided instructions for multiplication and division there
was little further he could do. An instruction for extracting a square root would
not be used often enough to affect the overall speed to any appreciable extent and
the same is true of instructions for speeding up loops. It is for this reason that
attempts to microprogram processors to perform well on high level languages had
such limited success.

It is no accident that the RISC movement came at a moment when it had become
possible to simulate a processor design sufficiently accurately to obtain a reliable
estimate of its performance prior to implementation. Simulation enables a num-
ber of designs to be compared and the effect of including this or that feature to
be qualitatively evaluated. Experiments with simulators soon showed that intu-
ition is a poor guide to performance when the statistics of usage patterns are an
important element in the evaluation.

The fact that all RISC processors have similar instruction sets facilitates the re-
targeting of compilers, since the same intermediate language suits them all. There
are no quirks for the writer of the code generator to waste his time on. Perhaps
partly for these reasons, when the early RISC processors were being designed,
there was no formal pressure to standardize their instruction sets. The de facto

standards that are now emerging are all the better for this. The investment in
compilers remains, of course, a heavy one.

The long awaited point at which it would be possible to put a processor plus a
useful amount of cache memory on a single chip was achieved some time ago.
The fact that a RISC processor occupied only a small area of silicon was of great
importance in making this possible sooner than would have been the case if the
RISC movement had not taken place.

Progress has continued and smaller feature sizes have made it possible to increase
the number of transistors that can be accommodated in a given area. At the
same time improvements in process technology, particularly by way of achieving
greater cleanliness, have enabled chips to become larger. In consequence, it is
now possible to accommodate on a single chip a RISC processor, an integer
multiplier, and a fast floating point unit, together with a cache and a memory
management unit. The process will continue, and it will become possible to find
room also for the other units that go to make up a complete computer, such as
a display processor, peripheral controllers, network interfaces, etc. We can thus
look forward to having a complete processing system on a single chip, needing
only a memory bank and peripherals to make it into a complete computer of
great power and very low cost. Photographs of modern high density processor
chips are shown in Figures 1 and 2.

For some years, the ability of the semiconductor industry to manufacture large

3



chips has been steadily improving, and the largest chips on the market have in-
creased in size at a linear rate. There appears to be no technical reason why this
trend should not continue. It will be interesting to see to what extent the semi-
conductor industry will in fact go in for very large chips. A further trend worth
noting is that more layers of metal—up to four—are now being offered. Having
this number available simplifies signal routing, the control of crosstalk, and the
distribution of power and clock, and thereby contributes to the performance that
can be obtained.

The first set of units mentioned above, namely, the RISC processor, the integer
multiplier, the fast floating point unit, and the memory managing unit are those
between which it is necessary for signals to pass at high speed. There is not the
same need in the case of the other units. Their purpose is to act as an interface
between the high speed units and the outside world. Thus, from the point of
view of achieving the highest possible operating speed, it may be said that the
priority list of functional units to be accommodated on a single chip has now been
exhausted or is about to be exhausted. If speed is the principal consideration,
any increment of silicon space that becomes available should be used in the first
place to improve the performance of these units and to provide more on-chip
memory, cache or otherwise. Eventually perhaps there will be enough space to
accommodate all demands. Until then, making the best possible use of silicon
real estate will be a major preoccupation of the system designer. He will arrive
at a different decision according to whether he is aiming at the highest possible
performance, or whether cost is also a consideration.

Now that we are within sight of being able to put a complete computer on a single
piece of silicon by conventional methods, it is unlikely that we will hear any more
in this connection of wafer scale integration based on redundancy techniques.

