
A Linear-time Algorithm for

Testing the Truth of Certain Quantified

Boolean Formulas

by

Aspvall, B., Plass, F.M.

and Tarjan, R.E.

Information Processing Letters, Vol 8, No 3, March 1979

Presentation of

by

Martin Richards

mr@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mr/

University Computer Laboratory

New Museum Site

Pembroke Street

Cambridge, CB2 3QG

Martin Richards 1 Talk 5/Feb/98

The Problem

Evaluate the formula:

Q1x1Q2x2 · · ·Qnxn C

where each Qi is either ∀ or ∃
and C is in conjunctive normal form

with at most two literals per clause.

For example

∃a∃b∀c∃d(a∨ b)∧ (b∨ c̄)∧ (b̄∨ d̄)∧ (b∨ d)∧ (d∨ a)

Martin Richards 2 Talk 5/Feb/98

Note

a ∨ b is equivalent to ā −→ b

or b̄ −→ a

ā ∨ b is equivalent to a −→ b

or b̄ −→ ā

a ∨ b̄ is equivalent to ā −→ b̄

or b −→ a

ā ∨ b̄ is equivalent to a −→ b̄

or b −→ ā

Martin Richards 3 Talk 5/Feb/98

Graph Formation

Without loss of generality assume that all clauses

of C have two literals, since (x) = (x ∨ x).

Assuming the formula contains n variables

v1, . . . , vn, create 2n vertices named v1, . . . , vn

and v̄1, . . . , v̄n.

For each clause of the form: (a ∨ b), add edges

ā→ b and b̄→ a.

Add appropriate edges for clauses of the form:

(a ∨ b̄), (ā ∨ b) and (ā ∨ b̄).

Martin Richards 4 Talk 5/Feb/98

Example

If C is

(a ∨ b) ∧ (b ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (b ∨ d) ∧ (d ∨ a)

The graph is:

a

c b d a

cbd

Martin Richards 5 Talk 5/Feb/98

Duality Property

The constructed graph is isomorphic to one

obtained by reversing all edges and

complementing the names of the vertices.

Martin Richards 6 Talk 5/Feb/98

Strongly Connected Components

A strongly connected component is a maximal

subset of the vertices for which paths exists from

any vertex to any other vertex.

All vertices in a strongly connected component

must be assigned the same truth value

(x −→ y −→ · · · −→ x implies x = y).

If a strongly connected component contain a

variable x and its complement x̄ then there is an

inconsistency.

All the strongly connected components can be

found in linear time.

Martin Richards 7 Talk 5/Feb/98

Components Algorithm

1) Perform depth first search on graph G(V,E),

attaching the discovery time (d[u]) and finishing

time (f [u]) to every vertex (u) of G.

For example, consider

b

c

a

e

d g

h

f

Martin Richards 8 Talk 5/Feb/98

After DFS

b

c

a

e

d g

h

f

3/4

7/8

11/16

2/5 6/9

1/10

13/14

12/15

Martin Richards 9 Talk 5/Feb/98

Forefather

Define φ(u) = w (the forefather of u)

where wεV

and u −→ · · · −→ w

and ∀w′(u −→ · · · −→ w′ ⇒ f [w′] ≤ f [w])

Clearly, since u −→ · · · −→ u

f [u] ≤ f [φ(u)] (1)

Martin Richards 10 Talk 5/Feb/98

Forefather Property

φ(υ)υ

d1/f1 d2/f2

Either u = φ(u)

or u 6= φ(u)

if d2 < f2 < d1 < f1

or d1 < d2 < f2 < f1

contradicts of (1)

if d1 < f1 < d2 < f2

contradicts u −→ · · · −→ φ(u)

so d2 < d1 < f1 < f2

ie φ(u) −→ · · · −→ u

so u and φ(u) are in the same

strongly connected component.

Martin Richards 11 Talk 5/Feb/98

Algorithm Continued

2) Find the vertex r with largest f [r] that is not

in any strongly connected component so far

identified. Note that r is a forefather.

3) Form the set of vertices {u|φ(u) = r} – i.e.

the strongly connected component containing

r. This set is the same as {u|u −→ · · · −→ r}
This set is the set of vertices reachable from r

in the graph GT = G with all its edges

reversed. This set can be found using DFS on

GT .

4) Repeat from (2) until all components have

been found.

