
The MUS Music System Manual
by

Martin Richards

mr@cl.cam.ac.uk

http://www.cl.cam.ac.uk/~mr/

Computer Laboratory

University of Cambridge

Revision date: Tue May 7 10:58:36 BST 2019

Abstract

This document is being worked on again but is still in the early stages of devel-
opment.

MUS is a language for describing music, primarily for performance and not for
typesetting. It is currently in the early stage of development. It will eventually
allow the user to specify, in great detail, not only the notes to be played but also
subtleties of timing, phrasing, touch and many other aspects of the performance.
It will be the source language for playmus, a program to read .mus files and
play them on MIDI devices such as a Roland or Casio electronic piano or the
Roland SonicCell. Playmus is also able to generate MIDI files. The program
will eventually be able to accompany a soloist using a microphone microphone
synchronisation. In the distant future, playmus may be able to listen to an
ensemble and tactfully fill in missing parts when players are absent or get lost.

Currently playmus only uses MIDI and works best with digital pianos.

Keywords

Representation of music, MIDI, MUS language, music player, automatic accom-
paniment.

2

Contents

Preface iii

1 The MUS Language 1
1.1 The Macrogenerator . 1
1.2 Lexical analysis . 4

1.2.1 Numbers . 5
1.2.2 Notes . 5
1.2.3 Rests . 5
1.2.4 Barlines . 6
1.2.5 Strings . 6
1.2.6 Other tokens . 6

1.3 The syntax . 7
1.3.1 Scores . 7
1.3.2 Quantum beats and milli-seconds 7
1.3.3 Note items . 8
1.3.4 Note ties . 9
1.3.5 Control items . 11
1.3.6 Shape operators . 12
1.3.7 Tempo . 13
1.3.8 Delay . 13
1.3.9 Volume . 14
1.3.10 Legato . 14
1.3.11 Vibrato . 14
1.3.12 Volmap . 14
1.3.13 Shape ties . 15
1.3.14 Shape environments . 15
1.3.15 Nested shape operators . 16

2 The playmus Program 17
2.1 The macrogenerator . 18
2.2 The lexical analyser . 19
2.3 The syntax analyser . 20

2.3.1 The parse tree nodes . 20

i

ii CONTENTS

2.3.2 The parser algorithm . 23
2.4 The Midi generator . 26

2.4.1 Self expanding vectors . 26
2.5 writemidi . 26
2.6 playmidi . 26

2.6.1 Keyboard input . 26
2.6.2 Microphone input . 26
2.6.3 Synchronisation . 26

Bibliography 27

Preface

(While the MUS language and playmus are being developed this is essentially just
a working document outlining the current state of the system. It is incomplete
and may describe features that are not yet implemented. As might be expected
the language keeps changing in the light of experience. During its development
it is likely that playmus will be somewhat bug ridden.)

This document is intended to provide a description of the MUS language and
the program playmus that uses it. Even in their current incomplete state, this
manual musman.pdf is freely available via my home page [2] and playmus is a
standard command included in the standard BCPL distribution. Demonstration
.mus files and their MIDI and .mp3 translations can be found in the Musprogs
distribution in my home page.

The playmus program is being developed in BCPL under Linux but also runs
under Windows XP and Windows 10. Currently I can only connect BCPL to my
various MIDI devices under Windows.

A further restriction is that the digital signal processing of the microphone
input will probably take advantage of the BCPL MC package that dynamically
generates native machine code, but this is currently only available on Pentium
based machines under Windows, MAC OS-X, Cygwin and Linux.

iii

iv CONTENTS

Chapter 1

The MUS Language

The MUS language is a text based representation of music allowing the detailed
description of musical compositions involving separate instrumental parts. Its
design was influenced by the excellent freely available music typesetting system
Lilypond [1]. However MUS was designed for performance rather than typesetting
and so contains features that allow subtle variations of tempo, volume, phrasing
and many other nuances of the performance. The language is primarily designed
to generate satisfactory musical performances, but can also be used to provide a
synchronised accompaniment to a soloist.

The language has a built-in macrogenerator (or preprocessor) based on GPM
originally designed by Christopher Strachey. The resulting text is then broken
into lexical tokens before being parsed to form a tree. This is finally translated
into sound events. The playmus program performs this conversion and either
writes the sound events as a MIDI file or plays them directly on a MIDI device,
possibly using a microphone to synchronise them with a soloist.

1.1 The Macrogenerator

The macrogenerator is based on GPM designed in 1964 by Christopher Strachey
[3]. It is somewhat ideosyncratic but is simple and easy to implement. This
version uses the following special warning characters.

Character Purpose
$ Start of macro call
! Macro argument separator
; End of macro call
< Open quote
> Close quote
Copy argument character
% Comment character

1

2 CHAPTER 1. THE MUS LANGUAGE

Normally all other characters pass straight through the macrogenerator. On
encountering the start of macro call character ($) output is diverted to an in-
ternal stack to accumulate the macro’s arguments. Arguments are separated by
exclamation marks (!) and the last is terminated by the macro call character
(;). When all the arguments have been read, the macro is called.

The arguments are numbered from zero with the zeroth argument being the
name of the macro to call. It is looked up in the current list of defined macros and
processing continues by scanning its body. If, within the body, a hash sign (#) is
encountered, it will be followed by digits specifying the number of the argument
to copy. Thus #0 will be replaced by the name of the current macro, #1 will be
replaced by a copy of the first argument, and so on. Note that #12 will copy
the 12th argument, but #1<2> will copy argument 1 immediately followed by the
digit 2.

It is sometimes necessary to treat special characters as though they were
ordinary. This is done by enclosing text in quotation marks (< and >). All
characters between the open quote character (<) and the matching close quote
character (>) are copied as though they were ordinary characters. So, if the
macrogenerator was processing the string <$abc!<#1>xyz;>,it would generate
the text $abc!<#1>xyz;without treating $, !, <, > or ; as special. Quotation
marks can be nested.

When the macrogenerator encounters the comment character (%) from normal
input, it skips over this character and all characters up the end of the line. It
then skips over white space characters, including newlines, until it finds the next
non white space character. If this is the comment character, the macrogenerator
will skip over another comment. This form of comment is often preferable to
the MUS // comment since the text following // may contain macro calls that
expand to multiple lines, of which only the first will be commented out.

At the start of processing a number of builtin macros are predefined. These
are: def, set, get, eval, char, rep, rnd, urnd, lquote, rquote, comment, and
eof. These are described below.

