
How BCPL evolved from CPL

Martin Richards

University of Cambridge Computer Laboratory, William Gates Building, JJ Thomson Ave,

Cambridge CB3 0FD, UK

Email: mr@cl.cam.ac.uk

This paper describes how the programming language BCPL developed from the

work on the design and implementation of CPL. It shows that BCPL is essentially

just CPL with all the difficult bits removed and with just a few extensions. The

CPL project lasted from early 1962 to December 1966 and the first outline of

BCPL appeared in 1966. Its first compiler was implemented at MIT in early 1967

and, surprisingly, the language is still used commercially and by individuals all

over the world.

Keywords: CPL; BCPL; B; C; PAL

Received 00 December 2011; revised 00 Month 2011

1. INTRODUCTION

CPL (Combined Programming Language) was devel-
oped jointly by members of the University Mathemati-
cal Laboratory (now the Computer Laboratory), Cam-
bridge and the University of London Computer Unit.
The first ideas for CPL appeared in a paper by Strachey
and Wilkes[1] in 1961. A paper by Barron et al.[2] two
years later gave a summary of its main features. Some
of the finer details of CPL can be found in the CPL
Working Papers[3]. Both London and Cambridge Uni-
versities independently constructed compilers running
on different versions of the Ferranti Atlas computer.
The Cambridge machine was simplified to reduce its
cost and was not usable until early in 1964. Initially it
only had a very rudimentary operating system with a
simple assembler, no linkage editor and no filing system.
Much of the early development of the Cambridge CPL
compiler was done by research students using Edsac 2,
a beautifully designed but slow machine with limited
memory. Research students typically stayed for three
years with much of their final years devoted to their own
research and producing theses. During this time many
of the senior staff were busy developing the multi-user
system for the new machine. Progress on the Cam-
bridge compiler was thus slow and did not result is a
satisfactory implementation.

It was clear that the compiler needed to be
implemented in a way that allowed easy transfer from
Edsac 2 to Atlas. The approach taken was to write it
in a subset of CPL and hand code it into a sequence of
macro calls that could generate assembly language for
either Edsac 2 or Atlas. Strachey designed a elegant
macrogenerator called GPM[4] for the purpose.

2. GPM

GPM was a text to text converter that basically copied
text from input to output except for certain special
characters which changed the internal state of the
macrogenerator. The open square bracket ([) caused
caused output to be diverted to internal memory where
macro arguments were stored. Commas (,) were used
to separate macro arguments, and close square bracket
(]) caused a macro to be called with the current set of
arguments. The name of the macro was in argument
zero and was looked up in the chain of defined macros.
Processing continued from the start of its body. A
substitution item of the form #n would be replaced by a
copy of the nth argument. Sometimes, especially when
defining macros, it was necessary to disable normal
processing of special characters, and this was done
using quotation marks (< and >) which could be nested.
Finally, there was a comment character ‘ which caused
text to be skipped up to the first non white space
character on a later line of input. The special characters
used in different versions of GPM varied to suit the the
characters available and the needs of the application.

There were several built in macros the most
important being def that allowed macros to be defined.
A typical example is as follows:

[def,hi,<Hello #1>]

[hi,Sally]

[hi,James]

This would would add the macro hi to the chain of
defined macros and call it twice generating the following
result:

Hello Sally

Hello James

GPM included some numeric capability and was
found to be remarkably powerful. For instance, one

The Computer Journal, Vol. ??, No. ??, ????

2 M. Richards

could define a macro prime that would generate the nth

prime, so that [prime,100] would expand to 541. A
version of GPM called bgpm is a command in the BCPL
distribution[5].
Some of the macros used in the Cambridge

CPL compiler are exemplified by considering the
implementation of the following CPL definition of the
factorial function.

let rec fact(n) = n = 0 -> 1, n * fact(n-1)

The corresponding macro translation could be as
follows.

