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ABSTRACT
Systems that protect enclaves from privileged software must con-
sider software-based side-channel attacks. Our system isolates en-
claves on separate secure cores to stop attackers from running on
the same core as the victim, which mitigates intra-core side-channel
attacks. Redesigning the memory hierarchy based on enclave own-
ership protects enclaves against inter-core side-channel attacks. We
implement this system and evaluate it in terms of communication
performance, memory overhead and hardware area. Combining
physical isolation and a redesigned memory hierarchy protects
enclaves against all known software-based side-channel attacks.
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1 INTRODUCTION
The concept of enclaves in trusted execution comes from the desire
to protect applications from privileged software on a system. As
operating systems become richer and more complicated, their at-
tack surface increases, and it becomes more likely that they will be
compromised by an attacker [7]. Previous enclave solutions show
that a combination of hardware enforcement and software manage-
ment is a powerful and flexible solution to allow any application to
protect trusted code [3, 6, 9, 10, 15, 19, 29, 33]. However, the degree
to which these solutions protect against side-channel attacks differs
widely.

Protecting against side-channel attacks is hard. There are many
classes of side-channel attacks like differential power analysis, fault
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injection using lasers and cache timing attacks. Since side-channel
attacks that require physical access are less scalable, we choose
to only protect against side-channel attacks that can be executed
by software. Previous enclave systems do not fully protect against
software-based side-channel attacks, so this requires the formula-
tion of a new threat model that adequately protects enclaves.

Software-based side-channel attacks can be classified into two
categories: intra-core and inter-core. Intra-core side-channel attacks
require the attacker and the victim to be co-located on the same core,
while inter-core side-channel attacks do not have this requirement.
Of these two classes, intra-core side-channel attacks are the hardest
to protect against, mainly due to the sheer number of shared micro-
architectural resources in modern application cores. Additionally,
the many forms of speculative execution attacks have shown that
the dependencies between these micro-architectural resources leak
information in unexpectedways [5]. To protect against all intra-core
side-channel attacks, we learn from the use of physical isolation in
a different class of trusted execution environments.

SIM cards, smart cards and trusted platform modules create a
physically-isolated execution environment to make security guar-
antees. Our work applies this concept of physical isolation in the
context of enclaves. All enclaves run on physically separate cores
from application cores, and then we focus on protecting against
inter-core side-channel attacks that exist due to the sharing of the
memory hierarchy. Protecting against inter-core side-channel at-
tacks is not easy because side channels can be based on contention
on cache lines, request buffers, busses, DRAM row buffers, etc.
However, it is much easier to create a system that protects against
inter-core side-channel attacks whenwe do not have to worry about
intra-core side-channel attacks as well.

Given that we now live in the age of dark silicon [13], we can
afford to have dedicated hardware to perform key operations. For
enclaves, this means that we can have dedicated processors that
are designed to be highly robust against intra-core side-channel
attacks and speculative execution attacks. Having dedicated secure
processors for enclaves means that we do not have to pay the
performance penalty of creating extra security requirements for
fast application cores. We contribute to the field by:

• Formulating an enclave threat model that includes all soft-
ware-based side-channel attacks.

• Showing that physical isolation protects enclaves from intra-
core side-channel attacks without having to change the im-
plementation of the main application cores.

• Using access control in the memory hierarchy to protect
against direct attacks and inter-core side-channel attacks.

• Showing how Linux applications can create and interact
with physically isolated enclaves.
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2 THREAT MODEL
The motivation for exploring physical isolation in enclave systems
stems from the inconsistency of protection against side-channel
attacks in previous enclave systems. This section sets out a new
threat model for enclaves that includes software-based side-channel
attacks.

The foundation for this threat model is protection against attacks
that can be launched from privileged software, which is similar
to that of previous enclave systems [3, 9, 10]. Enclave systems
generally protect the following assets from attacks launched by
privileged software and other enclaves:

• Confidentiality of memory: so that secret content is not
leaked across enclave boundaries.

• Integrity of memory: so that code and data cannot be tam-
pered with from outside an enclave boundary.

• Authenticity of the enclave system and enclave: to attest that
an enclave is running on and is bound to a secure environ-
ment.

Generally this means that enclave threat models include direct
attacks, like reading from and writing to memory. These attacks
can be launched by an operating system or a malicious enclave,
and include writing to memory via a direct memory access (DMA)
request. For example, it is trivial for privileged software on the CPU
to use the GPU to make a DMA request.

Denial of service attacks are classically excluded in enclave threat
models because privileged software is in charge of resource man-
agement like memory allocation and scheduling. It is trivial for
privileged software to refuse to schedule an application or to refuse
to allocate memory to it. Physical attacks are also excluded because
requiring physical access to a machine is less scalable than just
requiring software access.

All of the above is similar to what previous solutions have con-
sidered, but there is a lack of consensus on protection against side-
channel attacks. Our threat model includes side-channel attacks that
can be launched from privileged software, like timing of memory
requests and contention of execution units. To motivate this choice
of threat model, we look at previous solutions and their inconsistent
coverage of side-channel attacks. These findings are summarized in
Table 1 with the Praesidio column presenting our new threat model,
and the details of the side channels are discussed in Section 5.4.

2.1 Trusted Computing Base
In our system we protect against this new threat model with the
assumption that our trusted computing base (TCB) is not com-
promised. Part of the TCB is the hardware implementation of the
memory hierarchy and the secure cores. Another part of the TCB
is the enclave management software, which we call the manage-
ment shim. We thus exclude attacks that rely on the presence of
hardware Trojans or software bugs in the TCB. Notably, we do not
trust the hardware implementation of the fast application cores
in our system, which makes it possible to gain confidence in the
hardware’s security without having to verify the fast cores. The
details of the TCB are discussed further in Section 5.1.

2.2 Physical Isolation
We argue that it is impractical and not good for performance to
gain enough confidence that intra-core side-channel attacks are
covered when an attacker shares a high-performance core with
a victim. This is because there are numerous shared resources in
a high-performance core, and each of those shared resources can
have contention, which exposes some of the micro-architectural
state. Additionally, micro-architectural resources can have complex
interactions with each other causing information to leak widely
throughout the core. A good example of this is speculative exe-
cution, where the speculative nature of cores is combined with a
side-channel attack to extract information from a victim [5]. Addi-
tionally, simultaneous multi-threading increases the attack surface
even more in increasingly complicated cores [2].

