
Operating System Development with ATS
Work in Progress

Matthew Danish
Computer Science Department

Boston University, MA, USA 02215
http://cs-people.bu.edu/md

Hongwei Xi
Computer Science Department

Boston University, MA, USA 02215
hwxi@cs.bu.edu

Abstract
Typical operating system design is marked by trade-offs between
speed and reliability, features and security. Most systems are writ-
ten in a low-level untyped programming language to achieve opti-
mal hardware usage and for other practical reasons. But, this often
results in CPU, memory, and I/O protection flaws due to mistakes
in unverified code. On the other hand, fully verified systems are
exceedingly hard to construct on any industrial scale. A high-level
programming language, with an expressive type system suitable for
systems programming, can help alleviate many of these problems
without requiring the enormous effort of full verification.

Categories and Subject Descriptors D.1.1 [PROGRAMMING
TECHNIQUES]: Applicative (Functional) Programming; D.4.5
[OPERATING SYSTEMS]: Reliability

General Terms Languages, Reliability

Keywords dependent types, linear types, operating systems

1. Introduction
Operating systems software is fundamental to the modern com-
puter: all other applications are dependent upon the correct and
timely provision of system services. Ideally, the operating system is
written with maximum attention to detail and the use of optimal al-
gorithms. In practice, many difficult decisions must be made during
the design and implementation of a realistic system.

There are many aspects of operating system development which
contribute to this situation: the low-level behavior of hardware
can be finicky, the asynchronous combination of system processes
may produce unforeseen results, many of the resource-management
problems are intractable to solve optimally, the slightest mistake
can have profound consequences, and there is little room for any
wasteful overhead. To maximize performance and ease of hardware
interaction, most operating systems software is written in type-
unsafe, low-level memory model programming languages like C
or C++. But, typically this leads to compromised reliability and
security because of programmer error.

High-level programming languages with modern, strong type
systems have been offering guarantees of memory safety to appli-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLPV’10, January 19, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-890-2/10/01. . . $10.00

cations programmers for decades. There are a number of such lan-
guages which have found a useful combination of partial program
verification and ease of use. But, with few exceptions, these lan-
guages have not found favor amongst systems programmers. An
old objection is that automated compiler optimizations are not suf-
ficient to obtain suitable performance—but this has become less
of an issue in recent years. A more troubling objection is that the
high-level type system and memory model of many programming
languages does not permit the flexibility or ability to reference or
describe structures that an operating systems programmer needs, in
ways that would statically catch problems before they manifest at
run-time.

There are many projects that aim to address the issue of system
software reliability in various ways; see section 5.1 for a catalogue
of past work. These projects range from full verification efforts, to
operating system designs that employ software-based protection, to
high-level programming languages that supply features for better
low-level work. The human resources required for even a relatively
small-scale verification are tremendous, as shown by seL4 [16], or
impose special requirements, such as Verisoft [1] which runs only
on an obscure architecture. The approach taken by SPIN [3] and
subsequent projects restricts the software protection model to that
of a relatively inexpressive type-system. Few high-level languages
offer dependent types, linear types, and efficient C compilation and
integration with the same level of practicality as ATS.

This work aims to show that a programming language with
dependent and linear types, ATS, can be used to phase reliable
components into an existing operating system written in an unsafe
language. The new, type-checked, code can be fully integrated at
any level into the kernel without any need for special run-time
support. In addition, the programmer can decide just how strong or
how weak a level of specification is desired, as a balance between
practicality and verification completeness is reached.

A general-purpose language like ATS is far broader in design
than may be necessary or desirable for systems programming.
Dependently-typed languages are notoriously difficult to learn how
to program with effectively. Finding a domain-specific subset of
ATS which trades some expressivity for usability—a language
that could give benefit to non-experts in programming language
theory—is another goal.