[Prog,Fact] The start of a function named Fact

[Link] Store recursive function linkage infor-
mation onto the stack

[LRX,1] Load the first argument of the current
function onto the stack

[LoadC,0] Load the constant zero onto the stack
[Eq] Replace the top two values on the stack

by TRUE if they were equal and FALSE

otherwise
[JumpF,2] Inspect and remove the top value of

the stack and jump to label 2 if it was
FALSE

[LoadC,1] Load the constant 1 onto the stack
[End,1,1] Return from the current function

returning one result in place of its single
argument

[Label,2] Set label 2 to this position in the code
[LRX,1] Load the first argument of the current

function onto the stack
[Fn,Fact] Call the function named Fact

[LRX,1] Load the first argument of the current
function onto the stack

[Mult] Replace the top two values on the stack
by the product of their values

[End,1,1] Return from the current function
returning one result in place of its single
argument

To call a function, its arguments are loaded onto the
stack in reverse order followed by the subroutine jump,
typically [fn,Fact]. On entry to the function, linkage
information is pushed onto the stack by the linkmacro.
After evaluating the body of the function, a return is
made using the end macro that specified how many
arguments to remove and how many results to copy in
their place from the top of the stack. More details of
this macro language and how it influenced the design
of BCPL are given later. But first there is a brief
introduction to CPL itself.

3. CPL

The designers of CPL were strongly influenced by
ALGOL 60 but wished to extend it to make it more
efficient and usable for a wider variety of applications.
As the language developed general design principles
evolved and helped the language to be logically coherent

and have a minimum of ad hoc rules. One of these
principles was the separation of the lexical and syntactic
details from the semantics. But the use of Strachey’s
left and right hand values, and the application of λ-
calculus to help resolve subtleties concerning the scope
of identifiers were probably more significant.

3.1. Left and Right hand values

In Fortran, function arguments are passed by reference,
that is they are a collection of pointers to the memory
locations where the values can be found. In Algol, the
programmer can specify that some arguments are to be
passed by value, the remaining ones being passed by
name, a somewhat subtle mechanism specified in terms
of run time copying of the actual parameters of a call
modifying the function body. Strachey coined the terms
Lvalue and Rvalue to describe the kind of value passed
by reference and value parameters, respectively. These
terms were derived from the kind of values needed when
evaluating expressions on the left and right hand sides
of assignment commands. Lmode evaluation could be
performed on simple variables, subscripted expressions
and, perhaps more surprisingly, on functions calls.

If an idea is good it should be used wherever it was
applicable, and in CPL this was done to extreme. Not
only could function parameters be passed by value or
reference, but ordinary variables could be defined by
value or reference, as in

let x, y = 1, 2

let a, b ≃ x, y

let i = a

Here, x and y are defined by value having two new
memory locations initialised to 1 and 2, respectively,
while a and b are declared by reference giving them
the same Lvalues as x and y. In the declaration of
i the variable a has to be evaluated in Rmode and
so one level of dereferencing is performed. The data
types of declared variables were normally deduced from
the types of their initialising values. To cope with
recursive definitions the type deduction mechanism was
iterative. Initially all variables were given type unknown
and successively changed by repeated iterations over
the program until convergence was reached. In difficult
situations some variables may be given the type
general which can hold a value of any type combined
with a type code. Where necessary the programmer
could specify types explicitly. Variables could be
given the type general while unknown was only used
internally within the compiler.

Another use of L and Rvalues was to distinguish
between fixed and free functions. In CPL as in Algol,
a function could be defined inside other functions
and thus variables used inside a function may refer
to variables declared outside it. Such variables are
called free variables and require a mechanisms such
as Dijkstra displays or static chains down the run

The Computer Journal, Vol. ??, No. ??, ????

How BCPL evolved from CPL 3

time stack. In CPL, the free variables of a function
were collected to form a free variable list. If the
function was defined using an equal sign (=) it was
called a fixed function and its free variable list contained
Rvalues, but, if it was defined using ≡, it was a free
function with a free variable list of Lvalues. A CPL
function was represented at run time by a pointer to the
first compiled instruction of its body combined with a
pointer to its free variable list.
Although it was not necessary and caused immense

problems, CPL originally included the ALGOL facility
of calling function parameters by name. This was called
call by substitution. The compiler had to recognise
when this mode was in use and pass a parameterless
function to evaluate the argument expression. Since
local variables were analogous to formal parameters, it
was natural to have a third form of declaration. This
used the defining operator ≡ as in:

let w ≡ xx + 2xy + yy

Every time w is evaluated it recomputes xx + 2xy + yy

using the current values of x and y. In CPL, xx means x
multiplied by x. Multi-character identifiers had to start
with capital letters.