$def!name!body;

This causes a macro with name name and body body to be added to the list of
defined macros. The macro body is normally enclosed in quotation marks since
it often containing macro calls and hash signs. As an example, the following
sequence of definitions and calls:

$def!ww!World;%

$def!aa!Andy;%

$def!abc!<#1 $#2;>;%

$abc!Hello!ww;

$abc!Hi!aa;

would generate:

1.1. THE MACROGENERATOR 3

Hello World

Hi Andy

Note that the call $#2; within the definition of abc calls the macro ww the first
time and aa the second time.

There is one subtlety about the def macro. If it is used within the argument
list of a macro call, the new definition is removed just after the call has been
expanded. The following example shows that this allows conditional macros to
be defined without permanently corrupting the list of defined macros.

$def!ifeq!%

<$def!=#1=!#4;%

$def!=#2=!#3;%

$=#1=!#1!#2;%

>;%

$ifeq!xx!xx!<#1 is the same as #2>!<#1 is not the same as #2>;

$ifeq!xx!yy!<#1 is the same as #2>!<#1 is not the same as #2>;

The above fragment generates:

xx is the same as xx

xx is not the same as yy

This example works because a new definition of a macro supercedes older ones
with the same name.

$set!name!value;

This copies value into the body of the macro with name name. This is rather
like an assignment in a conventional programming language. The maximum
length of the value of name is the length it had when first defined. The argument
of set is truncated to this length, if necessary.

$get!filename;

This temporarily suspends the currently input stream and selects input from
the specified file. When this file is exhausted input resumes from the previously
selected stream. It is as if the call $get!filename; were replaced by the text of
the specified file. The file name is first looked up in the current working directory
then in the directories specified by the MUSHDRS environment variable.

$eval!expression;

This evaluates its argument which must be an expression composed of num-
bers, character constants, parentheses, and the operators +, -, *, l, r, /, & and |.
It uses scaled fixed point arithmetic with three decimal digits after the decimal
point. Numbers such as 4, 3.14, 1.818 or .5 are allowed. A character constant is
represented by a single quote (’) followed by a single character. It generates the

4 CHAPTER 1. THE MUS LANGUAGE

ASCII integer code for the given character. For example, $eval!’A; generates
65. If the result of eval is an integer, it appears as such, otherwise it is a decimal
number with leading and trailing zeros removed. Thus $eval!1.5+2.5; gener-
ates 4 while $eval!12.5/2; generates 6.25. This form of scaled arithmetic is
appropriate the numbers used in the MUS language. The operators l, r, & and
| first truncate their operands to integers before performing bitwise Left shift,
Right shift, And and Or operations, respectively. The result is then converted
back into scaled decimal form.

$rnd!expression;

This evaluates the expression yielding a scaled number n, say, which must be
greater than zero. The result is a uniformly distributed random number in the
range −n to n.

$urnd!expression;

This evaluates the expression yielding a scaled number n, say, which must be
greater than zero. The result is a uniformly distributed random number in the
range 0 to n.

$rep!expression!value;

This evaluates the expression rounding it down to the nearest integer which
specifies how many copies of the value are to be generated. For example,
$rep!4-1!xy;

$char!expression ;

This evaluate the given expression and converts it into an ASCII character.
For instance, $char!’A+1;expands to B.

$lquote;

$rquote;

$comment;

These generate the the characters <, > and %, respectively

$eof;

This generates and end-of-file character.

1.2 Lexical analysis

The stream of characters from the macrogenerator are converted into a sequence
of tokens by the lexical analyser.

All characters from // until the end of the current line are removed by the
lexical analyser as are multi-line comments enclosed in /* and */ brackets. Such
multi-line comments may be nested. Note that macrogenerator comments intro-
duced by percent (%) have already been removed. Be aware that the text following
// may contain macro calls that expand to more than one line with only the first
being treated as a comment.

1.2. LEXICAL ANALYSIS 5

The remaining (non commented out text) is converted into lexical token de-
scribed below.

1.2.1 Numbers

A number is a possibly signed fixed point decimal with at most three digits
after the decimal point, such as: 4, -123.456, 24.45 or .001. Numbers are
used in shape sequences to specify values such as volumes or tempos. In note
sequences, they are only used to specify octave numbers. The global numval is
set appropriately as a scaled fixed point value. For instance -123.456 would
cause numval to be set to -123456.

1.2.2 Notes

A note consists of a note letter (a to g) optionally followed by accidentals (es,
eses, is or isis) representing a flat, double flat, sharp or double sharp, respec-
tively. This is followed by an optional octave adjustments consisting of single
quotes (’) or commas (,) to raise or lower the note by a number of octaves. An
optional length number (0, 1, 2, 4, 8, 16, 32, 64 or 128) follows to specify the
nominal length of the note. The note lengths in qbeats are respectively 8192,
4096, 2048, 1024, etc. If no length number is given, it has the same length
number as the most recently occuring note, rest or space. Thus, c4 d e f is a
sequence of four crotchets (or quarter notes). A note may end with one or more
dots having the same meaning as in conventional music notation. Thus c4.. is
a double dotted crotchet with a duration of 7 semiquavers. Finally, a note may
end with a tilde (~) indicating that it is tied with a later note with the same
pitch. For more information about ties see Section 1.3.4. Spaces characters are
not allowed within note tokens.

The globals noteletter, notesharps, reloctave, notelengthnum and
notedots are set appropriately.

1.2.3 Rests

Rests are represented by r optionally followed by a length number and possibly
followed some dots. Thus r4.. is a double dotted crotchet rest of length 7
semiquavers. Spaces are similar to rests but use the letter s. The only difference
is that, if the music were to be typeset, rests would appear as rest symbols
while spaces are just blank. The globals notelengthnum and notedots are set
appropriately.

A special space of zero length is represented by z. It usually occurs as the
left hand operand of dyadic shape operators, as in z\vol50 which specifies that
the volume is 50 at this point of the note sequence. It is also useful in shape lists
when an instantaneous change of shape value is required.

6 CHAPTER 1. THE MUS LANGUAGE

1.2.4 Barlines

Bar lines are represented by vertical bars (|) and double bars by ||. They are
primarily used as a debugging aid to check that bars are of the correct length,
but are also used by some keyboard commands while playmus is accompanying a
soloist. The first bar of a piece has number one and the bar number is incremented
at each barline. A warning is given if the position of a barline in a part does not
agree with the bar layout specified by the conductor part.

Repeat marks are represented by the special symbols \colon_bar,
\bar_colon and \colon_bar_colon, although these are normally invoked us-
ing the macros $:|;, $|:; and $:|:;. As in normal musical notation these may
occur in the middle of a bar and do not increment the bar number.

1.2.5 Strings

Strings are encloses in double quotes (") and may contain the following escape
sequences \\, \’, \", \t, \n to repesent the characters \, ’, ", tab and newline,
respectively. The global stringval points to the packed characters of the string.
String are used in various constructs such as those giving composer or instrument
names.