2. Platform
The ATS programming language The ATS project [31] is a com-
piler for a programming language with dependent types, linear
types, and easy C integration. It also supports the manipulation of
unboxed types of arbitrary size (also called flat types) and has tem-
plate meta-programming capabilities to go with it. The ATS depen-
dent type system [27] is largely based on earlier work on Depen-
dent ML (DML) [29] and is flexible enough to be able to encode

Task A /o/o/o/o/o/o/o

schedule()

��
�
�
�

�
�
� /o/o/o/o/o/o/o

Task B /o/o/o/o/o/o/o

schedule()

KS�
�
�

�
�
�

Figure 1. Linear time-line of processor execution

mathematical proofs [28][30], or to be used to write LinuxTM de-
vice drivers [23]. This is achieved through syntactic separation of
terms which may appear in proofs and those that may appear in pro-
grams. Certain properties, like guaranteed termination, are required
of proofs, while programs may exploit general recursion.

The ATS compiler compiles itself and it is on the order of
90,000 lines of ATS code. There are a number of contributed
libraries including, for example, some for AVL trees, hash-tables,
and binary heaps that take advantage of linear and dependent types
for efficiency and correctness. ATS programs can elide support
for language run-time features (like garbage collection)—this is
helpful for operating system development.

The Quest operating system Quest [26] is a small operating sys-
tem developed in C for research into embedded systems, meeting
service requirements of end-users, and general pedagogical pur-
poses. It is designed to operate on an IntelTM 32-bit PentiumTM

architecture machine [13], it supports symmetric multiprocessing,
and has a few basic peripheral drivers. It provides a minimal Unix-
like set of system calls and it is simple, having less than 8000 lines
of code.

3. Case Study: Scheduler
The scheduler of the Quest operating system presented a good
starting point because it is already written in a fairly high-level
style. There are a number of properties, an important subset of
which could be easily encoded in ATS, which provide for a quick
demonstration of the feasibility of compiling and loading ATS code
as part of a real operating system kernel.

3.1 The schedule function
The main kernel interface is a function named schedule. When in-
voked, a simple algorithm picks one task from a queue of tasks
which are not running and switches the processor context of
memory-management and register-state to that of the selected task.
The old task’s context is saved to memory, to be picked up again at
some future point in time.
schedule is a peculiar function when viewed on a linear time-

line of processor execution. One example is depicted in figure 1:
a task A is interrupted and the kernel invokes schedule() and
then the following return occurs in the context of task B. In the
future, some other invocation will cause a return to task A. The
function requires no arguments and returns no values. However,
there are very important pre- and post-conditions associated with
the function, which if not satisfied, will lead to dead-locks and
system crashes.

The scheduler manipulates some data-structures, and these in-
teractions must take place atomically without interruption—this is
called a critical section. On a uniprocessor machine, it is sufficient
to disable interrupts while working in this critical section. Inter-
rupts are already disabled upon entry into privileged mode by way
of interrupt-gates [13], a hardware feature which is used by Quest
to gain access to the kernel. On a multiprocessor machine, this is no
longer sufficient because it is possible that more than one processor
enters an interrupt-gate and attempts to use the scheduler.

Therefore, for multiprocessor operation, there is a spin-lock
which guards access to the kernel’s data-structures. Using atomic

absview KERNEL_LOCK_v

extern fun
lock_kernel ():pure (KERNEL_LOCK_v | void)

extern fun
unlock_kernel (pf: KERNEL_LOCK_v | (* empty *)):pure void

extern fun
schedule (pf: !KERNEL_LOCK_v | (* empty *)): void

Listing 1. Scheduler function prototypes

machine instructions, a processor waits for a word in memory to
become equal to 0 so it can write a 1 into that location. While it
is waiting, the processor “spins” around a tight loop while doing
no useful work. If every entry into the kernel follows this protocol,
then only one processor at a time will be able to modify kernel
data-structures while the others wait. Spin-locks do waste CPU
resources, but they have the advantage that the latency between an
unlock and the subsequent lock operation is very low, they require
no support from a scheduler, and they are simple to implement and
build upon. Using spin-locks achieves a basic level of protection for
critical sections which, while not ideal, is suitable for our purposes.

The spin-lock must be obtained prior to critical sections and re-
leased in a timely fashion but only after the critical section has com-
pleted. The lock cannot be grabbed inside of the schedule function
because the critical section may be larger than just an invocation of
schedule. For example, a task may want to add to the queue before
scheduling, and these operations must be completed together with-
out interruption. In addition, it is not possible to relinquish the lock
before the hardware context switch, because then another processor
might try to use certain resources which are not yet available un-
til after the switch executes. Therefore, the most general interface
requires a pre- and post-condition to the scheduler: that the kernel
spin-lock be held before scheduling and that it is still held after-
wards. In the C implementation, this is given as a comment, but in
the ATS implementation it can be enforced as a type.