We propose to protect against intra-core side-channel attacks
from a policy point of view, which enforces that all active enclaves
are physically isolated on their own separate core. In Table 1, we
can see that all intra-core side-channel attacks are highlighted in
gray for the Praesidio column. This means that physical isolation
protects against this whole class of attacks.

Another benefit of physical isolation is that it helps with the
security/performance trade-off. Application cores can do specu-
lative and out-of-order execution to improve performance of the
feature-rich operating system and applications, whereas enclaves
can run on cores that lean more towards security without having
to cater to the performance requirements of other applications.
Physical isolation allows for this trade-off between security and
performance to be played out in a heterogeneous environment. It
also has the benefit of applications being able to choose what part
of their code they execute on high-performance cores that have
fewer guarantees on isolation and what part of their code requires
stricter isolation.

3 SYSTEM OVERVIEW
Praesidio is our enclave system that enforces physical isolation
while still providing the same functionality as conventional enclave
systems and with minimal performance loss. Our system enforces
access control in the memory hierarchy without trusting the imple-
mentation of the fast application cores. This is possible because of
the addition of secure cores which are designed to be highly robust
against speculative execution and side-channel attacks.

Figure 1 shows the system overview of Praesidio with a clear
distinction between software that runs on cores optimized for per-
formance (left) and software that runs on cores optimized for isola-
tion (right). The goal is for any user application to be able to launch
an enclave and interact with it. To accomplish this we developed
a user-level application programming interface (API), a Linux dri-
ver, a management shim and an enclave runtime. The user-level
API avoids having to repeat code between applications that need
enclaves. The Linux driver interacts with the management shim
to set an enclave up and to reserve memory from the operating
system for the enclave. The hardware is in charge of access con-
trol: making sure that any enclave can only interact with its own
pages. The management shim does all the managing like creating
a new enclave, scheduling an enclave, handling enclave traps and



Table 1: Comparing Enclave Threat Models by Which Inter- and Intra-Core Side-Channel Attacks They Cover

Attack Timber-V [33] Intel SGX [9] AMD SEV-SNP [19] Sanctum [10] MI6 [3] Praesidio

In
te
r-
co
re

Cache line [10] ◦ ◦ ◦ • • •
Cache request buffer [3] ◦ ◦ ◦ ◦ • •
DRAM row buffer [27] ◦ ◦ ◦ ◦ • •
DRAM request buffer [3] ◦ ◦ ◦ ◦ • •
DRAM bit leakage [21] ◦ • • ◦ ◦ •

In
tr
a-
co
re

TLB [35] ◦ ◦ ◦ • • •
Execution unit [2] ◦ ◦ • ◦ • •
Branch predictor [23] ◦ ◦ • ◦ • •
Hardware accelerators [14] ◦ ◦ ◦ ◦ ◦ •
Speculative execution [5] ◦ ◦ • ◦ • •

Table legend: Providing protection is marked as • and failing to protect is marked as ◦. Physical isolation is shown in gray.

User App & API

OS & Driver

Fast Core Secure Core

Management Shim

Enclave & Runtime
Shared Pages

Messages

Figure 1: System overview of Praesidio.White boxes are soft-
ware, gray boxes are hardware, arrows are channels of com-
munication.

re-assigning pages. The enclave runtime allows enclaves to interact
with the rest of the system.

Another way of looking at the system is from a hardware per-
spective. Figure 2 gives an overview of the additional hardware
(in gray) that is required by Praesidio. It also shows that fast cores
stay unmodified except for a memory interface that enforces access
control on the communication between the core’s private caches
and the shared last-level cache. We discuss optional tag translation
to reduce the LLC overhead in Section 4.4.3. Finally, a trusted boot
ROM is added so that the management shim can protect its pages
and clear any sensitive data before untrusted code runs.

3.1 Memory Protection
To protect enclaves against direct attacks, Praesidio tags each page
with an enclave identifier. Memory protection is enforced by the
memory interfaces that are located between the cores and the
shared cache. The tags are managed by the management shim,
and the tags are stored in the last-level cache (LLC) and the tag
directory. On every memory access that reaches the LLC, the tag of
the memory is checked with the identifier of the currently running
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Figure 2: An overview of the hardware in our system, with
white backgrounds showing already existing blocks and
gray backgrounds showing added hardware.

enclave. In this model, normal applications and other software run-
ning on the fast cores are assigned the default enclave identifier.
Loading from or storing to a page that an enclave does not have
access to causes a trap.

The tag directory is separate from the page table because tags
protect physical pages, not virtual ones. In theory we could include
the enforcement of tags in the page table of the enclave cores
because the management shim is responsible for installing the
memorymapping on those cores. However, the page logic of the fast
cores is controlled by privileged software that is potentially hostile.
Even though privileged software controls memory management, it
should not be able to access pages it does not own. This means that
the checking of tags must be enforced on the interface between the
fast core’s private caches and the LLC. For consistency, we choose
to keep tags separate from the page directory in the whole system.

To support communication, our system allows a page owner to
add a reader tag to a page. This reader enclave can then read, but



not modify, the content of the page. We choose to only give the sec-
ond enclave read access because this one-way communication can
create two-way communication by setting up two pages in opposite
directions. Setting up two unidirectional communication channels
is a well-understood concept due to the frequent use of Unix pipes
for communicating between parallel processes. Additionally, the
principle of least privilege justifies only giving read access where
that suffices. These one-way shared pages are used to implement
ring buffers for communication (see Section 3.2.7).

The tag directory contains all pages with their associated tags.
For each page there is an owner tag and an optional reader tag. The
absence of a reader tag means that the page is private to the owner.
Any page that is not in the tag directory is considered to be owned
by the rich operating system, which operates under the default
enclave identifier. Each line in the last-level cache is tagged with
an owner and optionally a reader. The following steps describe the
way memory requests are handled in Praesidio and how to enforce
access control:

(1) First, the core’s local memory is checked. Any hit at this level
of the memory hierarchy means that the memory request
can succeed without checking any tags because, depending
on the core type, one of these two applies:

(a) For fast cores, all code is considered to run under the de-
fault enclave identifier, so the content of the translation
look-aside buffer (TLB), store buffer and first-level cache
only contain entries of memory that is not owned by an-
other enclave.