1.2.6 Other tokens

Parentheses (and) are used in note and shapes sequences for grouping, and [

and] are used to enclose simultaneous note sequences and chords. Curly brackets
{ and } are used in note sequences to enclose blocks that limit the scope of shape
data, as described in Section 1.3.14. The tokens * and *~ are used in shape
sequences as are also described in Section 1.3.14.

There are several built-in named tokens consisting of a backslash (\)
followed by letters and underscores. These are as follows: \altoclef,
\arranger, \bank, \barlabel, \bassclef, \colon_bar_colon, \colon_bar,
\composer, \conductor, \control, \delay, \d, \delayadj, \da, \instrument,
\instrumentname, \instrumentshortname, \interval, \keysig, \legato, \l,
\legatoadj, \la, \major, \minor, \nonvarvol, \opus, \part, \patch, \pedon,
\pedoff, \pedoffon, \portaon, \portaoff, \score, \softon, \softoff,
\tempo, \t, \tempoadj, \ta, \tenorclef, \timesig, \title, \transposition,
\trebleclef, \tuplet, \tup, \vibamp, \vma, \vibrate, \vra, \volmap, \vol,
\v, \voladj, \va and \varvol.

1.3. THE SYNTAX 7

1.3 The syntax

1.3.1 Scores

MUS files consist of a sequence of one or more scores each representing separate
musical a composition or movement. Scores may be separated items such as
\interval(2.5) specifying a 2.5 second period of silence between scores. Syn-
tactially, a score has the form:

\score string [part-list]

The string is the name of the score and the part-list is a collection of parts that
are played simultaneously. A part is analogous to a stave in an orchestral score.
Often each player has a single part but sometimes two players may share the same
part (eg two oboes on the same stave), and it is usual use separate parts for a
pianist’s two hands. Most parts start with the keyword \part followed by a note
sequence enclosed in parentheses. One part is introduced by \conductor instead
of \part. The conductor part contains no sounding notes but provides the bar
layout of the composition and controls tempo variations and other features of the
performance. Every score must have a conductor part and at least one other part.
The word \part is replace by \solo for the part played by the soloist. When
playmus asked to play an accompaniment it compare notes expected in the solo
part with sound received by the microphone and synchronises the accompaniment
appropriately. Normally playmus will only play a solo if that solo line is not
detected. It attempts to do this tactfully.

The playmus program generates Midi data using a different Midi channel
number for each part. Midi only allows 16 channels and so the number of parts
in a MUS score is limited to 16. Although percussion is not yet available in MUS,
it will use the conventional Midi channel number 10 further reducing the number
of instrumental parts available. If and when playmus generates its own sounds
without the aid of Midi, these restrictions will be lifted.

1.3.2 Quantum beats and milli-seconds

A crotchet (or quarter note) often has the length of one beat and a quaver half a
beat, but these lengths should not be confused with the time they take to play,
since this depends on the tempo and how the notes are to be played (legato,
staccato etc). In the MUS language the nominal length of a crotchet is 1024
qbeats (quantum beats) where one qbeat is the finest grain of beat time available.
Since 1024 is a power of 2, all normal notes, such as quavers and semiquavers,
have integral numbers of qbeats. The finest grain of real time is the milli-second
and so, at a tempo 60 crotchets per minute (or 1 crotchet per second), each qbeat
lasts 1000/1024 = 0.977 msecs.

8 CHAPTER 1. THE MUS LANGUAGE

1.3.3 Note items

Musical compositions are built from sequences of note items such as clefs, time
signatures, key signatures, notes, chords, rests and barlines. There are other note
items that provide low level control of the Midi devices that playmus currently
uses to generate sound. The MUS language has textual representations of these
items and they are all described below.

Sequences

A list of note items separated by spaces or newlines and enclosed in parentheses.
They allow, for instance, a sequence of notes to be the left operand of a shape
operator such a \vol.

Parallel groups

If square brackets ([and]) enclose a list of note items, each term will be
played simultaneously. Thus [c4 e g] represents a C major triad of crotch-
ets. The items in this construct can themselves be chords or sequences as in
[c4 ([f8 a] [e g])] which means the crocket c is played while the two quaver
chords f and a followed by e and g are played. A warning is given if the items
in a parallel group are not all of the same qbeat length.

Blocks

If curly brackets ({ and }) enclose a list of note items, the construct is called a
block. It behaves like a sequence but has the additional property that it limits
the scope of shape data specified within it to control such features as tempo and
volume. The user can specify how the volume should change as the notes within
the block are played. This takes the form of a graph consisting of line segments
which together provide a mapping from the qbeat position in the composition to
the corresponding volume. This information is called shape data and in held in
the block. Such data only affects the playing of notes within that block. The
user can explicitly create blocks using curly brackets but most blocks are created
implicitly. For instance all the elements of a parallel construct are blocks. For
more information see Section 1.3.14.

Notes

A note is represented by a note token (such as cis’4..) as described in sec-
tion 1.2.2. It specifies its letter name, the number of sharps or flats, the number
of octaves up or down, its length number and the number of dots. The length
number is 1, 2, 4, 8, etc corresponding to notes of length 4096, 2048, 1024, 512

1.3. THE SYNTAX 9

qbeats etc. If no number is explicitly given, the length number of the most re-
cent note is used. The number of dots extends the length and in normal music
notation.

If a note is not qualified by single quotes or commas, it will have a pitch that
is no more than a fourth away (ignoring accidentals) from that of the most recent
note in the text. Thus, if the previous note was a c then the notes d, e and f

would be higher on the stave, and the notes b, a and g would be lower. The rule
depends only on the note letters and is not affected by any accidentals added by
es’s or is’s. So, for instance, ces followed by fis is still a rising interval even
though it sounds like a perfect fifth. If this rule does not place the note in the
desired octave, it can be corrected using of single quotes or commas.

It is sometimes convenient to specify the octave of a note explicitly. There are
10 octaves (numbered 0 to 9) with the notes from middle C to the B above having
octave number 4. The octave below has number 3 and one above has number
5. If a number appears in a note sequence, it specifies the octave number of the
next note. So the number 4 behaves as if the preceeding note was f in octave 4,
so that c, d and e will be in octave 4 below this f and g, a and b will be in octave
4 above. There is no need to have a space between the octave number and the
note letter. For example the first few notes of “Twinkle twinkle little star” could
be input as 4c4 c 4g g a a g2 or alternatively 4c4 c g’ g a a g2.

1.3.4 Note ties

Notes are sometimes tied across bar lines or even within a bars, causing the first
note to continue playing until the end of the second without being struck or
tongued again. The first note must be immediately followed by a tilde (~) to
indicate that it is the start of a tie. In the MUS language identifying which notes
are tied to which is not always obvious and requires an understanding of note
threads.