3.2 Specification
The relevant ATS function prototypes are given in listing 1. An
absview declares an abstract view, also known as a linear proposi-
tion, to represent the kernel spin-lock. The lock is still implemented
in C, therefore it is declared abstract to ATS. “View” is the name
given to a linear type associated with a proof.

Since it is abstract, two functions are declared to manipulate
the kernel lock: lock_kernel and unlock_kernel. These are imple-
mented in C, and have no parameters or return values, but do have
proof implications. The first function, lock_kernel, produces a lin-
ear proof term of the view for the kernel lock. The second function,
unlock_kernel, is said to consume a linear proof term of that view.
Finally, the third function, schedule, uses but does not consume the
linear proof term—this is denoted by the ! operator prefixed to the
view.

The production and consumption of views has no run-time
overhead or presence. Propositions and views which appear on
the left-hand side of the | syntactic separator are erased after
type-checking. To the outside world, these three functions all ap-
pear to be parameter-less and without return value. To the type-
checker, these annotations enforce the pre-condition that the kernel
be locked before scheduling, and that the kernel lock be explicitly
released after scheduling.

This is a relatively simple but surprisingly common usage of
views. It is also imperfect, because it does not prevent the kernel
lock from being grabbed more than once (and thus dead-locking

1 implement schedule (pf_lock | (* empty *)) = let
2 (* Search a bitmap which gets set when a runqueue is non-empty *)
3 val prio = bitmap_find_first_set (!runq_bitmap, MAX_PRIO_QUEUES)
4 where {val (vbox pf | runq_bitmap) = get_runq_bitmap (pf_lock | (* empty *)) }
5 in if prio < 0 then
6 let (* Nothing to do, go IDLE. *)
7 val phys_id = LAPIC_get_physical_ID ()
8 val idle_sel = idleTSS_selectors[phys_id]
9 where {val (vbox pf | idleTSS_selectors) = get_idle_TSS_selectors (pf_lock | (* empty *)) }

10 val cur_task = str ()
11 in if task_id_eq (cur_task, idle_sel) then
12 () (* No task switch needed, was already IDLE. *)
13 else jmp_gate (pf_lock | idle_sel)
14 end
15 else let (* Got a task waiting at runqueue[prio]. *)
16 val (pf_runq | p_runq) = runqueue_get_view_ptr (pf_lock | (* empty *))
17 val next = queue_remove_head (p_runq[prio])
18 (* Clear the bit if this was the last item on the queue: *)
19 val _ = if not (task_id_eq (task_id_zero, p_runq[prio])) then ()
20 else let val (vbox pf | runq_bitmap) = get_runq_bitmap (pf_lock | (* empty *))
21 in bitmap_clr (!runq_bitmap, prio) end
22 val _ = runqueue_put_view_ptr (pf_runq | p_runq)
23 val cur_task = str ()
24 in if task_id_eq (next, cur_task) then
25 () (* No task switch needed, resume current task. *)
26 else jmp_gate (pf_lock | next)
27 end
28 end

Listing 2. Scheduler implementation

immediately) by the same processor. This is an example of the
trade-off between practicality and specification completeness. The
types could be designed to prevent multiple locking. But the most
common errors are due to holding the kernel lock and forgetting
to release it, which this does address. Anecdotally, one bug in the
C implementation arose because one branch of some conditional
logic unlocked the kernel twice. That kind of bug can be very
difficult to track down because it does not cause an immediate
dead-lock, but instead allows a second processor to manipulate
kernel data-structures while another one was already working. This
problem would have been caught by the ATS type-checker using
these annotations.

3.3 Implementation
The implementation of the schedule function in ATS is shown in
listing 2 as a demonstration. The basic algorithm is to check a set
of queues for any waiting tasks. There are MAX_PRIO_QUEUES total
queues in decreasing priority order. If no task is waiting, then the
processor-specific idle task is read from an array. In every case it
is necessary to check if the current task is the same as the selected
task, and if so, do nothing but return.