(b) For secure cores, the content of the TLB, store buffer and
first-level cache can either be private to each enclave or
partitioned securely. When a context switch occurs on a
secure core, all of the local state related to that enclave
must be flushed (see Section 3.2.4).

(2) In the case of a first-level cache miss, the memory hierarchy
checks the LLC. The memory interfaces for both fast and se-
cure cores ensure that each memory request is accompanied
by the enclave identifier of the requester. Checking the LLC
leads to one of two scenarios:

(a) If the LLC hits, the tag for the cache line of the LLC is
checked with the requester’s identifier as shown in Fig-
ure 3. If smaller tags are used in the LLC, then the re-
questing enclave identifier must first be translated to the
smaller tag format.

(b) If the LLC misses, the request must first go through the
tag directory before going to DRAM. The tag directory
contains all mappings from physical pages to owner en-
clave identifiers and optionally reader enclave identifiers.
The request is evaluated using the process shown in Fig-
ure 3. If the request is allowed by the tag directory, the tag
from the tag directory is optionally translated to a smaller
version for in the LLC.

Our memory tags protect the confidentiality and integrity of
enclave memory without using encryption. A software attacker
simply cannot access the memory it wants to read or write, which is
similar to the guarantee that an attacker cannot disclose or tamper
with the content of a ciphertext.

Memory
request

Enclave
is owner?

Request
is a read?

Enclave
is reader?

Trap Allow

𝑛𝑜

𝑦𝑒𝑠

𝑛𝑜

𝑦𝑒𝑠

𝑦𝑒𝑠𝑛𝑜

Figure 3: Process for checking whether a memory request
is valid or not. This process is followed when checking
whether a requester is allowed to access an LLC cache line
or a page in DRAM.

3.1.1 Preventing Inter-Core Side Channels. Praesidio ensures pro-
tection against all intra-core side-channel attacks by segregating
security domains onto their own cores. However, there are resources
that are shared across cores, which introduces the possibility of
inter-core side-channel attacks. Contention in shared caches, re-
quest buffers and DRAM are examples of inter-core side-channel
attacks.

Cache-line contention causes information leakage between se-
curity domains because one domain can evict a line from another
domain. To solve this issue, previous work has introduced static par-
titioning [3, 10], flexible partitioning [11, 31] or injecting noise [24].
Our system is configurable to use no partitioning scheme, a static
partitioning scheme or a flexible partitioning scheme [31].

Because partitions are inherently assigned to different enclaves,
we assume that there is no shared memory between any two en-
claves except for when a reader is assigned to a piece of memory.
For memory that does not have a reader enclave, we do not need
to worry about cache coherence between enclaves because only
the owner enclave can access that memory. This means that unless
there is an explicit reader, the cache coherency mechanism will not
cause any information flow between enclaves. The coherence pro-
tocol does introduce information flow between enclaves that share
memory, but this is acceptable since it will only leak information
about them accessing the shared memory.

Inter-core side-channel attacks that rely on DRAM, like row-
buffer contention [27] or request-buffer contention [3], are also
important to be protected against. From the hardware overview
in Figure 2 we can see that DRAM is not adjusted, so we can use
existing mitigations for these problems. In Section 5, we discuss
the security of Praesidio in more detail and how known inter-core
side-channel attacks on enclaves can be mitigated.

3.1.2 Bootstrapping Shim. To have a root of trust from which the
management shim can start to manage the tags that protect mem-
ory, we need to ensure that at least one secure core boots into the



management shim and that all other cores do not interact with the
memory. The memory interface of each core can pause all memory
requests while the management shim initializes. During initializa-
tion, the management shim clears any sensitive data from DRAM
and tags all the pages that are owned by the management shim. It
is also at boot that the management shim creates the measurement
of its own pages for attestation purposes. Bootstrapping trusted
code at boot time is important to guarantee the integrity of the
management shim code as well as to protect the confidentiality of
the platform key that is needed for attestation.

3.2 Management Shim
The management shim is the software part of Praesidio’s trusted
computing base (TCB). The hardware enforces that enclaves can
only access pages that they are authorized to, and the management
shim is the only piece of code that is allowed to change the values
in the tag directory. The management shim is not an operating
system and only implements the least amount of logic necessary to
securely maintain enclave lifetime and transfer ownership of pages.

In Praesidio, the resource management is still done by the rich
operating system, which has the benefit of leaving this complexity
outside of the TCB. The management shim is only there to ensure
that the operating system does not break any security rules. For
example, once a page is donated to an enclave, the operating system
cannot access it unless the enclave is deleted. Upon deletion, the
management shim fills the corresponding pages with zeroes and
gives the pages back to the rich operating system.

3.2.1 Messaging. Communication in Praesidio is done via shared
memory. Section 3.1 describes how pages can be tagged with a
reader as well as an owner for communication. Section 3.2.7 de-
scribes how this communication mechanism is exposed to enclaves.
To securely set up these pages and as a trusted way to manage
enclave life-cycles, we provide a messaging system meant to send
small, infrequent messages.

We implement this messaging system by having a portion of
the last-level cache that has a mailbox for each core (see Figure 2).
A core can put a message into its own mailbox with a recipient
identifier, and it can check whether any of the other cores have
posted a message for them. The main purpose of this messaging
system is for cross-core communication within the management
shim and to allow the operating system to send requests to the
management shim. These mailboxes are memory mapped, so to
write a message an enclave simply has to store to a special physical
address.

In essence a message is sent from one enclave to another. The
management shim has a dedicated set of enclave identifiers. Each
instance of a management shim on a core has its own identifier;
this allows scheduling messages to be sent to specific cores. Each
message has a destination enclave identifier, a message type and a
payload of maximum two arguments. The different message types
are summarized in Table 2. The return values in the table are them-
selves messages in the opposite direction.