3.2. λ-Calculus

Peter Landin wrote a paper[6] in two parts showing how
λ-calculus could be used to clarify some of the more
subtle semantic details of Algol 60. He was a member of
the CPL design team and his use of λ-calculus affected
the design of the language. The expression λx.x + 1 is
a good mathematical representation of the function f

defined by: let f(x) = x+1, and (λx.x+ 1)3 is a good
representation of the meaning of valof { let x = 3;

resultis x+1 }. This suggests that it is sensible to allow
local variables to be declared by value, reference and
substitution since these modes are available to function
parameters. An effect of this correspondence is that
valof { let f(n) = n=0 -> 1, n*f(n-1); resultis

f(5)} is represented by (λf.f(5))(λn.n = 0 → 1, n ×
f(n − 1)), indicating that f is not a recursive function
but requires a previous definition of f used by the inner
call f(n-1). This explains the necessity of rec as in
let rec f(n) = n=0 -> 1, n*f(n-1) when defining
recursive functions. The λ-calculus equivalent of this
recursive definition involves the combinator Y and is
outside the scope of this paper.
Another example concerns CPL’s in declarations

which provided an alternative to the rather unsatis-
factory Algol own variable mechanism. The declara-
tion let x = 0 in f() = valof { x:=x+1; resultis x

} defines f to be (λx.(λ().(x := x+ 1;x)))(0). This ef-
fectively means that the x is initialised to zero and has
a scope limited to the body of f. So, f increments x on
every call, but programs calling f have no direct access
to x.
Another effect of λ-calculus on CPL was the inclusion

of call by substitution (or by name in Algol) since this
is closely resembles how λ-expressions are evaluated. It
unfortunately was expensive to implement and caused
semantic problems in languages that had imperative
constructs such as assignments and goto commands. By
mid 1966 call by substitution and the corresponding
form of variable definition were removed.

4. THE EVOLUTION OF BCPL

As we have seen the CPL compiler was written in an
informal subset of itself and hand coded into a sequence
of GPM macro calls being essentially the assembly
language of an abstract machine. The values on the
stack were all the same size and were used to represent
quantities of any conceptual type such as a character,
a truth value, an integer, a pointer or even a function,
just as the bit pattern held in a CPU general register
can represent a value of any type. Such values could be
thought of as being of type general but without the
associated type information.

The call [LRX,1] would load the first argument of
a function whatever its conceptual type. We did not
need a separate version of LRX for each conceptual
type, just as the machine instruction to move a 32-
bit quantity into a general register does not care what
conceptual type the value has. The Lvalues of CPL
were implemented by pointers. For instance, the call
[LLX,1] would load a pointer to the first argument of
the current function. This pointer could be thought of
as the address of where the first argument was stored,
but could also be thought of as an integer. Since all
variables were of the same size, it was natural to address
them by consecutive integers just as on Edsac 2 or
the IBM 7094. Adding one to a pointer thus creates
a pointer to the next location of memory. The call
[RV] replaced the top stack item by the contents of
the memory it pointed to, and so, supposing v and i

were the first two arguments of a function, the value of
v[i] could be computed by the calls: [LRX,1] [LRX,2]

[PLUS] [RV].
In a period of about a year between 1965 and 1966

this GPM based abstract machine was fully developed
and used to implement a significant proportion of CPL
producing compilers that ran on both Edsac 2 and
the Atlas. After moving to MIT in December 1966,
I filled in the syntactic details of the informal subset
of CPL we had used, treating the abstract machine
as though it were the operational semantics of the
language. Where possible the original CPL syntax was
used. The following sections explore the features of CPL
that were omitted and why, and what else was added.
But first there is the thorny question of character sets
to consider.