The code is about the same length as a C implementation of the
same function but the ATS type-system is checking much more. For
example, on line 3 an inline assembly routine is invoked which uses
an IntelTM machine instruction to quickly find the first set bit in a
word representing a bit-map. The linear proposition which proves
safe access to the run-queue bit-map pointer is contained in a vbox,
which is a construct that automatically revokes views upon leaving
the static scope of its binding. This means simply that the proof that
permits the use of the pointer is contained to a small portion of the
overall code. In addition, on that line, the runq_bitmap is defined
to be a certain size and that is statically checked against the second
argument, MAX_PRIO_QUEUES, for bounds-safety.

There are other examples of the use of views for the safety of
pointer access (see also [33]). The task_id is an indexed integer

type, which permits reasoning that is used by some of the queue
manipulation functions. The jmp_gate and str functions are ac-
tually inline wrappers around assembly which is optimized into a
single instruction by the C compiler.

These two listings, and more, currently constitute the scheduler
for a working version of the Quest operating system and it has been
tested using emulators such as QEMU [2], Bochs [7], and VMWare
[14] as well as on real machines.

4. Case Study: Simple Memory Manager
4.1 Background
An operating system kernel is supplied with some basic hardware
tools to manage address spaces and protect memory, but it is largely
responsible for the proper design and implementation of memory
allocators. There are several levels to consider:

Physical memory represents the real, hardware resource. It is di-
vided into frames: consecutive regions of RAM all of the same
size and alignment, typically 4096 bytes.

Virtual memory is the layer at which most applications and kernel
code typically works. It is divided into pages reminiscent of
physical frames except that consecutive pages may be assigned
to arbitrary frames (or not assigned at all).

Address spaces are sets of virtual memory page assignments. An
address space provides a coherent view of memory for an appli-
cation, but it could be composed of disparate physical frames.

The kernel heap is a subset of an address space designated for
miscellaneous and dynamic kernel allocation of indefinite ex-
tent. It is typically managed by an allocator capable of handing
out and keeping track of smaller chunks of memory.

Different methods are used to manage these resources. For ex-
ample, in Quest, a bit-map is maintained to keep track of the first
128MB of physical memory. Virtual memory assignments must be

extern prfun
FREE_TABLE_v_of_LOCK_v (pf: LOCK_v):proof
(FREE_TABLE_v, FREE_TABLE_v (

proof
LOCK_v)

extern prfun
USED_TABLE_v_of_LOCK_v (pf: LOCK_v):proof
(USED_TABLE_v, USED_TABLE_v (

proof
LOCK_v)

Listing 3. Some allocator specifications

formulated into a set of tables in memory referred to as page ta-
bles so that the hardware memory-management unit can read it. A
full address space is given as a page table directory and the cur-
rent address space is stored in a designated machine register [13].
The kernel heap can be managed much like user-space allocators
do such as those used for libc malloc, but it typically has a few
requirements not found at user-level:

• Low-latency operation is important because it may be invoked
in the midst of some critical section.
• Fragmentation can lead to poor performance.
• Oftentimes aligned or restricted pointers are desired by the

caller.
• If memory runs out, then it must use the other subsystems of the

kernel to gain more (or fail). This can lead to unbounded delay.

In general, the design of a kernel heap allocator is a difficult prob-
lem and there is not a single solution for all purposes. A real op-
erating system provides several mechanisms which have different
trade-offs.

4.2 A simple allocator
Quest has a solution that is well-known [17], simple, quick, avoids
external fragmentation at the cost of internal fragmentation, and
offers certain alignment guarantees. Only blocks with a size that
is equal to a power of two are handed out. There is a minimum
size (currently 25 bytes) and a maximum size (currently 216 bytes).
When a request comes in for a certain number of bytes n, the
allocator looks for the smallest k such that n ≤ 2k is satisfied. Then
it either pulls a block out of the pool reserved for 2k-sized blocks,
or it requests a 2k+1-sized block and splits it. The address and size
of the block are recorded in a table and then a pointer is returned
to the caller. In the future, when the block is freed, the table is
consulted to find out how large it is and then it gets placed back in
the appropriate free-block pool.

4.3 Properties of interest
The allocator implementation in ATS is too large to include here
but there are a number of interesting fragments which highlight
potentially useful techniques for similar work.