3.2.2 Enclave Life Cycle. Sending messages to the management
shim allows an operating system tomanage enclave life cycles while
the management shim upholds the security requirements. Figure 4

Table 2: Definition of Different Messages that Make Re-
quests of Management Shim or Share Memory Between En-
claves

Type Arguments Return

Create – – Enclave ID
Donate Enclave ID Page Success
Finalize Enclave ID – Success
Attest Enclave ID Nonce PubKey, Signature
Run Enclave ID Core ID Success
Share – Page Success
Delete Enclave ID – Success

empty created building

liveerror

create donate

donate

finalize

attest, run, share

delete
delete

Figure 4: Life cycle state diagram that is tracked in enclave
data entries. The transitions are labelled with the messages
that cause the transition. Anymessage type not shown for a
particular state is not allowed. If a trap occurs from which
recovery is impossible, then the management shim changes
the state from live to error.

shows the different states that an enclave can be in and which
messages cause the state transitions. Our state diagram is similar
to that of previous work by Costan [10] with the difference being
that their system does not have explicit building and error states.
The management shim keeps track of which state the enclave is in
through an enclave data entry. This means that the management
shim can enforce security properties. For example, pages cannot be
donated to an enclave that has already run.

An enclave data entry starts out being empty and goes to the
created state when a create message is received. Once it is created,
the enclave can start accepting pages. The first page is assumed to
be the entry point, which is why the created and building states
are separate. Once in the building state, the enclave can accept
an arbitrary number of pages until the enclave is finalized. In the
process of finalizing, the management shim creates the attestation
measurement of the content of all the enclave’s initial pages. After
the enclave is finalized it goes into the live state and can no longer
accept any pages. In the live state, the enclave can be run, can
receive shared pages and can be attested. Upon deletion all enclave
pages are filled with zeroes and given back to the default enclave.



Once the enclave pages are given back, the enclave data entry goes
to the empty state. If at any point the enclave experiences a trap
that cannot be recovered from it moves to the error state. From the
error state the enclave can no longer run and is just waiting for
deletion. Keeping track of these states allows the management shim
to know which messages are allowed in each state of the enclave’s
life cycle.

3.2.3 Scheduling on Enclave Cores. Scheduling is managed by the
run message specified in Table 2. The operating system can request
an enclave to be run on a specific core. The management shim has a
data structure that remembers which enclave is running on which
core. This data structure makes it possible for the management shim
to check whether an enclave is running when deletion is requested
and to perform a secure context switch between enclaves.

The complexity of deciding which enclave is run on which core
is delegated to the operating system and driver. This adheres to
our threat model because it only allows the operating system to
perform a denial of service attack, and it reduces the size of the
TCB. In general, the idea is that an enclave runs on a core until
another one is scheduled there. To allow the management shim to
interpose, we introduce periodic interrupts where the management
shim can check whether it needs to perform a context switch or
not.

3.2.4 Context Switches. The secure context switch on enclave cores
is an important part of the security model. Our physical isolation
protects against all intra-core side-channel attacks as long as en-
claves do not share a secure core. Context switching introduces
time-multiplexed sharing of a core, so we must mitigate intra-core
side-channel attacks upon context switch on the secure cores. In
essence this requires a flush of all the micro-architectural state like
the first-level cache, TLB, store buffer, register file, branch target
buffer, in-flight instructions, etc. Previous work has shown the in-
tricacies of purging the micro-architectural state and the difficulty
in identifying all the state [3, 34], so the simpler the secure cores
are the easier this will be. The execution time of the secure context
switch must not vary based on the core’s state to avoid leaking in-
formation about enclave execution. All of the software logic for this
secure context switch resides in the management shim for security
reasons.

3.2.5 Handling Traps. Handling traps that occur within enclaves
needs to be done by the management shim because traps allow for
side-channel attacks if handling them is delegated to an untrusted
operating system. One example of such an attack is tracking en-
clave access patterns through page faults [35]. To avoid this, the
management shim installs a simple trap handler.

One example of a trap is when an enclave attempts to access
memory that it does not own nor have read access to. Another exam-
ple is a trap caused by a management shim interrupt, in which case
the management shim interposes to check for scheduling messages
and either performs a context switch or resumes the enclave. When
the trap handler cannot recover from a trap, it puts the enclave into
the error state (see Figure 4).

3.2.6 Attestation. Attestation is an important part of any enclave
system because it allows a remote party to verify that an enclave is
running securely on a trusted platform. Our goal is to show that

existing attestation methods can be easily ported to a system with
physically-isolated enclaves.

Table 2 references a finalize message, which can be sent to the
management shim. This message prevents any more pages from
being donated to that enclave and creates a measurement of all
the pages in the initial state. This measurement can be made using
a secure hash function like SHA3 [12]. Another important part
of attestation is proving to the remote party that the enclave is
running on a trusted platform. To do this, we must measure and
sign the current version of the management shim.

Signing can be done with any secure digital signature algorithm,
which can be based on RSA (like in previous enclave systems [10]),
but can also be based on elliptic curves which require a smaller
signature size for the same security level. The signature is created
over a quote when the attest message is sent to the management
shim. The quote includes the measurement of the management
shim, the measurement of the enclave, “an ephemerally generated
public key to be used by the challenger for communicating secrets
back to the enclave” [1] and a nonce (number used once) to ensure
liveness. More details of what should be included in a quote can be
found in the specification of attestation in SGX [1].

The message return value is sent in multiple messages because
the management shim can only return a maximum of 96 bits per
message, and attestation requires a bigger ECDSA signature, which
is 256 bits if NIST P-256 parameters are used [20]. Additionally an-
other 256 bits are necessary to communicate the enclave’s epheme-
ral public key. The signature gets sent along with a certificate that
proves the authorization of the signing key of the device using a
publicly trusted authority, for example that of the manufacturer.
This certificate is public information and does not need to be sent
from the management shim to the driver. Our solution is compat-
ible with the certification scheme that has been used in previous
work [1, 9, 10].

There are also ways to do runtime attestation where the current
state of the stack and heap are taken into account [30]. Praesidio
lends itself to attestation of both the initial state and the runtime
state.