Five years ago, microcomputers were based on CMOS or some similar process,
and it was possible to put the whole processor on a single chip. More powerful
computers used multi-chip processors based on bipolar technology. There was a
tendency to believe that this state of affairs would continue. At the same time it
was observed that, as the switching times of bipolar transistors became shorter,
the time taken for signals to pass from one chip to another became the critical
factor. The development of systems of inter-chip interconnect that would be much
faster that conventional printed circuit boards was, therefore, seen as something
to which high priority should be given. IBM had already led the way with their
Multilayer Ceramic Multichip Module and their Thermal Conduction Module,
radical developments based on a multi-layer ceramic structure. A much discussed
proposal was to use silicon or some other material as a substrate on which wiring
would be deposited and to which the chips would be attached by means of solder
bumps. The difficulty was to achieve a sufficiently high density of interconnect
and at the same time to arrive at a satisfactory system for distributing power and

4



clock. An alternative approach was to develop something more closely resembling
an ordinary printed circuit board, but smaller and capable of operating at a higher
speed. While this may not achieve the ultimate speed, it has proved to be well
matched to the higher level of on-chip integration that has now become possible.
A recently announced interconnect system based on this approach is illustrated
in Figure 3.

Not everyone saw the future in the above terms. Some people thought that CMOS
would carry all before it and ultimately become the dominating technology for
computers of all sizes. They discounted the argument that there is an intimate
connection between power and speed and that for this reason bipolar technology
must survive.

Recently, a development has occurred that puts the matter in a new light. Bipo-
lar VLSI has begun to compete with CMOS as regards packing density. It is
possible to achieve almost the same feature size as with CMOS, although twice
as many transistors are needed to implement a processor. We may therefore
expect in the near future to see experimental processors, complete with cache
memories, implemented in this technology. Some could be versions of existing
CMOS architectures. It may be, therefore, that we will see no more multi-chip
processors.

Whether the use of gallium arsenide will enable even faster computers to be built
remains to be seen. For multi-chip computers, even with silicon, the intercon-
nect time was becoming the dominant factor, and doubts were expressed as to
whether it would ever be possible to take advantage of the even higher switching
speed of gallium arsenide. The development of gallium arsenide VLSI, with total
gate counts approaching those available with silicon—now being held out as a
possibility—would change this.

RISC principles could be challenged if the present balance of speed between a
processor and memory were significantly disturbed. Since however the cache
memory, on which the memory speed as seen by the processor immediately de-
pends, is built using technology similar to that used for the processor, this seems
unlikely to happen. Within RISC principles there is some scope for evolution, for
example, as to how much instruction scheduling should be put on the compiler
and how much instruction level parallelism the designer should aim for. There is
always the danger that false intuition will reassert itself and that designers will
be tempted to put in features which, if statistically evaluated using simulation,
would be seen not to enhance performance.

Parallelism

The last five years have brought an increased understanding of the nature of
parallelism and its exploitation. There is no longer the same general disposition

5



among computer specialists and others to believe that a breakthrough is just
round the corner.

When low cost microprocessors first appeared on the horizon the problem that
presented itself was how to use them to build multiprocessors of high performance.
The difficulty was one of memory bandwidth. If all the microprocessors were to
work out of the same memory, there would not be enough bandwidth to keep them
busy. The only solution available was to provide some private memory as well
as shared memory. At the 12th Annual Symposium on Computer Architecture
held in June 1985 no fewer than eight such systems, differing in their exact
organisation, were described. They were too awkward to program to be offered
for use on general applications, but their designers hoped that they might find
application in special fields, such as fault tolerance and high volume data base
enquiry.

In 1983, J.R. Goodman presented the idea of the snoopy cache, as it was later
called [6]. This made it possible to design a symmetric multiprocessor system
in which the local memory for each processor was in the form of a cache and
so invisible to the programmer. It was widely felt that such systems would give
high throughput and at the same time enable parallelism to be exploited to obtain
high speed. Many people saw them coming into general use as successors to the
minicomputer of the period. At the symposium just cited, two systems with a
snoopy cache were described, one by the author of a paper and the other by the
luncheon speaker.