Preventing pointer aliasing Listing 3 demonstrates a way to use
linear types to avoid aliasing pointers. There already exists a defini-
tion for LOCK_v that is very similar to listing 1, so there is no need to
repeat it. The proof-function FREE_TABLE_v_of_LOCK_v is not a real
function, but rather more like a theorem available for use by the
programmer in proofs and checked by the compiler prior to type
erasure. It consumes a lock view and produces two linear views:
the first is of a table holding the free-block lists, the second is a
linear proof implication that allows us to reconstruct the lock view
if we give up the table view.

Since the only way to get a free-block table view is to invoke
this function on the lock view, and the only way to get the lock view
back is to give up the free-block table view, this prevents aliasing

absviewtype FREE_BLOCK_vt (int)

sortdef index = {i:int | MIN_POW ≤ i; i ≤ MAX_POW}

extern fun
split_free_block
{i:index | MIN_POW < i}
(b: !FREE_BLOCK_vt(i) >> FREE_BLOCK_vt(i-1),
i:int i):pure
FREE_BLOCK_vt(i-1)

Listing 4. Splitting a free block

of the table pointer. The used-block table is guarded in the same
way. This idea can also be used to provide a more robust version of
listing 1.

Specification simplifies implementation Listing 4 specifies the
function which splits a block into two half-sized blocks. The notion
of a “free block” is defined as an abstract linear type constructor,
also known as an abstract viewtype constructor in ATS. It is indexed
by an int which denotes the size of the block: FREE_BLOCK_vt(i)
is the static term for a viewtype of a region of memory of size 2i

bytes that is available for use.
The types of ATS static terms are called sorts. The type con-

structor FREE_BLOCK_vt has the sort int → type where int, type are
base sorts. The sort alias named index is an example of a subset
sort—a proposition combined with a sort. The ATS concrete syn-
tax is purposefully designed to mimic set-comprehension notation
for clarity, and permits any linear constraint. In this case, the index
sort is restricted to the valid values for the size of a free block, and
is meant to be used for indexing the FREE_BLOCK_vt type construc-
tor.

The definition of split_free_block adds another proposition
which ensures that the index of the free block given as a parameter
is greater than the minimum. The reason for this, ultimately, is that
split_free_blockmust not operate on minimum-sized blocks. The
definition goes on to specify that the function takes two dynamic
arguments: the block b, and the index i. The type of the argument
b expresses that it has a linear viewtype and it preserves (denoted
by the prefix operator !) the linear view—but with a modification
(denoted in shorthand by the infix operator >>), namely that the
index is decremented. The type of the dynamic argument i is the
type constructor int1 indexed by the static term i. The return type
of the function is another linear viewtype also with a decremented
index.

The end result is that before invoking split_free_block there
is one linear value of viewtype FREE_BLOCK_vt(i) and afterwards
there are two linear values of viewtype FREE_BLOCK_vt(i-1). The
first output will remain, in some sense, the same as the input (in
reality, it will be the same pointer value) but now it can only be
treated as a region of size 2i−1 bytes. The actual implementation
can be one line of simple inline-able C code because of such strong
specifications.

Re-use with confidence In the original C implementation, a table
of allocated blocks was maintained as a simple linear array. More
efficient data-structures could have been used but the effort of de-
bugging complex manipulations of trees in C outweighed the bene-
fit. During the porting effort to ATS, it was possible to immediately
take advantage of an existing AVL tree library written and provided
with proofs. With templates and flat types, it integrated easily into

1 The name int is overloaded as a base sort, a type, and a type constructor,
depending on context.

extern fun
remove_used_table
{i:index}
(pf: !USED_TABLE_v | b: !FREE_BLOCK_vt i,
i: &(int?) >> opt (int(i), err==0)):pure
#[err:int | err ≤ 0] int err

Listing 5. Interface to library

the kernel and compiled to specialized instantiations for the table
entries.