3.2.7 Enclave Runtime. The main purposes of the enclave runtime
are to facilitate communication between enclaves and to maximize
code re-use. It has an API to set up communication pages and
provides functionality to implement a ring buffer on the shared
pages that are described in Section 3.1. The first thing most enclaves
will do is set up a communication channel, which is done using the
following function call:

setupCommunicationPages(receiverID)

This sets the reader tag on one of the pages owned by the enclave
to the receiver specified. It also waits for that enclave to dedicate a
page to communicate over in the other direction. This is similar to
setting up two Unix pipes to create bidirectional communication.

The enclave runtime uses pointers to the sending and receiving
pages and uses these pages in a ring-buffer fashion. To implement
our ring buffer, we need to indicate the status of an entry and the
length of an entry. Since our ring-buffer is implemented on a page,
we only need 12 bits to encode the length, and we need 1 bit to
encode the status. We combine both of these into two bytes; if the
most significant bit is set then the entry is not ready yet and if the



most significant bit is unset then these two bytes are equal to the
length of the entry. The payload follows these first two bytes.

The following call takes the next entry in the ring buffer, writes
the payload after the first two bytes and sets the most significant
bit of the next entry to 1. Finally, it writes the length for the current
entry to indicate to the receiver that it is ready.

sendMessage(message, length)

The following call waits until the most significant bit of the status
is unset and then returns the corresponding message and length.

(message, length) readMessage()

Both sendMessage and readMessage update the pointers for the
current position in the communication pages. The implementation
of a ring buffer allows new entries to start being written to the start
of the page again once the end of the page is reached.

Besides sending and receiving from a ring buffer, Praesidio also
allows complete pages to be transferred by the following two com-
mands. The first sets the reader tag for a page and communicates
the address of this page via a share message:

giveReadPersmission(receiverID, page)

On the receiving end, the enclave can get the address of the shared
page via the following function:

page getReadOnlyPage(senderID)

This mechanism allows for a quick transfer of data that is larger
than a page, while the ring buffer is an efficient way to send smaller
messages and reusing space.

3.3 Linux Driver and User API
The purpose of the Linux driver is to show how a rich operating sys-
tem can expose enclave functionality to its applications. The driver
is primarily in charge of sending messages to the management shim
about enclave life cycles and setting up a communication channel
between the application and its enclave. The purpose of the user
API is to provide an abstraction layer for the application. In essence
the user API provides functions to send messages and functions to
manage enclave lifetime like the ones below:

device create(elfFile)
delete(device)
(publicKey, signature) attest(nonce, device)

The create function returns a device, which is a file descriptor
of the character device made for that enclave. It is important to
know that the Praesidio driver consists of a base driver and an
enclave driver. First, the user API requests an enclave device to
be made for them by using an ioctl to the base driver, which
returns the filename of a new instance of the enclave driver. Having
a separate device for each enclave allows the driver to limit access
to the enclave based on process identifiers. The user API opens
the new device file and requests an enclave to be created using the
contents of an ELF file. Internally, the Linux driver converts the
create enclave call into individual messages sent to the management
shim: Each page is donated individually, the enclave is finalized
and the enclave is run at the end of the creation process.

After this, the user application sets up a communication channel
by calling setupCommunicationPages. The application can then

Table 3: Cache Parameters for Parts of the Cache Hierar-
chy [26]

Cache Sets Ways Line size Total size
(bytes) (KiB)

Data 64 8 64 32
Instruction 64 8 64 32
Last-level 1024 8 64 512

call the sendMessage and readMessage functions described in Sec-
tion 3.2.7. Similar to the enclave runtime, the user API also pro-
vides ways to donate complete pages using two calls. The first
is getSendPage, which requests the driver to allocate a page to
send over, gives the enclave permission to read it and maps the
page into the application’s virtual memory space. The second is
getReadOnlyPage, which waits for an enclave to donate a page
and then maps this page into the user’s virtual memory.

4 EVALUATION
As Praesidio is a new system that physically isolates enclaves from
applications, we need to evaluate whether it is a valid approach
with regard to performance and overhead. We implement Praesidio
on Spike, a RISC-V instruction set simulator. Spike includes a cache
simulator, which we configure with the parameters shown in Ta-
ble 3. The cache parameters are the same as Berkeley’s out-of-order
RISC-V processor [26]. The data and instruction cache sizes align
well with Intel’s ones, but our last-level cache is twice the size of
Intel’s L2 and a sixteenth of the size of the L3 cache [8].

Besides the cache configuration, we add a tag directory to Spike
and enforce access control on each memory access. For all of our
experiments we change the interleave to 6, which means that each
core takes a turn executing six instructions before the next one.
The reason for using six is that for values lower than that Linux no
longer boots reliably. The closer the interleave value is to one the
more realistic the simulation is compared to simultaneously execut-
ing instructions. All of our experiments run on Linux 4.15.0 using
buildroot release 2016.05 and RISC-V GNU tool-chain v20171107.
All the code necessary to run our experiments is open source1.

4.1 Enclave Communication
Enclave communication is the most common interaction with en-
claves. We evaluate this communication in two ways: by sending
messages that are smaller than a page using a ring buffer and by
donating complete pages to enclaves.

4.1.1 Ring Buffer. To show how the communication via ring buffer
over shared memory performs between enclaves, we send messages
of varying sizes. Figure 5 shows the instruction count and last-level
cache accesses for varying packet sizes up to just below a page.
For sending data that is larger than a page we provide a way to
donate complete pages. The instruction count increases linearly
with packet size, which is expected since the instruction count is
dominated by the loops that write to and read from shared memory.
Cache accesses are also linear because they are dominated by the
1Source code available at: https://github.com/marnovandermaas/praesidio-sdk

https://github.com/marnovandermaas/praesidio-sdk


Figure 5: Ring buffer performance over shared pages be-
tween enclaves. Each packet size is sent 256 times, and the
graph shows a line of the median value and error bars from
the first quartile to the third quartile.

loads and stored to shared memory. Receiving dominates the cache
accesses because a read causes the dirty line from the writer’s cache
to be sent to the LLC and causes an access by the reader. In essence,
a write does not immediately incur the cache access penalty while
the read causes both a write-back and a read access.