Experience has indeed confirmed that speed can be obtained by parallelism in
a significant number of scientific problems. To do so, it is necessary to keep
most of the processors busy most of the time. This requires the investment of
a non-negligible amount of effort on the part of problem analysts and program-
mers, thereby limiting the approach to high value calculations and frequently
re-used programs. As a consequence, symmetrical multi-processors have not had
the overwhelming success that their enthusiasts predicted for them. They do,
however, continue to have their place among the offerings of the industry and
for some workloads they are cost effective in a time-sharing role. Multi-processor
workstations have been built, but there are no signs at present that they will
become popular. A factor in the situation is that uniprocessor systems have con-
tinued to get faster. Moreover, memory costs have come down, so that the the
incentive to share memory is reduced.

The new single chip processors all feature an on-chip cache. If these are used
in a multi-processor configuration with a (snoopy) external cache, a problem
of coherence arises. There is no entirely satisfactory solution to this problem,
certainly not a simple one. It is necessary to bring enough information off the
chip to enable the behaviour of the on-chip cache to be modelled and a formal

6



coherence algorithm to be implemented. This we will see happening.

The value of vector hardware is now established in those scientific fields in which
the use made of programs justifies a large effort in developing them. Vector
hardware, however, is of little value unless the scalar performance of the machine
is of the highest standard achievable, since in most cases, when vectorisation
has been carried as far as possible, it is the remaining scalar parts of the pro-
gram that dominate. It is worth recalling that the Cray I, which established the
credibility of vector processing, was not excelled in scalar performance by any
comparable machine available at the time it was introduced. The challenge to
the designer is how to provide vector capability without adversely affecting the
scalar performance.

The symmetrical multi-processor is based on conventional processor and program-
ming technology and may be said to be a development within the mainstream. A
variety of less conventional systems have also been built with the object of gaining
speed by parallelism. Among these are the Connection Machine and the Hyper-
cube. They all suffer, at least as severely as the symmetrical multi-processor,
from load balancing problems, and in addition, are handicapped by having non-
standard programming systems. The formulation, now many years ago, of the
data flow principle was seen as making possible a radical attack on the problem
of parallelism. Unfortunately, workers in the data flow field have little progress
to report and continue to struggle with what appear to be deep fundamental
problems. In spite of much interest in the area of highly parallel systems, no
really new ideas have appeared for a long time. The recently acquired ability to
put large numbers of gates on a chip has not stimulated, as many people hoped
it would, any radically new proposals. I do not expect that any breakthrough
will take place. On the positive side, there a number of scientific areas in which
people are prepared to provide the effort needed to develop optimised programs
for vector machines and various forms of multiprocessor, and the last few years
have seen a modest increase in that number.

Local Area Networks

The new subject of wide band local area networks (LANs) burst on the world in
the late 1970’s with the development of rings and the Ethernet [7, 8, 9]. These
were pioneered by computer engineers using computer techniques. As soon as
it became clear that wide bandwidth LANs were what the computer world had
been waiting for without knowing it, other interests made a bid for the business,
notably purveyors of broadband cable television systems and of telephone PBXs
[10]. In the event, these interests failed to make good their claims, and we are
left with Ethernets and rings.

The fundamental limitation of the Ethernet to a relatively small territorial area

7



has not been greatly felt, since what is available has proved to be a good match
with the ordinary need. Fairly satisfactory methods of interconnecting neighbour-
ing Ethernets have been developed. Rings can run at much higher data rates than
Ethernets and do not suffer from such a severe territorial limitation; indeed the
development of fibre optics may be said to have removed the latter limitation
altogether. At the present time, the application niche into which rings ideally
fit is that of providing a backbone communication system to which Ethernets or
local rings can be attached. High speed switches, based on integrated circuits,
have recently emerged as a possible basis for a high speed LAN. It is unlikely that
there will be further development of the Ethernet, and designers of the higher
speed LANs of the future will have to look either to rings or to switches.

We will see in the course of the next five years a great increase in the bandwidth
offered by LANs and by metropolitan area networks. This can be expected to lead
to a revolution in thinking about where processing power should be sited, whether
on the user’s desk or remotely. It will also lead to a new view of the relationship
between a local hard disk on a workstation and a central file server. A sufficiently
fast LAN would make it possible for a user to keep all his files on a central server,
and to access them directly without incurring a performance penalty. He could
then do his work on any workstation to which he could get access without the
tedious operation of first copying files from his own workstation. It remains to
be seen whether the use of a local disk on a workstation to hold current files will
come to be seen as a temporary aberation.