4.1. Character sets

It was not until July 1967 that a specification[7] of a
character set was published that closely resembles the

The Computer Journal, Vol. ??, No. ??, ????

4 M. Richards

ASCII character set we have today. Prior to that,
computers typically had their own character sets and
these were often quite limited. For instance, on the
first machine on which BCPL ran, namely an IBM 7094
running CTSS, the standard code used 6-bit characters
packed in 36-bit words. The characters available were
essentially those used in Fortran and did not include
square or curly brackets ([] { }), semicolon (;),
double quote (") or underscore (_) and commonly used
terminals such as the Model 35 Teletype only permitted
letters in upper case. However, at Cambridge, CPL
programs used a much richer character set since they
were typically prepared using a Flexowriter which was
an electric typewriter that was combined with a 7-track
paper tape reader and punch. The available characters
included backspace and so overprinting was possible and
used to represent symbols such as 6≡. System words
such as while were underlined to distinguish them from
ordinary identifiers. BCPL on the 7094 thus had to
represent lexical tokens quite differently.
In CPL an identifier was either a lower case letter or

an uppercase letter followed by letters, digits and dots.
Both sorts of names could be optionally followed by
primes (’). Identifiers in BCPL followed the ALGOL
convention but used dots rather than spaces to separate
words within identifiers. Ideally underline () would
have been chosen had it been available. Some identifiers
such as while and for were reserved and so could not
be used as variable names.
Since square brackets were not available, open square

bracket was represented by *(and the matching close
square bracket was represented by a close parenthesis
without the star. The star in *(was chosen because it
was available, multiplication was a rarely used, and it
seemed appropriate for subscription since it was used as
the indirection operator in the FAP assembly language
used on CTSS. Note that star is still used today as the
indirection operator in C. Later, when the exclamation
mark became available, *(was replaced by !(and
exclamation mark became both a dyadic and monadic
indirection operator. Exclamation mark was chosen
because it was an approximation to a down arrow which
was a natural choice for subscription in expressions
like xi. Later a byte subscription operator (%) was
added eliminating the need for the library functions
getbyte(s,i) and putbyte(s,i,x).
Before double quotes (") became available, single

quotes were used for character strings, except a string
of length one was a character constant represented by
the appropriate character code. Escape sequences in
strings such as *n and *t used stars as in CPL.
Integer constants were sequences of decimal digits,

or represented in binary, octal or hex by preceding
the appropriate sequence of digits by #b, #o or
#x. More recently, BCPL has allowed underlines in
numbers as in 100 000 000 as a more readable way
of representing a hundred million than 100000000, or
#b00101 0 000111101, the first instruction (T123S) of

the program[8] to run on the EDSAC computer in May
1949.

CPL used a section symbol (§) to be equivalent to
Algol’s BEGIN and a section symbol overprinted with a
slash to represent END. BCPL adopted $(and $) for
these tokens and as with CPL such section brackets
could be tagged, allowing a close section bracket to close
multiple sections. Unfortunately this convention lead to
rather obscure programming errors and so when curly
brackets ({ and }) became available, they were only
used as untagged section brackets and the use of $(

and $) was discouraged.
The remaining lexical tokens were straightforward

using reserved words whenever suitable characters were
not available.

5. THE BCPL ABSTRACT MACHINE

The BCPL abstract machine was almost the same ab-
stract machine of macro calls used in the implementa-
tion of CPL, but since its statements were to be gen-
erated by the front end of the compiler and read by a
codegenerator there was no need for it to consist of tex-
tual macro calls. The code for BCPL’s abstract machine
was called OCODE and is logically just a sequence of in-
tegers, although, for presentation, it is often written in
a slightly more mnemonic form. See the procode com-
mand in the standard BCPL Cintcode distribution[5].
The use of OCODE rather than GPM macros reduced
compile time and allowed better optimisation of the tar-
get code.