4.1.2 Page Donation. Besides using a single page to send mes-
sages through a ring buffer, Praesidio allows sending complete
pages to enclaves. To measure the performance of this, we create a
benchmark in which a user application fills a page with data, sends
that page and waits for acknowledgement from the enclave. The
enclave waits for the page to be sent, then reads the content of
the page and sends an acknowledgement to the user application.
This micro-benchmark takes a median of 22, 400 ± 200 instructions
and 390 ± 20 last-level cache accesses, where the spread is deter-
mined by the first and third quartile using the following formula:
Max(median −𝑄1, 𝑄3 −median).

This benchmark uses significantly fewer instructions than the
ring buffer benchmark because the ring buffer writes one byte at a
time, while this page benchmark writes in eight byte chunks. Mul-
tiplying the instructions to donate a page by 8 gives approximately
180, 000, which is close to the trend shown in Figure 5.

Table 4: Setup Cost for the Different Phases of the Enclave
Creation Process in Instructions and Cache Accesses

Instructions Cache accesses

Prepare memory 2.8 % 4.1 %
Driver setup 95.7 % 92.8 %
Enclave setup 1.5 % 3.1 %

Total (thousands) 9, 466 ± 8 81.0 ± 0.4

This benchmark can also be compared to doing a similar bench-
mark using Unix Pipes, which is a commonly used form of unidi-
rectional communication. Sending 4 KiB over a Unix pipe on our
system takes 74, 900 ± 100 instructions and 310 ± 30 cache accesses.
Unix pipes take nearly 5 times as many instructions due to the
overhead of the operating system, but the cache accesses are of the
same order of magnitude as our benchmark. The cache accesses are
similar to our page benchmark because Praesidio enforces that en-
claves cannot share first-level caches, while this requirement is not
true for two Unix processes communicating through pipes. Sending
individual pages can be repeated for larger pieces of memory that
need to be sent to enclaves.

4.2 Enclave Creation
Creating enclaves is a one-time cost per enclave. The creation of
enclaves is done as described in Section 3.3 and can be split into
three stages: preparing the enclave memory, setting up the driver
and setting up the enclave. Firstly, preparing the enclave memory
involves opening an ELF file and reading the contents into user-
owned pages. Secondly, setting up the driver involves creating a
dedicated character device for each enclave. Finally, setting up the
enclave itself involves copying the content of user pages to kernel
pages that allow DMA, sending messages to the management shim
and setting up the communication channel. Table 4 shows the
number of instructions as well as the number of LLC cache accesses
in the different phases of creating an enclave. We can see that the
driver setup takes the most instructions and cache accesses. This
means that we may gain only marginal performance improvements
from optimizing the management shim and user API.

4.3 Hardware Area and Performance
Our performance evaluation is implemented on an instruction level
simulator, which gives limited information about the hardware
costs of our solution. This section calculates the hardware costs
based on the design proposal we made and data from previous
work.

The main added hardware costs are the added area required for
the extra cores and the additional memory required. To put these
costs into perspective, we looked at previous enclave systems and
how much additional hardware they usually add to each core. We
then compare these costs with adding relatively simple cores. These
simple cores are placeholders for our secure cores, which we en-
visage to be small in-order cores with minimal micro-architectural
state so that securely context switching between isolation domains
is easier. Table 5 summarizes our findings, where the number of



Table 5: Comparison of Enclave Hardware Cost with “Little”
Cores

Solution name Number of thousand gates

AEGIS [29] 205.0
Bastion [6] 30.1
Iso-X [15] 1.0
Sanctum [10] 5.6

Cortex M0 [4] 12.0
Twine [25] 9.4

Table 6: Area of Apple A12 System on Chip Using TSMC N7
Process Node [17]

Block Area (mm2) Percentage of total

Total die 83.27 100.0%
CPU complex 11.90 14.3%
Big core 2.07 2.5%
Little core 0.43 0.5%

gates for previous work is compared to adding a simple core. We
can see that the additional hardware needed to allow enclave to
run on an existing core is similar to adding a small core that is
dedicated to enclaves.

The gate comparisons made in Table 5 are based on research
hardware or non-application cores, so to get a better idea of what
the area costs would be in a real system, we look at the Apple A12
system on chip, which implements a big-little scheme where bigger
high-performance cores are paired with smaller power-efficient
cores [17]. The area of the two types of cores is compared to the
total die area in Table 6. The CPU complex includes all the cores
(2 big and 4 little) as well as hardware shared between cores. The
first things to note are that the CPU complex takes only a fraction
of the complete die and that the little cores are about a fifth of the
size of a big core.

If we assume that our secure cores in Praesidio are similar in size
to the little cores and that our fast cores are the big cores, we can
get an idea of how much it would cost to add physical isolation to
an SoC like the Apple A12. Let us assume that we add 4 little cores
for enclaves. The total cost would then be 4× 0.43 ≈ 1.7 mm2. This
would increase the CPU complex by 1.72/11.90 ≈ 14.5% and the
total SoC size by 1.72/83.27 ≈ 2.07%. This seems acceptable in the
era of dark silicon, where we expect most of the die to be turned off
due to power constraints [13]. Additionally, this measured overhead
is likely to be an overestimate because we expect using even smaller
cores for enclaves is better for security.

The same article [17] compares the performance difference be-
tween the big and little cores of the Apple A12, which are sum-
marized in Table 7. In essence it shows that for an approximate
4 times slow-down an enclave can experience increased security.
Additionally, offloading tasks to smaller cores has the benefits of
less energy consumption for the same workload and freeing up the
bigger cores for other tasks.

Table 7: SPECInt2006 Performance Comparison Between
Apple’s A12 Big and Little Cores [17]

Core Type Performance (SPECSpeed) Energy (kJ)

Big 44.92 9.521
Little 12.12 3.968

Ratio (Big/Little) 3.71 2.40

4.4 Memory Overhead
We judge that the area and performance overhead due to logic
is acceptable, but there is also an overhead incurred by needing
additional memory. Memory overhead is caused by the additional
tags in the tag directory and the LLC as well as the storage needed
for the mailboxes and the management shim.