In listing 5 is one of the interface functions which shows a few
features that are useful when writing systems code. First, though,
it continues to take advantage of the subset sort and linear view
techniques discussed previously. Then, the parameter i is specified
as call-by-reference using the &-notation. Using the >> shorthand
again, it specifies that the function is going to modify the reference
parameter. It expects an uninitialized int (denoted int?) as input,
which means that this specifies an output parameter. After the
function returns, the type of i is opt (int(i), err==0) which is a
constructor asserting that an int statically known as i, the index of
the free-block, will be stored in the variable i if err = 0. The static
variable err is bound by the syntax #[err:int | err ≤ 0] which
is an existential quantifier and also asserts that err is non-positive.
The actual return value of the function is an int corresponding to
the static int err.

The net effect is that the index of the block is returned as an
output parameter by reference, but only when the error code is zero.
The specification of this function prevents it from being mis-used:
in order to get the dynamic value of the index, ATS will force the
programmer to prove that err = 0 (by using an if statement, for
example). This is achieved efficiently, using common techniques
like call-by-reference and error codes.

5. Conclusion
5.1 Related work
Operating Systems Previously, a simple LinuxTM device driver
was written using an early version of ATS. That work demonstrated
the feasibility of using ATS for device driver development and
illustrated a few possible benefits of doing so [23].

House [9] is an operating system project written primarily in the
Haskell functional programming language. It takes advantage of a
rewrite of the GHC [22] run-time environment that eliminates the
need for OS support, and instead operates directly on top of PS/2-
compatible hardware. Then a foreign function interface is used to
create a kernel written in Haskell. There is glue code written in
C that glosses over some of the trickiness. For example, interrupts
are handled by C code which sets flags that the Haskell code can
poll at safe points. This avoids potentially corrupting the Haskell
heap due to interruptions of the Haskell garbage collector while it
is an inconsistent state. The Hello Operating System [8] is an earlier
than and similar project to House which features a kernel written
and compiled using Standard ML of New Jersey [4], bootstrapped
off of LinuxTM.

Singularity [12] is a microkernel operating system written in a
high-level and type-safe programming language that uses language
properties and software isolation to guarantee memory safety and
eliminate the need for hardware protection domains in many cases.
It incorporates linear types into the language to enable optimization
of certain communications channels.

SPIN [3] is an operating system written in a type-safe language
called Modula-3 [5] and it relies upon the language’s safety and
module mechanisms to build its protection model and extensibility

features, though the expressiveness of the type system is relatively
limited compared to modern languages.

Verification The Verisoft project [1] sought to create a fully-
verified system from the hardware level up. It relies upon custom
hardware architecture which has itself been formally verified, and a
verified compiler to that instruction set. Interfaces with peripherals
are modelled as finite state machines, though only to a limited
extent.

The seL4 project is based on the family of micro-kernels known
as L4 [18]. Recently, a refinement proof was completed [16] that
demonstrated the adherence of a high-performance C implementa-
tion to a generated executable specification, created from a Haskell
prototype, and checked in the Isabelle [21] proof assistant. The
Haskell prototype is itself checked against a high-level design. One
weakness is that changes made at a high-level can have rippling
effects and may require the entire proof to be redone.

The VFiasco [11] project takes a different tactic towards the de-
velopment of a verified operating system. It presumes that a high-
level strongly typed language will need to have its rules broken
in order to implement various kernel functionality. Therefore, they
claim, it is better to write the kernel in an unsafe language such
as C++ and then discharge proofs that are mechanically generated
from the C++ source code, using an external theorem prover sys-
tem.

Languages CCured [20] checks memory safety of existing C pro-
grams by applying a carefully designed strong type system which
differentiates between different kinds of pointer use. It inserts run-
time checks where memory safety cannot be proven statically, and
tracks meta-data about certain pointers in order to implement those
run-time safety tests—these are often called “fat” pointers.

SafeDrive [32] employs a type system called Deputy [6] that
uses type annotations on C programs to eliminate the need for “fat”
pointers in most cases. This means that in many cases, existing
binary interfaces can be used without modification—for example,
in a LinuxTM kernel driver.

BitC [24] is a language intended to be used for systems pro-
gramming with an ML-style type system with effects. It allows
precise control of the representation of types in memory while en-
joying the advantage of static type inference. Theorem-proving is
syntactically supported but left to a (yet to be created) plugin or
third-party application.

