
Using Lightweight Theorem Proving

in an Asynchronous Systems Context�

Matthew Danish and Hongwei Xi

Boston University Computer Science
111 Cummington Mall
Boston, MA 02215

Abstract. As part of the development of a new real-time operating
system, an asynchronous communication mechanism, for use between
applications, has been implemented in a programming language with
an advanced static type system. This mechanism is designed to provide
desired properties of asynchronicity, coherency and freshness. We used
the features of the type system, including linear and dependent types,
to represent and partially prove that the implementation safely upheld
coherency and freshness. We believe that the resulting program code
forms a good example of how easily linear and dependent types can
be applied in practice to prove useful properties of low-level concurrent
systems programming, while leaving no traces of runtime overhead.

1 Introduction

The Terrier [7] project focuses on doing low-level, OS-level systems programming
while taking advantage of a dependently typed programming language named
ATS [25]. The purpose of this project is to identify effective, practical means to
create safer, more reliable systems through use of advanced type system features
in programming languages. We are also interested in the implications of having
powerful programming language tools available, and the effects on plausible sys-
tem design. For example, Terrier moves much of the responsibility for program
safety back out onto the programs themselves, rather than relying strictly on
run-time checks or hardware protection mechanisms. For another, the Terrier
program model is one in which asynchronous events play a central role in pro-
gram design. These two shifts in thinking put more burden on the programmer—
a burden that we expect to lighten through language-level assistance—but they
also open up more flexibility in potential program design that we hope will en-
able higher performance and more naturally-written code in difficult problem
domains.

ATS is a language with the goal of bringing together formal specification and
practical programming. The core of ATS is an ML-like functional programming
language which is compiled into C. The type system of ATS combines dependent
and linear types to permit sophisticated reasoning about program behavior and

� This research is supported partly by NSF grant CCF-1018601.

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 158–172, 2014.
c© Springer International Publishing Switzerland 2014

Using Lightweight Theorem Proving 159

the safety of resource usage. The design of ATS provides close coupling of type-
safe functional code and low-level C code, allowing the programmer to decide
the balance between specification and speed. The ATS compiler can generate
code which does not require garbage collection nor any other special run-time
support, making it suitable for bare metal programming.

Using ATS, we have generated C code which links into our kernel to provide
several critical components. We also encourage the use of ATS to help ensure the
safety and correctness of programs that run under the OS. For example, programs
that wish to communicate with one another are provided with libraries written
in ATS which implement protocols that have been statically checked for safety
and correctness.

One of those protocols that we implemented is Simpson’s “four slot fully asyn-
chronous communication mechanism” [20]. It is a shared memory communication
protocol which was cleverly designed by its author to pack some desirable prop-
erties into just a few lines of code. It allows one-way, pool-based transmission of
data without any synchronization delays between reader and writer. The commu-
nication medium is the normal shared memory that is found in most computer
systems. The mechanism offers the properties of freshness and coherency, but not
history. For example, you could imagine a bulletin board on which one person
posts flyers while the other person reads, as shown in figure 1. This mechanism
ensures that the reader only sees the latest, complete, coherent postings on the
board.

The ATS implementation of the four slot mechanism is compact, efficient
and shows how strongly specified types can provide useful assurances at a low-
level without intruding into run-time performance of critical code or requiring
voluminous quantities of proof-writing.

reader writer

latest
coherent

data

Fig. 1. Abstract depiction of four slot mechanism

160 M. Danish and H. Xi

1.1 The Four Slot Mechanism

The scenario for the four slot mechanism starts by assuming that there is a
writer program which wishes to convey some information to a reader program.
Furthermore, the information is able to be encoded into an arbitrary, fixed num-
ber of bytes, and there is a shared memory space large enough for at least four
copies of the data to be stored, plus a few more bytes for state variables.

The four slot mechanism works by opening up space in memory for these four
“slots” of data, usually in the form of an array. Coherency is ensured through
program logic which keeps the reader and the writer apart: each has their own
slot to operate upon, and further analysis will show that the mechanism prevents
them from touching the same slot at the same time.

To achieve this property, the original four slot mechanism relies on several
pieces of shared state, and it assumes that individual bits may be manipulated
atomically. That is, all simultaneously accesses to a single bit will appear to have
a definite ordering, either way [16]. In practice, atomic operations are offered at
machine word sizes [2], not at the individual bit level, but the logic remains the
same.