A sequence (typically enclosed in parentheses) specifies a thread of note items
that are performed from left to right as in normal printed music. The thread thus
has a direction corresponding to increasing time. A parallel construct (enclosed
in square brackets) may occur in a sequence but splits the thread into multiple
threads, one for each component of the construct. Each such thread starts from
the open bracket ([) and ends at the closing bracket (]).

For a two notes to be tied, the first note token must have the tie qualifier (~),
the second must have the same pitch (Midi note number) as the first. It must
also start immediately after the end of the first (ignoring both legato and delay
effects) and both must belong to the same instrumental part. In addition, there
must be a forward going thread path from the first note to the second. This
thread constraint causes the second note of a tie to be textually later than the
first and not in a different parallel sequence.

10 CHAPTER 1. THE MUS LANGUAGE

Rests

Rests (eg r4.) and spaces (eg s2) represent periods of silence with a qbeat length
deduced from its length number and dots. If the music is to be typeset a rest
generates a rest symbol while a space is just blank. A zero length rest (z) is
useful as the left operand of some shape operators.

Tuplets

The construct

note-sequence \tuplet note-sequence

causes the two note sequences to be played simultaneously with the second scaled
to have the same number of qbeats as the first. Thus, (4c8 e)\tuplet(g8 a b)

would play the quavers c and e while playing the triplet quavers g, a and
b. If only the triplet were required, the left hand operand could be s4 as in
s4\tuplet(g8 a b). The operator \tuplet can be shortened to \tup.

Transposition

For transposing instruments such as clarinets and horns it is often convenient
to input the music using the notes the player reads rather than concert pitch.
For instance, the player of a horn in F sees a written C it should sound as F, a
fifth below. The note item \transposition(f,) will allow notes, from now on,
to be input as the horn player sees them. The transposition of one tone down
for a Bb clarinet would be specified by \transposition(bes). Notice that the
tranposition is always relative to C and the octave is corrected using single quotes
and commas (as with ordinary notes). The argument of \transposition is not
a played note and so does not affect the octave of the next note to be played.

Time signatures

The time signature is specified by \timesig(number number). For example,
\timesig(3 4) sets a time signature of three crotchets per bar. A check is made
when processing the conductor’s part that bar lines and time signatures only
occur just before beat one.

Barlines

Single and double bar lines are represented by the tokens | and ||. They are
used in the conductor’s part to provide a mapping between bar numbers and
corresponding qbeat positions. There is a similar mapping between beat numbers
and qbeat positions. Bar and beat numbers used in error messages and by some
keyboard commands when playmus is accompanying a soloist. Bar lines are
optional in the other parts but, as a debugging aid, they must occur at the qbeat

1.3. THE SYNTAX 11

positions of barlines in the conductor’s part. It is therefore advisable to put all
barlines in every part.

Repeat marks may appear in note sequences. These are: \colon_bar to mark
the end of a repeated section, \bar_colon to mark the start of a repeated section
and \colon_bar_colon to mark both the start and end of repeated sections.
Repeat marks only affect the printed form of the music, and they do not cause
the bar number to change.

Key signatures and clefs

The key signature is specified by note items such as \keysig(f\major) or
\keysig(b\minor). The following note items specify the clef: \trebleclef,
\altoclef, \tenorclef or \bassclef. Key signatures and clefs are ignored by
playmus.

Text items

Text can be associated with a score, parts and bars using the following items.

Item Purpose
\title string The title of the score
\composer string The composer
\arranger string The arranger
\opus string The opus number
\instrument string The instrument used by this part
\instrumentname string The full instrument name,

eg: Horn 1
\instrumentshortname string The shortened instrument name,

eg: Hn1
\barlabel string A bar label

1.3.5 Control items

At present playmus generates sounds using a variety of Midi devices. To provide
low level device dependent control some special control items have been provided.

Pedals

The items \pedon, \pedoff and \pedoffon, control the sustain pedal of piano
instruments. When the pedal is on good Midi devices will simulate the effect on a
piano including causing sympathetic resonance of other strings on the instrument.
The command \pedoffon is provided for convenience since it is common to raise
the pedal and almost immediately press it again when the harmony changes.

12 CHAPTER 1. THE MUS LANGUAGE

The items \softon and \softoff simulate the effect of pressing and releasing
the soft pedal of a piano.

The items \portaon and \portaoff turn the portamento feature on and off.
When portamento is on, the transition from one note to another rapidly sounds all
the frequencies between them. When portamento is off the transition is abrupt.

Midi control items

The item \bank(x y) set the bank number for the current Midi channel as spec-
ified by the two 7-bit integers x and y. The item \patchn sets a new patch
number for the current Midi channel. The item \control(n x) cause the Midi
device to set controller n to value x. Both n and x are integers in the range 0 to
127. The effect of these operations is Midi device dependent.

The item \varvol is used to specify that an instrument such as a flute can
change its volume while a note is being played, and \nonvarvol specifies that the
instrument is like a piano where the volume of a note is dependent only on how
hard the note is struck. These control items are typically only used in the prede-
fined macros used to specify instruments as in g/gshdr.mus or sonichdr.mus.

1.3.6 Shape operators

Tempo, volume and other aspects of the performance are controlled by shape
data of various kinds introduced by shape operators such as \tempo or \vol.
Shape data consists of a sequence of shape pairs (q, x) where q is a qbeat value
and x is the corresponding shape value. In practice only the x-values are given
since the corresponding q-positions are deduced implicitly. An example shape
might be: (50~ s4 80~ s4 50). Since s4 has length 1024 qbeats, this shape
corresponds to the pairs: (0, 50)(1024, 80)(2048, 50). This could be used to spec-
ify that the volume increases linearly from 50 to 80 during the first crotchet and
then decreases back to 50 during the second. If two numbers occur consecutively
they are separated implicitly by a space of the same length as the previous space
if any, or s4 if not. So the above shape sequence could have been written as
(50~ 80~ 50). Without a tie mark (~) the shape value remain constant un-
til the next explicit change. Thus, (50 80 50) corresponds to following pairs:
(0, 50)(1023, 50)(1024, 80)(2047, 80)(2048, 50).

Within a shape sequence, the special shape values * and *~ are allowed.
They denote the value of the same kind of shape looked up in the enclosing block
environment as described in section 1.3.14. Shape sequences containing only one
shape item do not need to be enclosed in parentheses.

It is sometimes convenient to scale the shape values, particularly when spec-
ifying tempos. This is done using and colon item such as

:s4.

1.3. THE SYNTAX 13

whose qbeat length is 1536. This causes all subsequent shape values to be mul-
tiplied by 1536/1024. This scaling is useful, for instance, in \tempo(:s4. 76)

meaning that the tempo is 76 dotted crochets per minute rather than having to
write the equivalent \tempo104. Numbers can be used instead of space items, for
instance, :1536 and :s4. are equivalent.