4.4.1 Enclave Identifier. First, we determine the size of the enclave
identifier. If we would like to have a unique identifier for the maxi-
mum number of enclaves that can concurrently exist on a system,
that is the same as how many pages can exist on the system. RISC-V
allows a maximum of 56-bit physical addresses [32] and pages that
are equal to or greater than 4 KiB. This means that to uniquely ad-
dress each page in a system we need at most 56 − 12 = 44 bits. This
is an upper bound because it is dependent on how much physical
memory there is on a system and the size of pages.

Another way to estimate the size of an enclave identifier is
by how many processes a modern operating system can manage
concurrently. On Ubuntu 18.04 the maximum process identifier is
32, 768 = 215, so each running process can be uniquely identified
with a 15-bit identifier. However, process identifiers can be reused,
so uniquely identifying all processes that have ever run may require
more than that.

In our system we choose an enclave identifier of 32 bits (4 bytes).
This identifier fits nicely in between our upper estimate of 44 bits
and our lower estimate of 15 bits.

4.4.2 Tag Directory. Next we estimate the cost of storing the tag
directory in DRAM. For each page in the system, there are po-
tentially two enclave identifiers: one for the owner and one for
the reader. The worst-case size of the tag directory is thus 2 ×
idSize×numPages; we can compare this to the size of DRAMwhich
is pageSize × numPages. The DRAM size would thus increase by
2 × idSize
pageSize . If we assume that pages are 4 KiB, this means that DRAM

increases by 2 × 4 B
4 KiB = 2 × 22

22 × 210 = 2−9 ≈ 0.2%. This is a worst case
estimate since we can limit the number of pages that can be tagged.

4.4.3 Last-Level Cache. The memory overhead in the LLC is more
critical than in DRAM; this is because the size of tag compared to
a cache-line size is more significant than compared to a page size.
In our system a cache line is 512 bits [8, 26], and the overhead for
the LLC is 2 × idSize

cacheLineSize = 2 × 32
512 = 12.5%. This is quite significant,

but we can decrease this memory cost if we are willing to add extra
administrative tasks to the management shim. For example, we can
map the 32 bit enclave identifier to a smaller LLC tag, which only
has to differentiate between all running enclaves. This tag can be
as small as the number of cores in the system. Even if we have



large 32-core or 64-core systems, this would reduce the tag bits to
2 × log2 32 = 10 and 2 × log2 64 = 12 and the overhead to about 2%.
However, this would also mean that on each enclave context switch
the management shim must adjust the tag mapping and invalidate
LLC lines.

To minimize context-switch costs, we figure out how many en-
claves are likely to be running simultaneously, which is unlikely to
be more than the number of processes allowed in the rich operating
system. Again, on Ubuntu 18.04 the maximum process identifier is
32, 768 = 215. To represent this we need 15 bits, which decreases
the LLC cost to 2 × smallIdSize

cacheLineSize = 2 × 15
512 ≈ 6%. This requires the

management shim to keep track of which LLC tags are mapped
to which full enclave identifiers. Costs in the LLC can range from
2% to 13%, and 6% seems like a good middle ground that balances
both LLC usage and the frequency of needing to change the tag
mappings.

Besides the tag overhead in the LLC, we must calculate the
overhead caused by the mailboxes. Since each core has one slot, the
memory overhead is coreNumber × messageSize

cacheSize . The message size can
be derived from Table 2 by taking the biggest message payload and
adding a sender and receiver identifier: messageSize = typeSize +
idSize + nonceSize + 2 × idSize = 8 + 32 + 64 + 2 × 32 = 168 bits.
Assuming the number of cores is limited to 64, this would make
the overhead 64 × 168 = 10, 752 bits. Compared to the LLC size of
512 KiB = 512 × 8 × 210 bits = 4, 194, 304 bits, the LLC overhead
for this messaging system is 10,752

4,194,304 ≈ 0.3%. This calculation is a
worst-case because it does not account for the smaller tags used
in the LLC, and even then the calculated overhead is an order
of magnitude less than the overhead of the tags. Thus, the total
memory overhead in the LLC is dominated by the tags.

4.4.4 Management Shim. Another source of memory overhead
is the size of the management shim. At the moment we put the
complete management shim in trusted boot memory, although
the shim can also be split into multiple parts using a secure boot
process. The management shim is 2.8 KiB and 561 lines of code. This
is comparable the 1, 600 lines of code of Lee’s security monitor [22],
which has similar functionality. Assuming that binary size is directly
proportional to lines of code, this would make the boot memory
between 2 and 8 KiB.

5 SECURITY DISCUSSION
This section assesses the security of the Praesidio system within
the context of the threat model described in Section 2. The goal
of this paper is to show that physical isolation is a feasible model
to protect enclaves from intra-core side-channel attacks, and this
section discusses the realism of protecting such a system from these
and other important attacks on enclaves.

5.1 Trusted Computing Base
As our threat model defines, Praesidio explicitly trusts certain parts
of the system. The following parts are included in the trusted com-
puting base:

• The tag directory, the LLC and the translation of tags be-
tween the two.

• The memory interfaces between the fast cores and the LLC.

• The implementation of the secure cores.
• The management shim and securely booting into the boot
memory.

The reasons for these parts being trusted are to ensure that access
control is enforced (memory interfaces), to guarantee that the tags
are preserved across the memory hierarchy (tag directory, LLC
and tag translation) and to make sure that changing tags is done
in a correct way (management shim). The management shim is
also trusted to ensure that enclaves can securely bootstrap with
the system and prove this through remote attestation. To do this
there are secret platform keys that can only be accessed by the
management shim. The secrecy of these keys and the integrity of
the management shim is ensured by the tagging system and by the
boot process guaranteeing that the management shim is the first
code to run on the system. Finally, the hardware implementation
of the secure cores is trusted to reliably execute management shim
code and provide functionality to securely context switch between
enclaves.

In accordance with the threat model there are also parts of the
system that are explicitly excluded from the trusted computing base
in order to protect against the defined attacker model:

• The hardware of the fast cores.
• The privileged software running on fast cores (including
operating systems and hypervisors).

• The software of our Linux driver.
• The user applications and user API.
• The enclaves and enclave runtime.