The shared state variables are used for coordination, by both reader and writer
programs:

– The atomic bit variable named “reading” or R is intended to roughly indicate
which side of the mechanism the reader program is currently using.

– The atomic bit variable named “latest” or L is intended to indicate which
side of the mechanism was updated most recently.

– The bit array named “slot” further drills down on the specific slot of the array
to be used. You could also choose to split this into two variables “slot0” and
“slot1” for analysis purposes.

– Two bits are then used to index into the shared four-member array of data
slots.

There are also private state variables which may only be accessed from within
each program. Since they are symmetrical, we use a consistent naming scheme
for them:

– A bit variable named “pair” which in the writer is named wp and in the
reader is named rp.

– A bit variable named “index” which in the writer is named wi and in the
reader is named ri.

Together, these private variables are used to index into the shared array, and
that usage is denoted as write data (wp, wi, item) or item ← read data (rp, ri).

The diagram in figure 2 shows how the data flows in this protocol. A program
obtains its “pair” from either the “reading” or “latest” atomic variable. It then
uses the “pair” to pick an “index” from the “slot” array. It then uses the “pair”
and “index” to select one of the four slots to work on.

In example diagram you can see that the reader has selected 0, 1 and the writer
has selected 1, 1. Visually, you can see that they are able to independently read
and write without conflict.

Using Lightweight Theorem Proving 161

'pair'

'index' reader

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
0010111100011001100
0011101110111011110
0101111000110110110
1011110001101111100

writer

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
0010111100011001100
0011101110111011110
1100010110001100110
10111100011011111000000
1111000000110011000111001100

array[0,0]

array[1,0]

array[0,1]

array[1,1]

1 0slot[]:

'reading'
'latest'

Fig. 2. Four Slot Mechanism

On the other hand, the diagram in figure 3 shows a case where the reader and
writer are trampling over each other, likely causing data corruption. A properly
working four slot mechanism will never allow this to occur.

The pseudocode for the four slot mechanism is shown in figure 4 and it is
simple enough for a quick walk-through. For the first step of the writer, WS1,
it reads the value of R, negates it, and stores it into the private variable wp.
For the second step, the writer reads a bit from the slot [] array, indexed by wp,
negates it, and then uses that as the value of wi. With both wp and wi, the
writer is now ready to perform the actual write. Finally, the writer updates the
shared state by writing its values of wi, wp into slot [] and L respectively.

The reader also takes 5 steps which are aimed at obtaining values of rp, ri
from shared state. However, the reader gets its value of rp from the L variable,
and it “stakes a claim” to that pair by writing it into the R variable. Then it
finds out which slot is most up-to-date, reads the data, and returns it.

2 Coherency

A cursory inspection of the pseudocode should reveal that it easily transmits a
piece of data if the two programs run back-to-back with no overlap. But that
is not very interesting. The real difficulty comes when you accept that the two
programs may arbitrarily interleave with one another. Figure 5 is an annotated
example of one possible interleaving, where writer and reader steps shown on
the same line are happening in parallel:

162 M. Danish and H. Xi

'pair'

'index'

reader

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
0010111100011001100
0011101110111011110
0101111000110110110
1011110001101111100

writer

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
001011110001100110000
0011101110111011110
1100010110001100110
10111100011011111000000
1111000000110011000111001100

array[0,0]

array[1,0]

array[0,1]

array[1,1]

1 0slot[]:

'reading'
'latest'

incoherent!

Fig. 3. Should not happen

WS1 wp ← ¬R
WS2 wi ← ¬slot [wp]
WS3 write data (wp, wi, item)
WS4 slot [wp] ← wi

WS5 L ← wp

RS1 rp ← L
RS2 R ← rp
RS3 ri ← slot [rp]
RS4 item ← read data (rp, ri)
RS5 return item

Fig. 4. Four slot mechanism pseudocode

– Suppose L = 1 and R = 0
WS1 wp ← ¬R RS1 rp ← L

– Now wp = rp
WS2 wi ← ¬slot [wp] RS2 R ← rp

RS3 ri ← slot [rp]
– And wi �= ri

WS3 write data (wp, wi, item) RS4 item ← read data (rp, ri)
– . . .