Shape sequences normally occur as the right hand operand of dyadic shape
operators such as \vol or \tempo and their q-values are always scaled so that the
qbeat length of the sequence is the same as the length of the of the left operand.
For example, (c4 d e f)\vol(50~ 80~ 50) corresponds to four crotchets with
the first starting at volume 50, increasing linearly until reaching volume 80 at the
start of the this crochet (e). The volume then decreases reaching 50 at the end
of the fourth crotchet (f). If the shape sequence has only one item it is padded
on the right with with s4 before scaling.

The only non dyadic shape operator is \volmap and its q-values are scaled to
the range 0 to 100. For more details see section 1.3.12.

1.3.7 Tempo

The tempo of a composition and indeed separate parts typically vary as they
are played. This variation can be specified using the \tempo construct. Its left
hand operand is a note sequence to be played while its right hand operand is a
shape sequence whose values represent tempos, typically measured in crotchets
per minute. This allows the nominal tempo at any qbeat position to be deter-
mined, but this tempo is adjusted by multiplying it by the percentage value given
by the \tempoadj shape data. The scope of the tempo data is the current block,
but, unlike other kinds of shape, tempo values are further scaled to cause the
total playing time of the block to be the same as if it contained no tempo data.

Normally the conductor part gives the tempo mapping for the entire compo-
sition with all other parts obeying the conductor’s wishes. However, the \tempo

construct can be nested inside another \tempo construct. If this happens, the
note sequence of the inner construct will have the tempo values of its shape scaled
to cause the playing time (in msecs) of the note sequence to be the same as for
the unqualified note sequence. This allows a sequence notes to be played with a
degree of rubato while ensuring that it starts and ends in strict time.

The operators \t and \ta are synonyms of \tempo and \tempoadj.

1.3.8 Delay

The \delay operators specifies the delay in qbeats before a note should be
sounded. A delay value of 1024 causes a delay corresponding to one crotchet,
and -1024 causes a note to be played one crochet early. An example of its use is
c4\delay512~ d16 e f g a b c4\delay0 which cases the first note to be de-
layed by the time equivalent to a quaver. The subsequent six semiquavers are

14 CHAPTER 1. THE MUS LANGUAGE

delayed by successively smaller amounts until the end of the final c is reached
exactly on time. The corresponding adjustment operator is \delayadj and both
may be shortened to \d and \da.

Note that, if the delay value reduces rapidly, notes may unexpectedly sound
in reverse order. To avoid a note being stopped before it has started, every note
has a real time duration that is positive, typically at least a twentieth of a second.

1.3.9 Volume

The volume envelope of a note sequence can be specified using the construct:
note-sequence \vol shape-sequence. The qbeat length of the shape sequence is
scaled to the length of the note sequence. Shape values are in the range 0 (silence)
to 100 (full volume). For wind and string instruments the volume can change
while a note is sounding, but for pianos the volume value only affects how hard
a piano key is struck. The \voladj construct allows percentage adjustments of
the current volume shape values. These operators may also be written as \v and
\va.

1.3.10 Legato

The legato operators allow the user to specify what proportion of the nominal
qbeat length of a note should be played. For example (4c4 c g’ g)\legato50

would cause the four crotchets to be played for 50% of their nominal length. This
effect could have been obtained (less conveniently) by (4c8 r c r g’ r g r)

The playing time of a note depends on the nominal length of the note and the
legato value at its start. It is not affected by changes in the legato value while
the note is played. The \legatoadj operator can be used to modify legato values
by percentage amounts. These operators may also be written as \l and \la.

1.3.11 Vibrato

The vibrato operators are not yet implemented but will probably be as follows.
The construct: note-sequence \vibrate shape-sequence specifies rate of the vi-
brato in cycle per second, and note-sequence\vibamp shape-sequence specifies the
amplitude of the vibrato with 100 representing vibrato between plus and minus a
semitone. These operators may also be written as \vr and \vm. The adjustment
operators are called \vibrateadj and \vibampadj with shortened forms \vra

and \vma.

1.3.12 Volmap

The \volmap operator is the only non dyadic shape operator. It q-values are
scaled to the range 0 to 100 and is used to scale volume values. The default volume

1.3. THE SYNTAX 15

map is the identity function \volmap(0~ 100), but a more compressed volume
range can be specified by a setting such as \volmap(0~ s8 30~ s1 70~ s8 100).
The volume map applied to all notes in a part from the time it is set until the
end or the next \volmap statement. Each part starts with the default volume
map.

1.3.13 Shape ties

A shape value can be terminated by a tilde (~) to indicate that it is tied to the
next shape value. This causes the value to change linearly between the two given
values. Consider the following example.

4c4\vol50~ c g’\vol80 g | // bar 1

a a g2 | // bar 2

f\vol70~ f e e | // bar 3

d d c2\vol50 || // bar 4

Here, the first c starts with volume 50. The volume then increases to 80 on
the third beat (g). This volume continues until the start of bar three when it
suddenly reduced to 70 then gradually reduces to 50 on the minim c on the third
beat of bar 4. This c remains at volume 50 throughout its two beats.

A shape sequence containing just one value and no space symbols has s4

inserted at its end. So (120~) is equivalent to (120~ s4) and (120) is equivalent
to (120 s4) which is equivalent to (120 120).

More details of the exact interpretation of shapes are given below when the
various shape operators are described.

1.3.14 Shape environments

Notes within a score occur within an environment giving the mapping between
qbeat value and shape value for each kind of shape (tempo, volume, legato, etc).
The default environment at the outermost level give a tempo of 120 crochets per
minute, a volume of 70, a legato value of 90 and a zero delay. The default values
for \vibrate and \vibamp are 4 cycles per second and 25 corresponding to about
a quarter of a semitone. All adjustment values are 100 giving no change. The
next environment level is specified by the conductor part. This overrides the
default settings and provides the environment for each of the other parts in the
score.

Within a part, a sub-environment can be created explicitly using a block
enclosed in curly brackets ({ and }). Any shape data occurring within a block
overrides the outer environment but has its scope limited to that block. Most
blocks are created implicitly as follows. The conductor and all other parts are

16 CHAPTER 1. THE MUS LANGUAGE

blocks. The components of parallel constructs are blocks, and the left hand
operand of \tuple is a block.