The complexity is O(|V |+ |E|).

Martin Richards 12 Talk 5/Feb/98

Recall

b

c

a

e

d g

h

f

3/4

7/8

11/16

2/5 6/9

1/10

13/14

12/15

Martin Richards 13 Talk 5/Feb/98

After DFS on GT

b

c

a

e

d g

h

f

1/6

8/9

2/5

3/4

7/10 12/13

11/14

15/16

Martin Richards 14 Talk 5/Feb/98

Components

b

c

a

e

d g

h

f

4

3

1

2

Martin Richards 15 Talk 5/Feb/98

Satisfiability

If all the quantifiers are ∃, then we just have to

determine whether it is possible to assign truth

values to the vertices with the following

properties:

• Complementary vertices must be assigned

compementary truth values,

• no edge u→ v can have u assigned true and v

assigned false.

Martin Richards 16 Talk 5/Feb/98

Example (again)

If C is

(a ∨ b) ∧ (b ∨ c̄) ∧ (b̄ ∨ d̄) ∧ (b ∨ d) ∧ (d ∨ a)

The graph is:

a

c b d a

cbd

S1 S2

S2S3

S3

S1

C is satisfiable if and only if no vertex x is in the

same strong component as x̄.

Martin Richards 17 Talk 5/Feb/98

Assignment Algorithm

a

c b d a

cbd

S1 S2

S2S3

S3

S1

Consider strongly connected components in

reverse topological order:

S1 Mark S1 true and S̄1 false,

S2 Mark S2 true and S̄2 false,

S3 Mark S3 true and S̄3 false,

S̄2 Already marked,

S̄1 Already marked,

S̄3 Already marked.

Martin Richards 18 Talk 5/Feb/98

General Case

We call a vertex universal if the corresponding

variable is universally qualified, and existential

otherwise.

A formula F is true if and only if none of the

following conditions holds:

1. A vertex x is in the same strongly connected

component as its complement x̄.

2. An existential vertex x occurs in the same

strongly connected component as a

universally declared vertex y, with x declared

before y. For example: · · · ∃x · · · ∀y · · · C.

3. There is a path from a universal vertex x to

another universal vertex y. For example:

· · · ∀x · · · ∀y · · · C.

Martin Richards 19 Talk 5/Feb/98

The Algorithm

Initially all the strongly connected components

are unmarked, but become marked true, false or

contingent as the algorithm proceeds.

1) Let S be the next unmarked strongly

connected component, chosen is reverse

topological order. If there is no such S return

“F is true”. If S contains a variable x and its

complement x̄, return “F is false”.

2) If S has some false or contingent successor,

2.1) If S contains at least one universal

vertex, return “F is false”.

2.2) If S̄ → · · · → S, return “F is false”.

Mark S false and S̄ true then goto (1).

3) // All successors, if any, are marked true.

If S contains two or more universal vertices,

return “F is false”.

Martin Richards 20 Talk 5/Feb/98

The Algorithm (cont.)

4) // All successors, if any, are marked true and

// S contains less than two universal vertices.

If S contains no universal vertices, mark S

true and S̄ false then goto (1).

5) // S has just one universal vertex, y say.

If S also contains an existential vertex x

declared before the universal vertex y,

(i.e. · · · ∃x · · · ∀y · · ·C), return “F is false”.

If S̄ → · · · → S, return “F is false”.

Mark S and S̄ contingent and goto (1).

Martin Richards 21 Talk 5/Feb/98

Example (again)

If the formula is

∃a∃b∀c∃d(a∨ b)∧ (b∨ c̄)∧ (b̄∨ d̄)∧ (b∨ d)∧ (d∨ a)

The graph is:

a

c b d a

cbd

S1 S2

S2S3

S3

S1

Martin Richards 22 Talk 5/Feb/98

Algorithm Trace

Formula: ∃a∃b∀c∃d C

a

c b d a

cbd

S1 S2

S3

S3falsefalse contingent

contingent S2 true S1 true

Consider strongly connected components in

reverse topological order:

S1 Mark S1 true and S̄1 false,

S2 Mark S2 true and S̄2 false,

S3 Mark S3 and S̄3 contingent,

S̄2,S̄1, S̄3 Already marked.

So the formula is true.

Martin Richards 23 Talk 5/Feb/98