Fig. 5. Example of interleaving

You can see that when both programs reach their step 2, it is the case that
wp = rp. But the design of the protocol, at this point, ensures that the writer
picks the opposite index from the reader, so that wi �= ri. Therefore the writer
and the reader do not access the same data slot at the same time. This is just one

Using Lightweight Theorem Proving 163

case, and we needed to show that the mechanism always respects a coherency
property. More specifically, we looked at the “dangerous” steps WS3 and RS4,
where the real data transfers take place, and needed to show that those two
steps would never conflict.

Theorem 1 (Coherency). The writer and the reader do not access the same
data slot at the same time. More precisely, this assertion must be satisfied at
potentially conflicting program points WS3 and RS4:

wp �= rp ∨ wi �= ri

or, the program points must be shown to be non-conflicting.

Problem is, wp and rp (as well as wi and ri) are private variables in separate
programs. Therefore, dynamic or run-time checking was out of the question. So
we turned to static checking encoded using dependent types. To find relevant
properties, we looked at various “points of interaction” where the two programs
might affect each other through atomic shared variables.

Recall that overlapping atomic operations will appear to occur in a definite
ordering. Therefore, points of interaction involving atomic variables R,L, slot []
can tell us facts about unseen state. Consider the orderings shown in figure 6.

RS2 R ← rp

WS1 wp ← ¬R

}
wp �= rp at WS1

WS1 wp ← ¬R
RS2 R ← rp

}
wp

?
= rp at WS1

Fig. 6. Two alternative orderings of WS1 and RS2

We do not know ahead of time whether WS1 or RS2 will occur first. But we
do know the consequences of each ordering. In the first case, we can see that the
writer will harmlessly pick the opposite value of “pair” from the reader. But in
the second case, we have no idea what the values of wp, rp are. That tells us an
important property:

Property 1. If wp = rp at WS1 then WS1 precedes RS2.

Further, by transitivity,

Property 2. If WS1 precedes RS2 then it also precedes RS3.

Recall that RS3 is the step where the reader obtains its value of ri by reading
slot [rp]. And as the data dependency graph of figure 7 shows, it is the writer
which is in control of the value of slot [rp]. Therefore, intuitively, the writer has
enough knowledge of the value of ri to be able to pick a wi of the opposite value.

164 M. Danish and H. Xi

Fig. 7. Data dependencies

Fig. 8. Interaction between RS3 and WS4

This can be seen more precisely by examining the point of interaction between
RS3 and WS4 via the slot [] array, as shown in figure 8, where the wp = rp case
is assumed. In this case, the only way that wi = ri is if WS4 precedes RS3. By
itself, it may seem to violate the coherency assertion but, in fact, the potentially
conflicting program points WS3 and RS4 are non-conflicting because they are
separated by an atomic operation with definite ordering. This is indicated on
the diagram by the solid arrow.

3 Encoding the Proof

3.1 Write

Each step in the program is encoded into an ATS function prototype along with
its types. The ATS code will be explained as we go.

WS1.
wp ← ¬R

Using Lightweight Theorem Proving 165

absview ws1_read_v (R: bit, rstep: int, rp: bit)

fun get_reading_state ():
[rstep: nat]

[R, rp: bit | R == rp || (R <> rp ==> rstep < 2)]

(ws1_read_v (R, rstep, rp) | bit R)

For WS1 we have a kind of datatype definition as well as a function prototype.
The datatype is abstract which means it does not have a real form in the output.
That works because it is intended to be just a property which is erased by
compilation. In ATS, properties which are linear are called “views” [26] and
that just means that the property, after being introduced, must be consumed
once and exactly once. They behave like a “resource” [24].

In this case, the ws1 read v is an abstract view intended to represent the
concept that we have observed the value of R at this particular moment, and
this point of interaction tells us a certain fact about the reader, that is true until
consumed.

The function simply reads the value of R and returns it, but it also gives us
some properties about R which exist in the so-called “static” world [6] as opposed
to the “dynamic” world. In ATS, there is a syntactic division between the static
world and the dynamic world, represented by the vertical bar in concrete syntax.
The static world can be more abstract, where you may encode relations that
you do not want to appear in the final output, while the dynamic world is the
practical side which will eventually be formed into the C output of the compiler.

The two are connected through use of indexed types. Here we see various
type indices: rstep, R, rp. The index R represents the shared state variable R,
rp represents the hidden private state variable rp, and rstep represents the
program counter of the reader program in an abstract form.