We are now faced with the exciting prospect of having vastly more bandwidth
than ever before available for medium and long distance communication as well as
for local communication. Many of the uses to which this can be put are obvious
enough, since computer communications have always suffered from bandwidth
famine. The transmission of images and live video are new possibilities, hardly
explored up to the present. The immediate need is to acquire some operational
experience and user reactions without waiting for high performance systems to
be developed. The Pandora project (see Figure 4, sponsored by Cambridge Uni-
versity and Olivetti Research, sets out to do this [11].

The Phenomenon of UNIX

UNIX was developed in a research environment. When it was released, it had an
immediate appeal to computer scientists in research laboratories. It was power-
ful and allowed them to build ingenious and effective systems. Their background
enabled them to cope easily with the technical problems that the use of UNIX pre-
sented, and they did not mind working with the documentation provided which,
although of lower standard than that provided with other operating systems, was
in a style that appealed to them; they were quite happy to pass information by
word of mouth and enjoyed being gurus.

8



Soon other researchers began to want UNIX in order that they might take ad-
vantage of the things that were available with it—included in the UNIX package
was a valuable library of miscellaneous functions—or to use systems written in C.
The growth in popularity of this language was closely bound up with the spread
of UNIX, the one supporting the other.

It was was by no means an expected development that UNIX should emerge from
the back room to become a widely used operating system. A major factor was
undoubtedly the fact that UNIX had already been implemented on a number
of different processors, so that when the world wanted a system not tied to
the products of any particular vendor, no other system of comparable merit
was available. To this must be added the fact that the developers of the first
experimental workstations were all UNIX devotees and it was natural that, when
workstations came on the market, they were equipped with UNIX. At this point,
windows came into general use and, more often that not, the ordinary user now
approaches UNIX through a windowing system. He is thus insulated from the
UNIX command structure, which does not provide a very easy interface for the
less sophisticated.

Although windowing systems may be said to have saved UNIX as far as the
general user is concerned, they consume a significant proportion of the computing
cycles, even of a powerful processor. It may be that the larger workstations will
come to incorporate a separate processor dedicated to this function. However,
in my view it is more likely that the majority of workstation users will regard
the support of the environment in which they work, including the windowing
system, as a good use for workstation computing cycles, and will be willing to go
to central compute servers for any additional cycles they require.

At the present time UNIX exists in two major versions—AT&T and Berkeley—
and in various flavours. In this respect it very much reminds one of the state
of FORTRAN before the ANSI standard received general acceptance. Documen-
tation, although improving, is still poor and a newcomer needs the help of an
expert.

Computer Security

Early computers were used in such a way as to present no security problems.
F. Corbató, the designer of the CTSS, the first of the large scale time sharing
systems, saw clearly that the sharing of a computer by many users simultaneously
would create a need for security features. Accordingly the CTSS incorporated
a password system and also had file protection. As time went on, experience
showed that these security features were not as effective as had been innocently
thought. The early time-sharing systems operated in university environments
and the students were quick to take up the challenge.

9



The problem was not at first met in industry; staff after all are not like students.
Later, however, when remote login and networking had become common, systems
managers would sometimes find, to their consternation, that unknown strangers
were getting into their systems.

There has been much discussion of computer security from a military point of
view and in some ways this has confused the issues because military and business
security are very different. In the military world the importance of security is
taken for granted, whereas in industry money spent on security must be justified
on the same terms as other expenditure. Unless their complacency is disturbed,
industrial managers prefer not to know about security. Again the military face
the threat of well funded professional espionage taking place outside the reign
of law. In civil life laws can be enforced and there are also cultural restraints.
One of the difficulties is that the criminal law in many countries is weak when
it comes to computer penetration and law makers are having to be convinced of
the need to strengthen it.