Cyclone [15] is a memory-safe dialect of C. It achieves its
goal by restricting the behavior of C programs and then recovering
some of that expressiveness by giving the programmer features
that: insert NULL-pointer checks, use “fat” pointers when pointer
arithmetic is desired, have growable regions as an alternative to
classical manual memory management, and more.

Guru [25] is a programming language similar to ATS in that it
is designed to support dependently-typed functional programming
that is efficiently compiled to C. While ATS is stratified syntac-
tically, Guru is based on OpTT which supports arbitrary program
terms in types—but at the expense of permitting general recursion.

Ynot [19] is an extension to the Coq [10] proof assistant for rea-
soning about dependently-typed programs with side-effects, using
monads and programmer-supplied specifications. Programs in lan-
guages such as Haskell can be automatically extracted from Coq
proofs but the facility is not currently well-supported enough to
suffice for Ynot. A compiler for Ynot is planned for future devel-
opment.

5.2 Future work
The successful integration of two ATS modules into Quest shows
promise that it is feasible to write significant portions of an oper-
ating system in a language with dependent and linear types. The

question then becomes: what advantage is there gained by doing
this? This can be explored on a number of axes.

Performance Does the ATS compiler cause any performance
degradation despite compiling to relatively straightforward C?
Does having the confidence to use more complex and efficient
data-structures in ATS than C make up that difference?

Debugging Can ATS be used to avoid tedious debugging sessions
that are the hallmark of systems programming? Can lightweight
theorem-proving help catch bugs before they manifest, or help track
down existing bugs through increasing annotation?

Interface What would a dependent and linear type-based specifi-
cation of the system call interface look like? Would it help prevent
security flaws?

And finally, it remains to be seen what changes in the language
design can ease the burden of specification and theorem-proving on
the programmer, and make it more accessible to a wider audience.

Acknowledgments
Richard West, with Gary Wong, created the Quest OS project,
and spent time answering many questions about it. Gabriel Parmer
made helpful suggestions regarding the memory allocator and other
details of systems programming. Likai Liu provided feedback on
drafts of this paper. This work is partially supported by NSF grant
no. CCF-0702665.

References
[1] Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W.

Schirmer, and Artem Starostin. The Verisoft Approach to Systems
Verification. In VSTTE ’08: Proceedings of the 2nd international
conference on Verified Software: Theories, Tools, Experiments, pages
209–224, Berlin, Heidelberg, 2008. Springer-Verlag.

[2] Fabrice Bellard et al. QEMU: machine emulator. http://www.qemu.
org/, 2009.

[3] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin GÃijn
Sirer, Emin Gun Sirer, Marc Fiuczynski, David Becker, Susan Eggers,
and Craig Chambers. Extensibility, Safety and Performance in the
SPIN Operating System. In Proceedings of the Fifteenth ACM Sympo-
sium on Operating Systems Principles, pages 267–284, 1995.

[4] Matthias Blume et al. Standard ML of New Jersey. http://www.
smlnj.org/, 2009.

[5] Luca Cardelli et al. Modula-3 report (revised). Technical report,
Digital Equipment Corp. (now HP Inc.), Nov 1989. http://www.
hpl.hp.com/techreports/Compaq-DEC/SRC-RR-52.html.

[6] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and
George C. Necula. Programming Languages and Systems, chapter De-
pendent Types for Low-level Programming, pages 520–535. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2007.

[7] Bryce Denny, Christophe Bothamy, Donald Becker, et al. BOCHS:
x86 PC emulator. http://bochs.sourceforge.net/, 2009.

[8] Guangrui Fu. Design and Implementation of an Operating System
in Standard ML. Master’s thesis, University of Hawaii, Aug 1999.
http://www2.hawaii.edu/~esb/prof/proj/hello/.

[9] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew Tol-
mach. A principled approach to operating system construction in
Haskell. SIGPLAN Not., 40(9):116–128, 2005.

[10] Hugo Herbelin. Coq proof assistant. http://coq.inria.fr/, 2009.
[11] M. Hohmuth and H. Tews. The VFiasco approach for a verified op-

erating system. In Proceedings of the 2nd ECOOP Workshop on Pro-
gramming Languages and Operating Systems, 2005. http://www.
cs.ru.nl/H.Tews/Plos-2005/ecoop-plos-05-letter.pdf.