ATS allows some specifications about the values of these indices to be made
in a convenient, set-like notation. In this case, we have made the following static
assertion: that R is equal to rp, or, if R is not equal to rp, then rstep is less
than 2.

Then we have returned the linear property indexed by these three, and on the
dynamic side we have returned the actual bit value which is linked to the index
R.

WS2.
wi ← ¬slot [wp]

absview ws2_slot_v (s: bit, rp: bit, ri: bit)

fun get_write_slot_index {R, wp, rp: bit} {rstep: nat} (

pfr: !ws1_read_v (R, rstep, rp) | wp: bit wp

): [s, ri: bit | (rstep < 3 && wp == rp) ==> s == ri)]

(ws2_slot_v (s, rp, ri) | bit s)

Again, we need a linear property—which here represents the value found in
the slot array as well as some facts learned from that point of interaction. In this

166 M. Danish and H. Xi

case, s represents the slot value in memory s, rp is a stand-in for rp, and ri

for ri.
In order to call this function for step 2, we need evidence that the reading

state has been examined, and that evidence is provided by the ws1 read v view.
By default, a linear property like this is consumed and not usable again, but we
want this particular property to be reproduced for later use, because we will want
to make some statements about R in later steps. Now, one way to reproduce the
property would be to explicitly return it again, but ATS provides the ! operator
as a bit of syntactic sugar to help make that common case convenient.

On the dynamic side, we need to pass the value of wp because that is used as
an index into the slot array.

The return value is a view of the value of the slot that we received, as well
as the actual value itself, combined with another fact about the relationship
between the variables: if rstep was less than 3 and wp was equal to rp, then we
know that s will be equal to ri.

The assertion wp == rp ==> s == ri is a simple statement about array ac-
cess. The reader program performs ri ← slot [rp], and if wp = rp then the writer
program will see the slot value s which is the same as ri.

The reason why we have to check if rstep was less than 3 is because it might
be possible for the reader to get to step 3 and then block for a long time. If
the reader is blocking for a long time, it could have a stale value of ri sitting
around, a potentially conflicting value. By guarding against that, we know that
the reader has yet to pick a value of ri, and so when it does, it will be equal to
the value of s.

WS3.
write data (wp, wi, item)

fun{a: t@ype} write_data

{R, s, wp, wi, rp, ri: bit | wp <> rp || wi <> ri} {rstep: nat} (

pfr: !ws1_read_v (R, rstep, rp),

pfs: !ws2_slot_v (s, rp, ri) |

wp: bit wp, wi: bit wi, item: a

): void

Armed with the facts that we have learned about wp, wi, rp, ri from the points
of interaction, we are ready to use the function which does the actual work of
writing data into memory. This function has theorem 1 (Coherency) encoded
into its type: wp <> rp || wi <> ri, and therefore can only be called if this
assertion can be statically proven, or else it results in a type error.

The ATS typechecker uses the Z3 SMT solver [8] on the facts that it has
learned about these variables, and can discharge this assertion without further
work by the programmer.

WS4.
slot [wp] ← wi

Using Lightweight Theorem Proving 167

absview ws4_fresh_v (p: bit)

fun save_write_slot_index {s, wp, wi, rp, ri: bit | wi <> s} (

pfs: ws2_slot_v (s, rp, ri) | wp: bit wp, wi: bit wi

): (ws4_fresh_v wp | void)

After the write is complete, we need to update the shared state variables
so that subsequent reads will obtain the new value. This is a somewhat more
minor concern than coherency, but still encoded enough to be sure that it is
done properly. This step consumes the ws2 slot v resource which is no longer
valid or needed. It returns a new view which I have labeled ws4 fresh v, which
acts as an obligation to update the remaining shared state.

WS5.

L ← wp

fun save_latest_state

{R, rp, wp: bit | wp <> R} {rstep: nat} (

pfr: ws1_read_v (R, rstep, rp),

pff: ws4_fresh_v wp |

wp: bit wp

): void

The final step cleans up, consuming both remaining views, as they will both
become invalid after this step. A final check is added to ensure that the new
value of L will not be equal to the old value of R.