Recently computer networks have been attached by worms and this has done
much to alert users to the danger they are in. A worm is a free standing program
designed to exploit known or suspected security loopholes. When introduced
into a computer, it systematically searches for routes by which it can penetrate
other computers on the network. If successful, it implants copies of itself, and
the process continues. Worms operate at high speed and, once they have made
an initial penetration, operate from within the system; for these reasons, they
impose a far greater threat than an unaided human intruder could do.

It is not difficult to design a computer operating system which, if used in a se-
cure manner, will provide a standard of security high enough for most business
purposes at the present time. The difficulty is to make sure that there are no
implementation bugs that compromise security. If it were possible for the imple-
menter to do everything in a safety first manner, the difficulty would be less, but
in practice optimisations are essential to secure acceptable performance and it is
these optimisations that are apt to breed bugs. A good example is clearing blocks
on a disk when they contain information no longer required. Efficiency is pro-
moted by postponing this operation until new information comes to be written,
since the old information will then be automatically destroyed. However, if the
implementer is insufficiently alert, there is a danger that, in some circumstances,
the user will be able to read information in a block before he has written to
it. Many mischief makers have exploited security loopholes of this kind to their
advantage.

During the past decade a stupendous effort has been made to improve the security
of the leading proprietary systems. This has been done in part by identifying and
removing design flaws and implementation bugs, and in part by adding improved

10



features for such functions as access control and auditing. These systems now
provide a degree of security that is good enough for normal purposes, provided
that any insecure (but convenient) facilities they offer are disabled and that they
are used in a secure manner. Unfortunately, neither of these things can be relied
on. Many common user practices, mostly connected with the safe custody of
passwords, seriously compromise security.

As far as the security of operating systems is concerned, the coming of UNIX has
taken us back to square one. UNIX was designed to give maximum flexibility
and power. Security was not a goal; in fact, since it conflicts with the above
objectives, it may be described as a non-goal. It is not to be wondered at that
UNIX is giving rise to security concerns. An organisation wishing at the present
moment to set up a reasonably secure time-sharing system would be well advised
not to choose UNIX as the operating system. Anyone who thinks that a few
fixes will suffice to make secure the versions of UNIX currently in general use
is deceiving himself. The nature of the UNIX market is such that proprietary
versions for which security claims are made cannot be expected to have more
than a very limited impact.

Although the patient identification and removal of design flaws and implementa-
tion bugs has yielded fruit, it would obviously be desirable if more formal and less
uncertain methods could be evolved for arriving at a secure system and providing
evidence that it is secure. Everyone who has thought about the subject has his
own pet ideas.

The difficulty about giving a formal proof that a system is secure—along the
lines of a proof that a program meets its specification—is that one is trying to
prove a negative, namely that the system cannot be penetrated. Some element
of inspection, as distinct from proving, would appear to be necessary and one
would like to see this made as formal as possible. Since implementation bugs are
a major worry, the inspection must be repeated whenever the system is transferred
to another computer.

There has been some discussion of ways in which the operating system might
be structured so as to facilitate, and make more systematic, the task of the
inspector. One suggestion has been to restrict to an absolute minimum the
amount of information that the running process can access at any given moment.
This is expressed by saying that the domain of protection in which the process
runs is small. Unfortunately, if everything is done in software, the frequent
change of domain which this approach makes necessary leads to unacceptable
loss of performance. Attention was accordingly directed to providing hardware
support for domain switching. An early suggestion, implemented in MULTICS,
was to have rings of protection. The amount of information available to a process
decreased as it moved from the inner to the outer rings. Unfortunately, the

11



hierarchical model of protection which this implied is fundamentally flawed, and
it was found that rings of protection were little improvement if any on the simple
system of a privileged and an unprivileged mode.

A further idea investigated was the provision of hardware support for capabilities.
Capabilities are simply tickets, the mere possession of which gives the right to use
or access some resource. As a practical approach capabilities proved disappointing
for a number of reasons, one of which was that the software required to manage
the capabilities proved to be unexpectedly complex.