Every block has starting and ending absolute qbeat positions. To lookup
the value of a particular shape within a block, the following steps are taken. If
the block has no shape data of the right kind, the lookup searches the enclosing
environment block, otherwise the appropriate shape data in the block is inspected.
The special shape value * has a value corresponding to its absolute qbeat position
looked up in the environment of the block one level further out. These shape
values are sometimes inserted automatically. If first shape item of a block does
have the qbeat position corresponding to the start of its block, *~ is inserted at
the start. If its last item does not occurs at the end of the block, * is appended
at the end.

To look up the shape value associated with a given qbeat position, the shape
data is searched to find the nearest shape pairs that enclose the given position
and the shape value computed from these using linear interpolation, thus shape
data is essentially a list of line segments. In the unusual situation when the given
qbeat position is outside the block (possibly caused by a \delay construct), the
value returned is taken from the first or last shape pair, whichever is appropriate.

Adjustments

All dyadic shape operators have variants that allow the shapes to be adjusted by
effectively multiplying two shapes together. If at a particular qbeat position the
\vol value was 60 and the \voladj value was 50, the the resulting volume at
that moment would be 30, being 50% of 60. Both the basic shape and adjustment
values are looked up using the mechanism described in the previous section.

1.3.15 Nested shape operators

It is syntactically possible for a shape operator such as \vol to be nested, as in

(4c4 c g’\vol90 g)\vol(50~ 70)

but this is disallowed since its interpretation is unclear. The user should either
place all the shape values at the same level as in

(4c4\vol50~ c g’\vol90 g z\vol70)

or

(4c4 c g’ g)\vol(50~ s2 90~ s4 70)

or protect the inner shape by enclosing it in a block, as in

(4c4 c {g’\vol90} g | a a g2 |)\vol(50~ 70)

Chapter 2

The playmus Program

The playmus program has the following argument format:

FROM,START/N,END/N,TADJ/K/N,TO/K,UPB/K/N,
PP/S,LEX/S,TREE/S,PTREE/S,STRACE/S,NTRACE/S,MTRACE/S,
MIDI/K,PLAY/S,ACC/S,PITCH/N

These arguments have the following effects.

FROM The filename of the MUS source file.
START/N The number of the first bar to play.
END/N The number of the last bar to play.
TADJ/K/N Adjust the initial playing speed.
TO/K The output filename.
UPB/K/N The Upper bound of the work space used by the

macrogenerator.
PP/S Output the result of macro generation.
LEX/S Trace the lexical tokens.
TREE/S Output the parse tree just after syntax analysis.
PTREE/S Output the parse tree after the tree has been

translated into note events.
STRACE/S Trace the creation of parse tree nodes.
NTRACE/S Trace the generation of Midi event as they are

generated.
MTRACE/S Trace Midi commands while playing.
MIDI/K The filename to contain the Midi translation.
PLAY/S Cause the composition to be played on a Midi

device.
ACC/S Cause the composition to be played on a Midi

device synchronised with the soloist using a mi-
crophone and keyboard input.

PITCH/N Cause all sound to be transposed up or down
by the specified number of semitones.

17

18 CHAPTER 2. THE PLAYMUS PROGRAM

If the given source file name does not contain a dot, the extension .mus is ap-
pended. The same transformation is also applied to files accessed by the get

macro. START and END give the first and last bar numbers of the composition
to be played. TADJ gives the percentage adjustment of the initial playing speed.
If ACC is specified, the playing speed will be further adjusted during the perfor-
mance.

PP, LEX, TREE, PTREE, STRACE, NTRACE and MTRACE are primarily debugging
aids and cause the generation of various kinds of trace output either to the screen
or to the TO file if specified. PP causes the result of macro expansion to be
output. This output includes line number items of the form <fno/ln> giving the
file number and line number of the next character whenever this changes. LEX

outputs the sequence of lexical tokens and TREE outputs the parse tree just after
syntax analysis. PTREE outputs the tree after it has been used to generate note
events. This allows the collected shape data and other modifications to the tree
to be inspected. STRACE traces the creation and modification of parse tree nodes.
NTRACE outputs the note events as they are generated and MTRACE outputs them
are they are being played.

If the MIDI argument is given, playmus generates a Midi file with the given
name. PLAY causes playmus to play the composition directly to a Midi device. ACC
causes playmus to act as an accompanist using microphone input and input from
the keyboard to synchronise the performance with the soloist. It will tactfully
play soloist parts when they are not playing or seem to be lost.

PITCH will transpose every note sounded up or down by the specified number
of semitones.

2.1 The macrogenerator

The macrogenerator used by playmus is called BGPM and is a re-implementation
of GPM[3] designed Christopher Strachey in 1964 to help with the portable im-
plementation of CPL. Unlike GPM, BGPM uses two stacks. The lefthand stack
holds incomplete macro calls while they are being built up. The variable bg f

points to the start of the current incomplete call and bg h points to the start of
the latest argument being read in. When the argument separator character (!)
is encountered the length of the latest argument is filled in and bg h positioned
to the next available position in the lefthand stack.

When the macro call character (;) is encountered, the final argument is com-
pleted and the complete call is moved from the lefthand stack to the righthand
one. The variable bg p is set to point to this complete call after saving certain
variables to enable the previous state to be reinstated when this macro has fin-
ished expansion. The zeroth argument of the complete call is looked up in an
environment chain pointed to by bg e and scanning continues from start of its
body. If the macro being called is def then the complete call is converted in situ

2.2. THE LEXICAL ANALYSER 19

into environment item and inserted at the start of the environment chain pointed
to by bg e.

The function bggetch returns the next character to be processed either from
memory or from an input file. As a side effect it ensures that the global variable
lineno holds the packed file number and line number of the character it return.
The least significant 20 bits of lineno hold the line number and the other bits
hold the file number. File names are held in the vector sourcenamev. If fno is
a file number then sourcenamev!fno is its name. If bg c is zero bggetch reads
characters from file via the currently selected input stream, but if bg c is non
zero it points to a position in the body of the current macro being expanded.
Arguments held in memory and the bodies of defined macros contain a mixture
of characters and line number items allowing lineno to be set correctly whenever
bggetch returns a character.

In playmus the macrogenerator is implemented as a BCPL coroutine. It reads
characters from file using the standard rdch calls, but passes the expanded text to
the lexical analyser by calls of cowait(ch) in the function bgputch. The lexical
analyser thus obtains the expanded text by successive calls of callco(bgpmco),
and for each character its receives the variable lineno correctly set to identify
the character’s file and line number. Characters generated by some build in
macros such as $lquote; orginate from a source and so are given the file and line
numbers of the semicolon (;) of the macro calls.

More details of the BGPM implementation can be found by reading its source
code com/playmus.b in the standard BCPL distribution.