Putting it Together. The code for the write operation, alongside the pseu-
docode, is shown in figure 9. The real code is largely similar to the pseudocode,
and each line is implemented through ATS’s close integration with a small
amount of C code which performs the low-level atomic operations and mem-
ory copying.

val (pfr | R) = get_reading_state ()
val wp = not R

val (pfs | s) = get_write_slot_index (pfr | wp)
val wi = not s

val _ = write_data (pfr, pfs | wp, wi, item)

val (pff | _) = save_write_slot_index (pfs | wp, wi)

val _ = save_latest_state (pfr, pff | wp)

WS1 wp ← ¬R

WS2 wi ← ¬slot [wp]

WS3 write data (wp, wi, item)

WS4 slot [wp] ← wi

WS5 L ← wp

Fig. 9. write

168 M. Danish and H. Xi

3.2 Read

Again, each step in the program is encoded along with a type.

RS1.
rp ← L

absview rs1_latest_v (L: bit)

fun get_latest_state (): [L: bool] (rs1_latest_v L | bit L)

The value of L is returned along with a linear proposition stating that it was
seen.

RS2.
R ← rp

absview rs2_read_v (R: bit)

fun save_reading_state {L, rp: bit | L == rp} (

pf: rs1_latest_v L | rp: bit rp

): [R: bit | R == rp] (rs2_read_v R | void)

With the proposition in hand, we show that we are saving the correct value in
the R shared variable. In return, we learn the fact that rp = R now.

RS3.
ri ← slot [rp]

absview rs3_slot_v (s: bit, wp: bit, wi: bit)

fun get_read_slot_index {R, rp: bit} (

pf: rs2_read_v R | rp: bit rp

): [s, wp, wi: bool | wp == rp ==> s == ~wi]

(rs3_slot_v (s, wp, wi) | bit s)

The rs2 read v is consumed to prove that we are using the pair corresponding
to R. In return, we gain a property with a constraint based on simple facts about
arrays as well as the behavior of the write program. It stipulates that if both
reader and writer access slot [rp] when rp = wp, then the writer’s wi will be the
opposite of whatever value is found in slot [rp].

RS4.
item ← read data (rp, ri)

fun{a: t@ype} read_data {rp, ri, wp, wi: bool | wp <> rp || ri <> wi} (

pf: rs3_slot_v (ri, wp, wi) | p: bit rp, i: bit ri

): a

Finally, the last interesting step of read is the one that requires the coherency
theorem to be satisfied, wp <> rp || ri <> wi.

Using Lightweight Theorem Proving 169

Putting it Together. Figure 10 shows the code and much like before, it is close
to the pseudocode, and yet compiles down into efficient C. The ATS typechecker
is powerful enough to automatically solve the constraints.

val (pfl | rp) = get_latest_state ()

val (pfr | _) = save_reading_state (pfl | rp)

val (pfs | ri) = get_read_slot_index (pfr | rp)

val item = read_data (pfs | rp, ri)

RS1 rp ← L

RS2 R ← rp

RS3 ri ← slot [rp]

RS4 item ← read data (rp, ri)

Fig. 10. read

4 Related Work

4.1 The Four Slot Mechanism

Simpson developed a technique called “role model analysis” [21] and then applied
it to his four slot mechanism [22] to verify properties of coherency and freshness.
Henderson and Paynter [12] created a formal model of the four slot mechanism
in PVS and used it to show that it was atomic under certain assumptions about
interleaving. Rushby [19] used model checking to verify coherency and freshness
in the four slot mechanism but also found the latter can only be shown if the
control registers are assumed to be atomic. Our approach has been to encode
pieces of the desired theorems into the type system, apply it to working code,
and then allow the typechecker to verify consistency. If a mistake is made, it will
be caught prior to compilation. Or, if the typechecker is satisfied, then the end
result is efficient C code that may be compiled and linked and used directly by
applications.

4.2 Operating System Verification

The seL4 project is based on a family of microkernels known as L4 [15]. In that
work, a refinement proof was completed that demonstrates the adherence of
a high-performance C implementation to a generated executable specification,
created from a prototype written in Haskell, and checked in the Isabelle [17]
theorem proving system. The prototype itself is checked against a high-level
design. One difference with our work is that we seek to eliminate the phase of
manual translation from high to low level language. Another difference is that,
while the seL4 approach can certainly bring many benefits, we feel that the cost
associated with it is too high for ordinary use. For example, it may turn out to
be intractably difficult to apply this technique to a multiprocessor kernel. That
is currently an open problem [9].