Block structured languages like Algol and CPL use
a stack to hold function arguments and local variables
that have transient lifetimes. In the abstract machine
of macro calls used in the CPL compiler, there was
a pointer, called the P pointer, that pointed to the
return link information of the current function, and
arguments and local variables were accessed relative to
this pointer. In OCODE, arguments and local variables
are indistinguishable both being stored on the same side
of the P pointer above the return link which normally
required three words. So the first argument or local
variable is at position 3 relative to P and can be loaded
and updated by the OCODE statements LP 3 and SP 3.

As an example of how BCPL evolved, consider the
following fragment of CPL:

let x = 10

let a ≃ x

let i = a

If this were translated into OCODE, it would be as
follows assuming that x was allocated position 3 relative
to P.

The Computer Journal, Vol. ??, No. ??, ????

How BCPL evolved from CPL 5

LN 10 Load the integer 10 as the initial value of
variable x

LLP 3 Load the Lvalue of x as the initial value of a
LP 4 Load a, an Lvalue
RV Load the contents of what a is pointing at to

give the initial value of variable i

The BCPL code to generate this sequence could be:

LET x = 10 // Initialise x to be 10

LET a = @x // Declare a to be a pointer to

// variable x

LET i = !a // Declare i to be the contents

// of memory pointed to by a

There is considerable similarity between the two
languages, partly because the programmer rarely had
to specify CPL types explicitly. The at sign (@) is the
modern replacement of LV to compute the Lvalue of a
variable or subscripted expression. It was chosen since
it looks like an a inside an O which could be read as
address of.
Values of all CPL types were first class citizens in

the sense that they could be passed as arguments to
functions or assigned to suitably declared variables.
Since all BCPL values and variables were of the same
size there was no problem in letting BCPL do the same.
The only constraint was that every kind of value had to
be representable by a single word. For functions, this
meant that there was no room for a free variable list
pointer in addition to the entry address. This forced
all free variables to be in locations known at compile
time or be manifest constants, and so called dynamic
(argument and local) free variables were disallowed.
The same constraint applies to C functions but is
enforced by the more satisfactory scheme of disallowing
functions to be defined inside other functions. Although
disallowing dynamic free variables in BCPL annoyed
Algol and Pascal programmers, it greatly eased the
problem of linking libraries of separately compiled code.
Labels and goto commands in CPL were problem-

atic. The scope of a label was the current routine or
valof block in which it occurred, and a goto statement
could cause execution jump out of the scope of some lo-
cal variables and even out of one or more functions. It
was even possible to jump into a block initialising lo-
cal variables on the way. These features clearly got into
CPL before Dijkstra’s letter[9] in the CACM pointed
out the harmful nature of goto statements. BCPL still
allows labels to be passed as parameters and assigned
to variables, but, since labels are just addresses in the
program, GOTO in BCPL cannot jump out of functions
even though it can jump out of the scope of local vari-
ables. Non local jumps in BCPL use the library func-
tions level and longjump.

A similar restriction applied to the RESULTIS

command which required the enclosing VALOF construct
to be within the same function or routine. In CPL,

result is and even break could cause execution to leave
one or more functions.

BCPL followed CPL’s lead in syntactically separating
expressions from commands. The primary purpose of
an expression is to produce a result, while commands
are written for the effect (particularly assignments)
they have on the environment. BCPL provided all
the CPL expression operators except exponentiation
and string concatenation, but limited the arithmetic
operators to apply only to integers. Although CPL
used square brackets for both function arguments and
array subscripts, BCPL had to make these two forms
syntactically distinct, using parentheses for calls and
square brackets for subscription. BCPL included CPL’s
simultaneous assignments but allowed the order of
evaluation to be implementation dependent. So an
assignment like: p,v!p:=p+1,p should therefore be
written as two assignments to clarify its meaning. The
rich collection of conditional and looping commands
were all included in BCPL although some (particularly
the FOR command) were simplified. So, IF, TEST, WHILE,
UNTIL, REPEAT, REPEATWHILE, and REPEATUNTIL are all
present. BCPL followed CPL’s lead in having rules that
almost eliminated the need for semicolons to separate
statements.