As a theoretical model of computer security, however, the capability model is an
attractive and powerful one. For example, if certain restrictions on the passing
of capabilities from one procedure to another are accepted, it is easy to verify
that the running process has access to what it needs and no more. This makes it
vastly easier to mount a defence against Trojan Horses and viruses. Unfortunately
the advantage is a theoretical one only, since the capability model cannot be
efficiently implemented. In a capability system, all the protection is enforced
at run time. Some protection can be bound into a program at compile time
and, indeed, programming languages do this to a certain extent. In the general
security context, however, the compile time approach has not proved capable of
useful development.

It is perhaps just as well that attempts to devise effective hardware support for
security within the processor have not been successful. Processor development has
been driven by the demand for the highest possible performance and processors
with special security features would have been left behind in the race.

Until recently, most thinking about security was in terms of the design of an
operating system for a large public time-sharing system and was based on the
assumption that the users were not mutually trustworthy and that security bar-
riers must be erected to prevent them from interfering with one another and with
the system. Apart from the password system for logging-in, these are the only
barriers that exist. If an intruder succeeds in logging-in, for example by guess-
ing a user’s password, the barriers that prevent him from then getting access to
other user’s accounts are exactly the barriers that are established between regular
users.

The above model, however appropriate in it proper place, does not fit the many
departmental timesharing systems now in operation. These serve a relatively
small group of cooperating users, between whom no security barriers need exist.
They can be trusted not to pry into each others files, and it does not matter
very much if they do. What is needed is to make the system into a self-contained
secure enclave from which strangers are firmly excluded. One way of making
this possible is not to allow external users to log-in directly, but to insist that all
remote connections are made from within the enclave itself.

12



In the most secure implementations of this principle, a dial-out capability—to the
telephone system or to a computer network—is provided, but no dial-in capability.
If a distant user wishes to be connected, he must send a message through an
independent channel, for example by telephone, or via another computer (possibly
insecure) on the net. If he can establish his credentials, then the connection is
established by an operator from within the secure enclave. In more common, but
less secure, implementations the user is allowed to log-in, but only for the purpose
of entering a request to be automatically called back at a location known to the
system. A secure enclave can comprise a local time-sharing system as described
above, or it can comprise a group of workstations with file servers on a LAN. It
can even consist of a single personal workstation.

The problem is essentially one of the user authenticating himself. The integrity
of a secure enclave depends entirely on the enforcement of security at points of
entry. Any system based solely on passwords or encryption keys is vulnerable
to lack of care on the part of the users. The call back procedure has the merit
that it provides information that is not provided by present day communication
systems, namely, the location of the site from which the caller is operating.

The concept of the secure enclave is not appropriate in all circumstances but,
where it is, it has much to commend it. It puts the onus for security on the
owner of a workstation or on the person in charge of a group. He can take his
own decision as to how high a degree of security is necessary, or even whether
to worry about security at all. What he decides to do will have no effect, good
or bad, on other enclaves. Within an enclave, an operating system like UNIX,
designed for convenience rather than security, is perfectly satisfactory. Security
exists—and is seen to exist—to keep strangers out, not to come between friends.

Electronic Mail and Facsimile

The electronic mail situation is far from satisfactory. Instead of a uniform system,
we have a large number of separate networks with more or less unsatisfactory
gateways between them. The addressing system is a source of great confusion to
users, and often messages are returned or fail to be delivered for trivial reasons.

Meanwhile, a powerful competitor to electronic mail has arisen in the shape of
facsimile, known for short as faxO Fax developed from the paper office and is
compatible with it. It uses the telephone network and messages are sent to a
telephone number; they are then routed to the recipient by office staff in the
ordinary way. Since there is no queuing in the network, successful transmission
implies receipt of the message. If the connection cannot be established, the
message remains at the sending station, and the fact is obvious to all concerned.
For the sake of a better name, I will refer to this as immediately delivery.

The triumph of fax has been made possible by the dramatic improvement that

13



has taken place during the last five years in the reliability and availability of the
telephone network, especially the international telephone network. This improve-
ment has been matched by an equally dramatic improvement in the performance
of high speed modems.