2.2 The lexical analyser

The lexical analyser is implemented by the parameterless function lex which
reads characters supplied by the macrogenerator and sets the global token to the
code of the next lexical token every time it is called. It also sets the global variable
tokln to the file/line number of the first character of the token. For some tokens
other globals (numval, noteletter, notesharps, reloctave, notelengthnum,
dotcount and stringval) hold additional information. The character reading is
performed by rch using the assignment ch := callco(bgpmco). The characters
and their file/line numbers are placed in the circular buffers chbuf and chbufln

to enable the context of an error to be output by the error message functions.
On entry to lex, ch hold the first character of the next token. White space

is ignored. Numbers consist of a sequence of decimal digits possibly containing a
decimal point and optionally preceeded by a minus sign. The resulting token is
s numtied or s num depeding on whether the number was terminated by a ties
sign ~ or not. The number’s value is placed in numval as a scaled value with
three decimal digits after the decimal point. So 15 would set numval to 15000,
and -1.234 would set it to -1234.

20 CHAPTER 2. THE PLAYMUS PROGRAM

The tokens s note and s notetied start with the letters a to g optionally
followed by is, isis, es or eses denoting sharps and flats. Then follows an
optional sequence of commas (,) and quotes (’) to adjust the octave and pos-
sibly a note length number (0, 1, 2, 4, 8,. . . 128) and some dots. A tied note is
terminated by a tie sign (~). The globals noteletter, notesharps, reloctave,
notelength and dotcounts are set appropriately to allow the syntax analyser to
calculate the pitch of the note.

All reserved words such as \vol and \timesig are introduced by \. They are
looked up in a preset hash table using the function lookupword and if not found
there an Unknown keyword error message is generated.

In addition to the macrogenerator comments introduced by % there are com-
ment consisting of // up to the end of the line, and nested comments enclosed in
/* and */ brackets.

Strings are enclosed in double quotes and are packed into newly allocated
space pointed to by stringval.

Rests and spaces are introduced by r or s optionally followed by a length num-
ber and dots. The remaining tokens are s null (z), s lsquare ([), s rsquare

(]), s lparen ((), s rparen ()), s lcurly ({), s rcurly (}), s colon (:), s star

(*), s startied (*~), s barline (|) and s doublebar (||) are easily recognised.

2.3 The syntax analyser

The syntax analyser parses the sequence of lexical token supplied by the lexical
analyser to for a tree of nodes. The first three field of each node are a link field, a
node operator and a file/line number value. The link field is either zero or points
to the next node in a sequence or item in a parallel construct. The operator (eg
s note, s rest or s barline) is a lexical token indicates the kind of node and
the file/line number field holds the packed file and line number of that token.
The size of nodes and the purpose of their other fields depends on the operator
as described in the next section.

2.3.1 The parse tree nodes

The complete set of possible parse tree nodes are listed below, with - and ln

representing the link field and file/line number fields.

[-, Note, ln, <letter,sharps,n>, qlen]

[-, Note, ln, <letter,sharps,n>, qlen]

These represent notes and tied notes with <letter,sharps,n> holding three
packed bytes giving the note letter, the number of sharps or flats and the un-
transposed Midi note number of the note. The nominal length of the note is held
in qlen.

2.3. THE SYNTAX ANALYSER 21

[-, Rest, ln, qlen]

[-, Space, ln, qlen]

These represent rests and spaces with the nominal qbeat length held in qlen.

[-, Seq, ln, note-list, qlen]

This represents a sequence of note items pointed to by note-list and chained
together using the link fields. The total qbeat length of the sequence will be placed
in qlen.

[-, Par, ln, note-list, qlen]

This represents the list of note items of a Par construct. They are pointed
to by note-list and chained together using the link fields. The qbeat length of
the longest item will be placed in qlen.

[-, Tuplet, ln, noteitem, noteitem]

This represents a Tuplet construct with the two note items representing the
left and right operands repectively.

[-, Block, ln, body, envblk, shapeitems, qstart, qend]

This represents a Block node either explicitly created using of curly brackets
({ and }) in the source text or created automatically by the system where found
to be necessary. The body is the enclosed note item, envblk will be set to zero or
the enclosing environment block, shapeitems is the list of shape items declared
within this block.

The final two fields qstart and qend will hold the absolute (scaled) position
of the first and last quantum beat of the block.

[-, Delay, ln, noteitem, shapelist]

[-, Delayadj, ln, noteitem, shapelist]

[-, Legato, ln, noteitem, shapelist]

[-, Legatoadj, ln, noteitem, shapelist]

[-, Tempo, ln, noteitem, shapelist]

[-, Tempoadj, ln, noteitem, shapelist]

[-, Vibrate, ln, noteitem, shapelist]

[-, Vibrateadj, ln, noteitem, shapelist]

[-, Vibamp, ln, noteitem, shapelist]

[-, Vibampadj, ln, noteitem, shapelist]

[-, Vol, ln, noteitem, shapelist]

[-, Voladj, ln, noteitem, shapelist]

These represent applications of the shape operators. The note item is the left
hand operand and shapelist is a List node containing a list of shape values.
Shape values are Num, Numtied, Space, Star and Startied nodes.

[-, Num, ln, value]

[-, Numtied, ln, value]

[-, Space, ln, qlen]

22 CHAPTER 2. THE PLAYMUS PROGRAM

[-, Star, ln]

[-, Startied, ln]

These are the shape value nodes used in shape lists.

[-, Volmap, ln, shapelist]

This represents the Volmap comstruct with shapelist having the same struc-
ture as in the other shape nodes.

[-, Barline, ln]

[-, Doublebar, ln]

These represent bar lines.

[-, Score, ln, name, conductor, parts]

[-, Conductor, ln, noteitem]

[-, Part, ln, noteitem, channel]

[-, Solo, ln, noteitem, channel]

[-, Interval, ln, msecs]

The complete parse tree is Score or Interval node or a List node containing
a sequence of Score and Interval nodes chained together using the link fields.
A Score node has a Conductor part and a collection of non solo or solo parts.
Multiple parts are combined using a Par node. Part and Solo nodes have channel
fields holding values in the range 0 to 15 representing Midi channels in the range
1 to 16.

[-, Transposition, ln, semitonesup]

This represents a transposition statement with semitonesup being an integer
specifying how many semitones to raise the notes by from now on. Each part has
no transposition until a transposition statement is encountered.

[-, Pedon, ln]

[-, Pedoff, ln]

[-, Pedoffon, ln]

[-, Portaon, ln]

[-, Portaoff, ln]

[-, Softon, ln]

[-, Softof, ln]

Pedon, Pedoff, Pedonoff, Softon and Softoff simulate the effect of a piano’s
sustain and soft pedals. Portaon and Portaoff turn on and off the portamento
effect. When on the transition between two consecutive notes slides through all
the intermediate frequencies between them.

[-, Patch, ln, patchnum]

[-, Bank, ln, msb, lsb]

[-, Control, ln, controller, val]

These provide low level control of a Midi device.