6. STRUCTURES

Although various schemes for providing structures (or
records) in CPL were discussed in design meetings,
no version was deemed adequate for inclusion in the
language before I left the project. However, structures
of some kind were needed to represent data such as
parse trees and hash tables within the compiler and
so the CPL subset used to write the compiler did
allow the creation of structures that were essentially
dynamically created vectors using subscription to access
the fields. A parse tree node representing the product
of two expressions could be created by the call:
mk3(Mult,x,y) and if the result was placed in t, its
fields could be accessed by expressions t[0], t[1] or
t[2]. Since the abstract machine was typeless, there
was no problem in allowing x to represent any kind
of expression such as a name, a monadic or dyadic
node. BCPL used exactly this mechanism for its
structures. Normally, names declared with compile
time constant values were used as a more readable
way to identify the fields. Strachey coined the word
manifest for such names and that is why this word was
used in BCPL’s MANIFEST declarations. In many ways
these are like enum declarations in C and have recently
been extended to allow the compiler to allocate distinct
values automatically to the names declared.

By convention, the first field of each parse tree
node contained an integer (the operator) identifying
the kind of node and it was be able to select code
to execute depending on which operator was found.
This naturally lead to the inclusion of the SWITCHON

The Computer Journal, Vol. ??, No. ??, ????

6 M. Richards

command in BCPL which was retro-fitted into CPL
in 1966. SWITCHON is a frequently used command, it
occurs 28 time in the BCPL to Cintcode compiler and
is executed 182591 times when the compiler compiles
itself.
Recently, the specification of simultaneous definitions

such as LET days,msecs,flag=0,0,0 was tightened to
force the variables to be in consecutive locations in
memory. This allowed a pointer to these three variables
to be passed to a function as in dat stamp(@days)

which would set days to the number of days since 1
January 1970 and msecs to the number of milli-seconds
since midnight.

7. DECLARATIONS

BCPL includes CPL’s simple variable declarations by
value. The reference form being easily provided with
the aid of the address of operator (LV, and later @).
Simultaneous declarations and declarations connected
by AND were allowed.
BCPL permitted both function and routine declara-

tions just as in CPL but insisted that they contained
no dynamic free variables. They were automatically re-
cursive without the need for REC, and their arguments
were always called by value. The effect of call by ref-
erence can be achieved by passing pointers, and call by
substitution by passing parameterless functions.
One dimensional arrays, often called vectors, could

be allocated by calls of getvec just as malloc is
used in C. For local vectors, declarations such as:
LET v = VEC 10 could be used. This example would
declare a variable v initialised with a pointer to a vector
on the stack with subscripts ranging from 0 to 10. This
vector would cease to exist when control leaves the
scope of v.
A where declaration in CPL qualified the largest

declaration, command or expression to its left. This rule
caused syntactic problems and was often misunderstood
by users and so was not included in BCPL. The
construct using in was also not included.

8. SEPARATE COMPILATION

Although Fortran had allowed modules of a program
to be compiled separately and brought together for
execution, most block structured language like Algol,
CPL, Algol W and Pascal back then typically provided
no such mechanism, making precompiled libraries
inconvenient or even impossible. For BCPL, separate
compilation was deemed essential, so some mechanism
had to be found. At the time object module formats and
linkage editors were in their infancy and so a scheme
was devised specifically for BCPL. It used an area of
memory called the global vector similar to BLANK
COMMON of Fortran to allow separately compiled
modules to share variables. The GLOBAL declaration
allowed the programmer to name elements of the global

vector, and there was a rule that global variables
would be initialised to the entry points of functions
if their names matched the names of declared global
variables. This initialisation took place when modules
were loaded. Although this mechanism is not beautiful
and much hated by some, it is simple and has served
BCPL well for the last 45 years.

Global variables are statically allocated and so
could be accessed within functions. Although not
directly connected with separate compilation, STATIC
declarations were added to allow variables to be shared
between functions defined within the same module.