Excluding all of these from the trusted computing base allows
engineers the freedom to pursue performance optimizations on
fast cores and to create rich features in operating systems without
having to consider the enclave threat model.

It is also important that the Linux driver is untrusted because
this is the piece of code that includes complex tasks like memory
management and scheduling of enclaves. The management shim
contains the logic to check whether the actions of the driver are
authorized or not, but it does not need to implement all the logic to
do the tasks themselves. This is essential to decrease the size of the
trusted computing base, which is often used as an indicator of how
easy it is to gain confidence in the security of a system.

5.2 Direct Accesses
Directly reading from or writing to protected pages are examples
of attacks using direct accesses. Praesidio protects against these
attacks by tagging physical pages and enforcing access control using
the LLC and the tag directory (see Section 3.1). Additionally, the
management shim fills pages with zeroes when deleting enclaves,
so there is no way for an attacker to reclaim a page and then read
sensitive content.

Another way of performing the same attack is by accessing
protected memory through another memory device using DMA
requests. For example, an operating system can write a shader
for a GPU to access enclave memory. To solve this problem, each
memory device must adhere to the tags in the tag directory, and
an input-output memory management unit (IOMMU) must enforce
tags for removable devices.



5.3 DRAM Bit Leakage
DRAM bit leakage happens because accessing a row causes charge
to leak from adjacent rows [27]. It can be used in an active eaves-
dropping attack to read confidential information like enclave mem-
ory [21]. Recent attacks have shown that the current row refresh
techniques implemented by DRAM vendors are insufficient to pro-
tect against these attacks [16]. As the DRAM industry finds ade-
quate mitigations to these attacks, physically isolating enclaves is
an orthogonal technique and will work together with these mitiga-
tions in future enclave systems.

5.4 Side Channels
Table 1 is split between intra-core side-channel attacks that require
the victim to be running on the same core as the attacker and inter-
core side-channel attacks that do not have this requirement. All of
the side-channel attacks can be launched by privileged software,
usually using timing to measure contention of shared resources.

Intra-core side-channel attacks rely on contention of resources
that are local to a core. Sharing a translation look-aside buffer (TLB),
for example, allows for contention that leaks memory access pat-
terns [35]. Execution units [2] and hardware accelerators [14] leak
information on what operations other threads are doing, while the
branch predictor leaks information on control flow [23]. Specula-
tive execution attacks are a special class of attacks that exploit the
information leakage caused by processors speculatively executing
instructions [5]. Intra-core side-channel attacks are included in
our threat model and are the main motivation to explore physical
isolation as a defence mechanism.

Physical isolation provides protection against intra-core side-
channel attacks by making sure that core resources are not shared
between enclaves and attackers. Even though we do not have si-
multaneous sharing of resources, there is still the opportunity for
time-multiplexed sharing of resources because of context switching
between different enclaves on secure cores. It is imperative that we
scrub all the local micro-architectural state when context switching
(see Section 3.2.4).

Inter-core side-channel attacks rely on contention on resources
that are shared by different cores like caches and DRAM. In caches,
lines and request buffers are shared and cause a timing dependence
between cores [10]. In DRAM, row buffers containing the currently
open row [27] and request buffers containing a queue of DRAM
requests [3] cause timing dependencies between cores. All of these
attacks are included in the Praesidio threat model and a memory
hierarchy must be carefully designed to ensure isolation.

Since the memory hierarchy is the main resource that is shared
between attackers and victims in our system, contention in the
memory hierarchy is an important aspect to solve. Contention
happens when two applications compete for the same resource,
which creates information leakage because it creates a time depen-
dency between the attacker and the victim. As an example, enclave
systems have mitigated cache-line contention by using static parti-
tioning schemes [3, 10], and flexible partitioning schemes [11, 31]
are good alternatives for applications that heavily use the LLC.
Physical isolation can be paired with these cache mitigations as
well as with other memory contention mitigations like partitioning
memory request buffers [3].

6 RELATEDWORK
Praesidio sets itself apart from other enclave systems through phys-
ical isolation. Table 1 references a number of previous enclave
systems with regard to their protection against software-based side-
channel attacks. The physical isolation that is explored in Praesidio
composes well with insights from other enclave work like using ring
oscillators [29], coloring the cache [10] and purging the pipeline [3].
Physical isolation is a powerful mitigation that contributes to the
field of trusted execution environments.

Memory protection in Praesidio is based on tagged memory. This
is different from classic enclave systems which either use cryptogra-
phy to enforce access control [9] or keep track of enclave ownership
in a shadow page table [10]. Timber-V uses the idea of tagged mem-
ory to protect enclaves but does not consider side channels as a
part of the threat model [33]. Praesidio shows how tagged memory
can be used in conjunction with physically isolated enclaves to
protect enclaves from side-channel attacks. The performance of
memory tagging in enclave systems can be further optimized by
using existing optimizations like tag caches [18].

Praesidio also introduces a user API to interface with enclaves.
Previous enclave APIs are based on the synchronous enclave model,
where an enclave runs on the same core as the application [3, 9].
Praesidio provides a similar programming model to the synchro-
nous interfaces by allowing shared memory for communication.
The main difference is that enclaves run in parallel to applications.
Existing asynchronous interfaces for trusted execution environ-
ments, like those based on the Global Platform specification [28],
can be implemented on top of the functionality that Praesidio al-
ready provides.

7 CONCLUSION
In this paper, we argue that protection against side-channel at-
tacks is an essential part of an enclave threat model. We show
that physical isolation, in conjunction with secure context switch-
ing, mitigates all known software-based intra-core side-channel
attacks. We examine the performance, memory and hardware im-
plications of this design decision using Praesidio. Our evaluation
shows acceptable performance cost in three main ways. Firstly,
communicating with enclaves causes a similar number of cache ac-
cesses as communicating over Unix pipes. Secondly, adding secure
cores to a modern system on chip would increase the hardware area
by less than 2%. Lastly, storing the extra tag data increases the size
of the last-level cache by 2 to 13%. We show that, through physical
isolation, an enclave system can be created without changing the
implementation of fast application cores and thus minimally affect-
ing the performance on those cores. Physical isolation is a powerful
technique to add enclave capabilities to multi-core systems.
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