Fax exploits the universal nature of the telephone network. The user sees one
hop to the destination. The telephone company worries about routing and redun-
dancy, and is also responsible for the maintenance and upgrading of the switches
and lines. Fax automatically gives immediate delivery. Some electronic mail sys-
tems, based on a network of leased lines, also give immediate delivery, but many
emphatically do not. They work on the store and forward principle. Whatever
the initial specification of such a network, and the performance of a pilot sys-
tem, in practice the emphasis will inevitably come to be on ‘store’ rather than
on ‘forward’. Queues will build up within the network, and at gateways to other
networks. Messages will become subject to delays, which are all the more seri-
ous because they are uncertain. Usually, if gateways are involved, no positive
indication is given of delivery. Messages often get lost and the sender does not
know.

Fax is based on transmission of scanned images, electronic mail on the transmis-
sion of ASCII characters. The gap can be expected to close. The storage and
transmission of scanned images is already engaging the attention of the computer
research community. Similarly, we may expect to see fax systems in which infor-
mation is sent in ASCII form when that is available, otherwise as a scanned image.
Soon, perhaps, character recognition will enable scanned text to be converted to
ASCII—at least in some useful cases. There is no problem about turning ASCII
into a scanned image.

These developments have still to happen. At the present time fax is compatible
with a paper office, but incompatible with electronic mail. It is, therefore, more
acceptable to companies which are not far advanced in the use of computers than
to those in which all documents exist in computer form. In some places, fax

servers, which enable fax messages to be sent from a computer terminal, are in
use, and help to mitigate the incompatibility with electronic mail.

Provided that the recipient’s fax number is known, a message may be addressed
to him using his ordinary name. In the case of an electronic mail message, it is
necessary to know his local user identifier. For example, J Brown may be known
locally as jb or jbrown. It would be a major step forward if electronic mailing
systems were designed to accept ordinary names. At the receiving node, the
message would be routed to the correct individual by a simple expert program
which could easily deal with the common run of combinations of names and
initials, and even with common mis-spellings. If the expert program failed to
identify the recipient, the message would be referred to the equivalent of a mail

14



room clerk. The sender would not then be subjected to the irritation of having
his message returned because he had mis-spelled the name. I have heard of a
bank which uses an expert system of exactly the kind described to route to the
appropriate branch incoming messages dealing with fund transfers.

Programming Languages

Things move slowly in the computer language field but, over a sufficiently long
period of time, it is possible to discern trends. In the 1970s, there was a vogue
among system programmers for BCPL, a typeless language. This has now run its
course, and system programmers appreciate some typing support. At the same
time, they like a language with low level features that enable them to do things
their way, rather than the compiler’s way, when they want to. They continue, to
have a strong preference for a lean language. At present they tend to favour C in
its various versions. For applications in which flexibility is important, Lisp may
be said to have gained strength as a popular programming language.

Further progress is necessary in the direction of achieving modularity. No lan-
guage has so far emerged which exploits objects in a fully satisfactory manner,
although C++ goes a long way. ADA was progressive in this respect, but un-
fortunately it is in the process of collapsing under its own great weight. ADA is
an example of what can happen when an official attempt is made to orchestrate
technical advances. After the experience with PL/1 and ALGOL 68, it should
have been clear that the future did not lie with massively large languages. I
would direct the reader’s attention to Modula-3, a modest attempt to build on
the appeal and success of Pascal and Modula-2 [12].

Acknowledgments

I am grateful to many colleagues for commenting on drafts or partial drafts
of this paper, especially to: J.Dion, D.A.Gaubatz, J.L.Hennessy, A.Hopper,
M.A. Johnson, P.A.Karger, S.B. Lipner, R.M.Needham, P.Robinson, N.E.Wiseman.
It goes without saying that I alone am responsible for the statements made and
opinions expressed.