170 M. Danish and H. Xi

Singularity [14] is a microkernel OS written in a high-level and type-safe
language that employs language properties and software isolation to guarantee
memory safety and eliminate the need for hardware protection domains in many
cases. In particular, it makes use of a form of linear types in optimizing com-
munication channels. Singularity was an inspiration for Terrier, although several
goals are different. For instance, Terrier seeks to avoid, as much as possible, the
overhead associated with high-level languages. Terrier’s design is more explicitly
geared towards embedded devices responding to real-time events. And inter-
program communication in Terrier is left open enough to accommodate multiple
approaches, tailored to the particular application domain.

House [11] is an operating system project written primarily in the Haskell func-
tional programming language. It takes advantage of a rewrite of the GHC [18]
run-time environment that eliminates the need for OS support, and instead op-
erates directly on top of PS/2-compatible hardware. Then a foreign function
interface is used to create a kernel written in Haskell. There is glue code written
in C that glosses over some of the trickiness. For example, interrupts are han-
dled by C code which sets flags that the Haskell code can poll at safe points.
This avoids potentially corrupting the Haskell heap due to interruptions of the
Haskell garbage collector while it is an inconsistent state. The Hello Operating
System [10] is an earlier than and similar project to House which features a ker-
nel written and compiled using Standard ML of New Jersey [4], bootstrapped
off of Linux [23]. SPIN [3] is a pioneering effort along these lines which used
the Modula-3 language [5] to provide a protection model and extensibility. In
general, these types of systems do not tackle the problem of high-level language
overhead, generally do not handle multiprocessing well if at all, and only offer
guarantees as good as their type system can handle.

Both VFiasco [13] and Verisoft [1] take a different approach to system verifi-
cation. Verisoft relies upon a custom hardware architecture that has itself been
formally verified, and a verified compiler to that instruction set. VFiasco claims
that it is better to write the kernel in an unsafe language such as C++ and then
mechanically generate theorems from that source code, to be discharged by an
external proof engine.

5 Conclusion

Our challenge was to take the four slot mechanism and encode at least some
of reasoning behind it into dependent types that would compose into a safety
theorem. We found this to be feasible, as well as an illuminating example of
using a lightweight approach with a dependently typed language to prove useful
properties in a non-traditional, concurrent systems programming environment.
The code shown in this paper is not a toy example. It is adapted from the
actual implementation which is used for inter-program communication in Terrier.
The only difference between this and the actual ATS code is the omission of a
“handle” parameter which threads state through the functions, and would only
complicate the explanation of the proof without adding any strength to it.

Using Lightweight Theorem Proving 171

To be utterly clear, we are not claiming a full verification of the safety or
freshness of the four slot mechanism here. Instead, this approach is a hybrid,
based on an advancement in type system power, allowing the programmer to
decide what constitutes a sufficient level of assurance. In this case, the types are
strong enough that they are able to catch most slight variations. Errors that
common type systems would not catch are caught by the ATS typechecker; for
example, failing to negate a bit value appropriately, or swapping the order of two
seemingly interchangeable statements. These are changes that would break the
four slot mechanism but cannot be protected against by a type system without
the help of dependent and linear types.

This style of development, intertwining program and proof, with an incremen-
tal approach, is the basis of the Terrier project. The four slot mechanism is one
example of a component which applies those principles to achieve reliability and
efficiency. More complex mechanisms are layered on top of this library, with the
confidence that the type system enforces the correct usage of the interface, while
the ATS compiler strips away the overhead in the end.

Acknowledgment. We thank Richard West for his guidance on the topics
related to operating systems.

References

1. Alkassar, E., Hillebrand, M.A., Leinenbach, D., Schirmer, N.W., Starostin, A.: The
Verisoft Approach to Systems Verification. In: Shankar, N., Woodcock, J. (eds.)
VSTTE 2008. LNCS, vol. 5295, pp. 209–224. Springer, Heidelberg (2008)

2. ARM Limited. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R
edition (2011)

3. Bershad, B.N., Savage, S., Pardyak, P., Sirer, E.G., Fiuczynski, M., Becker, D.,
Eggers, S., Chambers, C.: Extensibility, Safety and Performance in the SPIN Op-
erating System. In: Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, pp. 267–284 (1995)

4. Blume, M., et al.: Standard ML of New Jersey (2009), http://www.smlnj.org/
5. Cardelli, L., et al.: Modula-3 report (revised). Technical report, Digital Equipment