[12] Galen C. Hunt and James R. Larus. Singularity: Rethinking the Soft-
ware Stack. In ACM SIGOPS Operating System Review, volume 41,
pages 37–49. Association for Computing Machinery, Apr 2007.

[13] Intel Inc. IntelTM 64 and IA-32 Architectures Software Devel-
oper’s Manuals. http://www.intel.com/products/processor/
manuals/.

[14] VMWare Inc. VMWare: Virtual Machine software. http://www.
vmware.com/, 2009.

[15] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks,
James Cheney, and Yanling Wang. Cyclone: A Safe Dialect of C. In
ATEC ’02: Proceedings of the General Track of the annual conference
on USENIX Annual Technical Conference, pages 275–288, Berkeley,
CA, USA, 2002. USENIX Association.

[16] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, et al. seL4: Formal
verification of an OS kernel. In Proceedings of the 22nd ACM Sympo-
sium on Operating Systems Principles, Big Sky, MT, USA, Oct 2009.

[17] Kenneth C. Knowlton. A fast storage allocator. Commun. ACM,
8(10):623–624, 1965.

[18] Jochen Liedtke. Toward Real Microkernels. CACM, 39(9):70–77,
1996.

[19] Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Gov-
ereau, and Lars Birkedal. Ynot: dependent types for imperative pro-
grams. In ICFP ’08: Proceeding of the 13th ACM SIGPLAN interna-
tional conference on Functional programming, pages 229–240, New
York, NY, USA, 2008. ACM.

[20] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak,
and Westley Weimer. CCured: type-safe retrofitting of legacy soft-
ware. ACM Trans. Program. Lang. Syst., 27(3):477–526, 2005.

[21] Larry Paulson and Tobias Nipkow. Isabelle proof assistant. http:
//www.cl.cam.ac.uk/research/hvg/Isabelle/, 2009.

[22] Simon Peyton-Jones, Simon Marlow, et al. The Glasgow Haskell
Compiler. http://www.haskell.org/ghc/, 2009.

[23] Rui Shi. Implementing reliable Linux device drivers in ATS. In PLPV
’07: Proceedings of the 2007 workshop on Programming languages
meets program verification, pages 41–46, New York, NY, USA, 2007.
ACM.

[24] Swaroop Sridhar, Jonathan S. Shapiro, and Scott F. Smith. Sound
and complete type inference for a systems programming language. In
APLAS ’08: Proceedings of the 6th Asian Symposium on Programming
Languages and Systems, pages 290–306, Berlin, Heidelberg, 2008.
Springer-Verlag.

[25] Aaron Stump, Morgan Deters, Adam Petcher, Todd Schiller, and Tim-
othy Simpson. Verified programming in Guru. In PLPV ’09: Proceed-
ings of the 3rd workshop on Programming languages meets program
verification, pages 49–58, New York, NY, USA, 2008. ACM.

[26] Richard West. The Quest operating system. http://www.cs.bu.
edu/fac/richwest/quest, 2009.

[27] Hongwei Xi. Applied Type System (extended abstract). In Post-
workshop Proceedings of TYPES 2003, pages 394–408, 2004.

[28] Hongwei Xi. ATS/LF: a type system for constructing proofs as
total functional programs. http://www.ats-lang.org/PAPER/
ATSLF-PAfestschrift.pdf, 2004.

[29] Hongwei Xi. Dependent ML: An approach to practical programming
with dependent types. J. Funct. Program., 17(2):215–286, 2007.

[30] Hongwei Xi. Examples encoding deduction systems. http://www.
ats-lang.org/EXAMPLE/LF/LF.html, 2009.

[31] Hongwei Xi et al. The ATS language. http://www.ats-lang.org/,
2009.

[32] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob
Ennals, Matthew Harren, George Necula, and Eric Brewer. SafeDrive:
safe and recoverable extensions using language-based techniques. In
OSDI ’06: Proceedings of the 7th symposium on Operating systems
design and implementation, pages 45–60, Berkeley, CA, USA, 2006.
USENIX Association.

[33] Dengping Zhu and Hongwei Xi. Safe programming with pointers
through stateful views. In Proceedings of the 7th International Sym-
posium on Practical Aspects of Declarative Languages, pages 83–97.
Springer, 2005.