References

1. WILKES, M.V.: ‘Past, Present, and Future of the Computer Field’, Proc. IEE,
1984, 131 Part E, pp. 106–112

2. WILKES, M.V.: ‘The Past and Future Development of Personal Comput-
ers’, Computer Standards and Interfaces, 1988, 8, pp. 5–7

3. PATTERSON, D.A., and DITZEL, D.R.: ‘The Case for the Reduced In-
struction Set Computer’, Computer Architecture News, 1980, 8 no. 6 pp. 25–

15



33

4. HENNESSY, J.L., JOUPPI, N., BASKETT, F., GROSS, T.R., and GILL,
J.: ‘Hardware/software Trade-offs for Increased Performance’, Proc. Symposium

on Architectural Support for Programming Languages and Operating Sys-

tems, 1982, pp. 2–11

5. RADIN, G.: ‘The 801 Minicomputer’, Proc. Symposium on Architectural

Support for Programming Languages and Operating Systems, 1982, pp. 39–
47

6. GOODMAN, J.R.: ‘Using Cache Memory to Reduce Processor-Memory
Traffic’, Proc. 10th Annual Symposium on Computer Architecture, (1983),
pp. 124–131

7. WILKES, M.V.: ‘Communication Using a Digital Ring’, Proc. PACNET
Conference, 1975, pp. 47–55, Sendai, Japan

8. WILKES, M.V., and WHEELER, D.J.: ‘The Cambridge Digital Communi-
cation Ring.’ Proc. Local Area Communications Network Symposium, 1979,
NBS special publication (ed.Meisner and Rosenthal) p. 47, Mitre Corp. and
NBS

9. METCALFE, R.M., and BOGGS, D.R.: ‘Ethernet: Distributed Packet
Switching for Local Area Computer Networks’, Comm. ACM, 19, 1976,
pp. 395–404

10. WILKES, M.V.: ‘The Impact of Wide Band Local Area Communication
Systems on Distributed Computing’, Computer, 1980, 13, no. 9, pp. 22–25,
IEEE

11. HOPPER, A.: ‘Pandora - An Experimental System for Multimedia Appli-
cations’, Operating System Review 1990, 24 no. 9, pp. 19–34, ACM

12. L. CARDELLI, J. DONAHUE, M. JORDAN, B. KALSOW, and G. NEL-
SON.: ‘The Modula-3 Type System,’ Proc. 16th Annual ACM Symposium

on Principles of Programming Languages, 1989, pp. 202–212

26 September 2005

16



Captions for Figures

Figure 1. MIPS R3000 processor Chip - photograph and caption to follow

Figure 2. Layout of the INTEL i860 processor chip.

The Integer RISC Core, that is the basic RISC machine, occupies only a small
part of the chip. There are two caches, the Instruction Cache and Data Cache.
The Floating Point units together constitute a highly parallel, pipelined, numer-
ical coprocessor. The chip is 1.5 cm by 1.0 cm and contains a million transistors.

Figure 3. The multi-chip unit used in the VAX 9000 System.

The chips, of various types, are carried on a High Density Chip Carrier (HSDC)
which performs the same function as a printed circuit board, but is three to five
times denser. There are nine layers of wiring used for signals and power. A
polyimide synthetic material is used for insulation and a typical line pitch for the
signal interconnect is 75 microns. This high density of wiring is obtained by using
for manufacture similar equipment to that used in the semiconductor industry.
The chips are gang soldered directly to the substrate using Tape Automated
Bonding (TAB) without any chip holders.

One HSDC (4 in by 4 in) is able to accommodate as much logic as was accom-
modated in earlier VAX models on four 15 in by 12 in printed circuit boards. A
power dissipation of up to 300 watts is possible with air cooling.

Courtesy: Digital Equipment Corporation

Figure 4. Pandora Project.

The picture on the left shows an experimental multimedia workstation installed
in an office. On the right is a close up of the screen as seen by the user. This
includes several X-windows. One contains a digitised video picture of a person
in another office with whom the user is working. A smaller window contains a
picture of the user himself; a copy of this is currently being transmitted to the
remote user. Underlying the two windows is a window containing a computer
program written in C.

Courtesy: Olivetti Research Ltd

17