Corp. (now HP Inc.) (November 1989),
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-52.html

6. Chen, C., Xi, H.: Combining Programming with Theorem Proving. In: ICFP 2005:
Proceedings of the Tenth ACM SIGPLAN International Conference on Functional
Programming, pp. 66–77. ACM Press (2005)

7. Danish, M.: Terrier OS, http://www.github.com/mrd/terrier
8. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. Elphinstone, K., Heiser, G.: From L3 to seL4 What Have We Learnt in 20 Years
of L4 Microkernels? In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP 2013, pp. 133–150. ACM, New York (2013)

10. Fu, G.: Design and Implementation of an Operating System in Standard ML.
Master’s thesis, University of Hawaii (August 1999),
http://www2.hawaii.edu/~esb/prof/proj/hello/

http://www.smlnj.org/
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-52.html
http://www.github.com/mrd/terrier
http://www2.hawaii.edu/~esb/prof/proj/hello/

172 M. Danish and H. Xi

11. Hallgren, T., Jones, M.P., Leslie, R., Tolmach, A.: A principled approach to oper-
ating system construction in Haskell. SIGPLAN Not. 40(9), 116–128 (2005)

12. Henderson, N., Paynter, S.E.: The formal classification and verification of Simp-
son’s 4-slot asynchronous communication mechanism. Springer, Heidelberg (2002)

13. Hohmuth, M., Tews, H.: The VFiasco approach for a verified operating system.
In: Proceedings of the 2nd ECOOP Workshop on Programming Languages and
Operating Systems (2005),
http://www.cs.ru.nl/H.Tews/Plos-2005/ecoop-plos-05-letter.pdf

14. Hunt, G.C., Laru, J.R.: Singularity: Rethinking the Software Stack. In: ACM
SIGOPS Operating System Review, vol. 41, pp. 37–49. Association for Computing
Machinery (April 2007)

15. Klein, G., Elphinstone, K., Heiser, G., et al.: seL4: Formal verification of an OS
kernel. In: Proceedings of the 22nd ACM Symposium on Operating Systems Prin-
ciples, Big Sky, MT, USA (October 2009)

16. Lamport, L.: On interprocess communication. Distributed Computing 1-2, 77–101
(1986)

17. Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)
18. Peyton-Jones, S., Marlow, S., et al.: The Glasgow Haskell Compiler,

http://www.haskell.org/ghc/

19. Rushby, J.: Model checking Simpson’s four-slot fully asynchronous communication
mechanism. Computer Science Laboratory–SRI International, Tech. Rep. Issued
(2002)

20. Simpson, H.R.: Four-slot fully asynchronous communication mechanism. In: IEE
Proceedings, vol. 137, Pt. E, No. 1. IEE (January 1990)

21. Simpson, H.R.: Correctness analysis for class of asynchronous communication
mechanisms. IEE Proceedings E (Computers and Digital Techniques) 139, 35–49
(1992)

22. Simpson, H.R.: Role model analysis of an asynchronous communication mechanism.
In: Computers and Digital Techniques, IEE Proceedings, vol. 144, pp. 232–240. IET
(1997)

23. Torvalds, L., et al.: Linux, http://www.linuxfoundation.org/
24. Wadler, P.: A taste of linear logic. In: Borzyszkowski, A.M., Sokolowski, S.

(eds.) MFCS 1993. LNCS, vol. 711, pp. 185–210. Springer, Heidelberg (1993),
http://dx.doi.org/10.1007/3-540-57182-5_12

25. Xi, H., et al.: The ATS language, http://www.ats-lang.org/
26. Zhu, D., Xi, H.: Safe Programming with Pointers through Stateful Views. In:

Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 83–97.
Springer, Heidelberg (2005)

http://www.cs.ru.nl/H.Tews/Plos-2005/ecoop-plos-05-letter.pdf
http://www.haskell.org/ghc/
http://www.linuxfoundation.org/
http://dx.doi.org/10.1007/3-540-57182-5_12
http://www.ats-lang.org/

	Using Lightweight Theorem Proving in an Asynchronous Systems Context
	Introduction
	The Four Slot Mechanism

	Coherency
	Encoding the Proof
	Write
	Read

	Related Work
	The Four Slot Mechanism
	Operating System Verification

	Conclusion