[-, Varvol, ln]

[-, Nonvarvol, ln]

2.3. THE SYNTAX ANALYSER 23

A Varvol node specifies that from now on notes can change their volume
while being played as is typical of wind or string instruments. A Nonvarvol node
specified that the volume of notes are entirely specified by how hard they are
struck as is typical of keyboard instruments.

[-, Timesig, ln, value, value]

[-, Keysig, ln, <letter,sharps,n>, mode]

Timesig nodes describe the time signature and are used in the conductor’s to
build up a mapping between beat numbers and the position in the composition.

[-, Title, ln, string]

[-, Composer, ln, string]

[-, Arranger, ln, string]

[-, Opus, ln, string]

[-, Instrument, ln, string]

[-, Instrumentname, ln, string]

[-, Instrumentshortname, ln, string]

[-, Barlabel, ln, string]

[-, Partlabel, ln, string]

Some of these are used in error messages but are otherwise ignored.

[-, List, ln, itemlist]

This construct is used to combine multiple scores and also shape values in
shape lists.

2.3.2 The parser algorithm

The parser uses a simple recursive descent mechanism to parse the .mus text. It
call lex() every time it needs another lexical token from the lexical analyser. This
update the variables token, tokln and possibly others variables associated with
the latest token. It builds parse tree nodes using calls such as mk4(0, s rest,

ln, qlen). Errors detected during syntax analysis are typically genrated by calls
such as: synerr("Bad note length %n", lengthnum) which might generate
the following:

Error near t4.mus[40]: Bad note length 5
...
<4/143>1
<4/139> 1)
<4/140> \patch 0<2/35><2/36>
<2/37> 3c4\l100 d f | //1
<2/38>
<2/39>a4 c d |//3
<2/40> a5

Files: <1>=built-in <2>=t4.mus <3>=mushdr.mus <4>=gshdr.mus

24 CHAPTER 2. THE PLAYMUS PROGRAM

This specified that the error was detected near line 40 of file t4.mus. The context
of the error is shown by outputing recent characters supplied by the macrogen-
erator. When the file or line number changes an item such as <2/40> is inserted
showing that the following characters came from line 40 of file number 2 namely
t4.mus. In this case the error was that a5 had a bad note length number. It
should probably have been a4.

The main functions os the syntax analyser are briefly described as follows.

formtree()

This is the main function of the syntax analyser. It first initialises the table

of reserved words (for symbols such as \part or \tup) before calling rdscores

to parse the text. However, if the lex option were specified it tests the lexical
analyser by reading and outputing the sequence of lexical tokens.

rdscores()

This parses a sequence of scores and intervals forming a Score, Interval or List

node as appropriate.

rdscore()

This parses a single score or interval construct. If a score is found, it reads

the conductor part and instrumental parts and creates a node of the form [-,

Score, ln, conductor, parts] where conductor is a Conductor node, and
parts is a Part or Solo node or a Par node containing a collection of such nodes.

rdnoteprim()

This reads a basic note item up to but not including a dyadic operator such

as \vol or \tuplet. Basic note items include notes, rests, clefs, time and key
signatures and many others including sequences enclosed in parentheses, parallel
constructs enclosed in square brackets and blocks enclosed in curly brackets.

rdnoteitem()

This reads in a basic note item and combines it with any dyadic constructs

that follow. The result is either the original note item, or a nested collection of
shape (eg Vol or Tempo) and Tuplet node.

rdnoteitems()

This reads a sequence of note items chaining them together using their link

fields. It is only called when parsing a construct enclosed in parentheses, square
brackets or curly brackets.

rdshapelist()

This is only called to parse the shape lists following such operators as \vol,

\legato or \volmap. A shape list is either a number, a tied number, a star, a
tied star or a space, or it can be a sequence of these items enclosed in parentheses.

2.3. THE SYNTAX ANALYSER 25

Colon items such as :256 or :s8 may be embedded within shape lists to change
the scaling factor from the default value of 1024. This scaling factor only applies
to subsequent numbers and tied numbers within the current shape list.

insertblocks(noteitem, envblk)

blockneeded(noteitem)

initblock(noteitem, envblk)

shapescan(noteitem, envblk)

insertblocks(noteitem, envblk)

This function performs a depth first search over the tree rooted at noteitem

inserting Block nodes wherever necessary and filling in the qlen fields of all
Seq and Par nodes encountered. It does not explore the note item’s link field.
On entry, the global variable qbeats holds the local qbeat position of the note
item, and scbase, scfaca and scfacb are the scaling parameters used by qscale

(described below) to convert local qbeat positions to absolute values. The current
environment block is supplied in the argument envblk.

It ensures that the body of the conductor node is a block, and that the bodies
of Part and Solo nodes are blocks if they contain unprotected shape operators.
Similarly, the elements of Par constructs and the left hand operands of Tuplet
nodes are blocks, if needed.

The function �blockneeded(noteitem) returns TRUE if noteitem contains un-
protected shape data and this is used by insertblocks to determine whether a
block is really necessary. For each block it finds or inserts it fills in the parent,
qstart and qend fields, and initialised the shape item list by calling initblock

which in turn calls shapescanblock for each kind of shape.
shapescanblock searches for shape data belonging to its block. It searches

everywhere except for the elements of a Par constructs, the bodies of an inner
blocks or the lefthand operands of a Tuplet constructs. It does this by calling
�shapescan to do most of the work. But before returning, shapescanblock inserts
a final shape data item if previous item was not positioned at the end of the block.

Having initialised the block, insertblocks continues its depth first search by
calling calling itself recursively on the block’s body.

initshapeitems(part, envblk)

shapescanblock(noteitem, envblk)

This is called after insertblocks has inserted and partially initialised all Block

nodes. This function performs a second depth first search over its give tree initial-
ising the shape item lists of every Block node it finds by calling shapescanblock

for each kind of shape to populate the block’s list of shape items. It then contin-
ues searching the body of the block. By processing the blocks in this order, the
values of star items in shape lists can be looked up correctly.

qscale(q)

This...

26 CHAPTER 2. THE PLAYMUS PROGRAM

2.4 The Midi generator

2.4.1 Self expanding vectors

2.5 writemidi

2.6 playmidi

2.6.1 Keyboard input

2.6.2 Microphone input

2.6.3 Synchronisation

Bibliography

[1] Lilypond. Lilypond: music notation for everyone. www.lilypond.org.

[2] M. Richards. My WWW Home Page. www.cl.cam.ac.uk/users/mr/.

[3] Christopher Strachey. A General Purpose Macrogenerator. Computer Jour-
nal, 8(3):225–241, 1965.

27

28 BIBLIOGRAPHY