9. INFLUENCES

As has been shown BCPL has essentially much of
the same syntax as CPL but with many semantic
restrictions to allow a simpler implementation. Machine
independent pointer arithmetic and indirection were
added to allow Lvalues, vectors and structures to be
handled. Function arguments were called by value and
laid out in consecutive locations making it was easy to
define functions with variable numbers of arguments.
This allowed functions like writef (similar to C’s
printf) to be implemented without special privilege.

BCPL and hence CPL influenced several other
languages. For instance, Thompson designed a cut
down variant of BCPL he called B[10] which was later
extended by Ritchie[11] resulting in C, made popular
by its use in the implementation of Unix. Another
development was the design of PAL[12] which was a
language designed for use at MIT in a course to teach
programming linguistics. It was a version of sugared
λ-calculus strongly influenced by Landin’s work on
ISWIM[13] and implemented in BCPL using his SECD
machine[14]. It had dynamic types (like CPL’s type
general), a garbage collector and syntax related to
BCPL. It had updatable variables, and labels based on
Landin’s program points which allowed the intriguing
possibility of jumping back into a function that had
previously been left. A version of PAL is available in
the standard BCPL distribution[5].

Although not directly related to BCPL, ML[15], like
Pal, is a sugared λ-calculus related to Landin’s work
that was first implemented in 1974. It is a functional
language extended to include mutable objects, but,
unlike PAL, it has a type system that allows the
types of all values to be inferred statically given
little or no explicit type information in the program,
as was true of CPL. Unlike CPL, its type system
allows structures such as trees to be represented and
manipulated conveniently. The design is a tour de force

for which Milner won the British Computer Society
Award for Technical Excellence in 1987.

10. CURRENT STATUS OF BCPL

Although CPL did not survive for long, BCPL was
used extensively at places like MIT, Xerox PARC and

The Computer Journal, Vol. ??, No. ??, ????

How BCPL evolved from CPL 7

Cambridge, and is still in use both commercially and
by individuals. An implementation based on a compact
interpretive code (Cintcode) is freely available[5]
together with its manual[16]. Coroutines[17] were
a significant addition to the BCPL library in 1977
and were used extensively in the Tripos[18] Portable
Operating System, a version of which is currently
available as Cintpos[19].

REFERENCES

[1] Strachey, C. and Wilkes, M. (1961) Some Pro-
posals for Improving the Efficiency of ALGOL 60.
Comm.A.C.M., 4, 448.

[2] Barron, D., Buxton, J., Hartley, D., Nixon, E., and
Strachey, C. (1963) The main features of CPL. The

Computer Journal, 6, 134–143.

[3] Editor: C. Strachey (1966) CPL Working Papers, V53-
57. Technical report. Computer Laboratory, Cambridge
University.

[4] Strachey, C. (1965) A General Purpose Macrogenera-
tor. The Computer Journal, 8, 225–241.

[5] Richards, M. (2011) The BCPL Cintcode Distribution.
www.cl.cam.ac.uk/users/mr/BCPL/bcpl.{tgz,zip}.

[6] Landin, P. (1965) Correspondence between ALGOL 60
and Church’s Lambda-notation, Parts 1 and 2. Comm.

ACM, 8.

[7] USA Standards Code for Information Interchange
(1967) USAS X3.4-1967, revision of X3.4-1965. United
States of America Standards Institute, USA.

[8] Richards, M. (2009) EDSAC Initial Orders and Squares

Program .
www.cl.cam.ac.uk/users/mr/edsacposter.html.

[9] Dijkstra, E. (1968) Letter to the Editor: Go To
Statements Considered Harmful. Comm. ACM, 11,
147–148.

[10] Johnson, S. and Kernighan, B. (1997) The

Programming Language B. http://cm.bell-
labs.com/who/dmr/bintro.html.

[11] Ritchie, D. (1997) The Development of C.
http://cm.bell-labs.com/who/dmr/chist.html.

[12] Art Evans, Jr (1968) PAL - A langauge designed
for teaching programming linguistics. Proceedings of

1968 23 ACM Conference, pp 395-403 August 1968.
Thompson Book Company, Washington, DC.

[13] Landin, P. (1966) The next 700 programming
languages. Comm. ACM, 9, 157–166.

[14] Landin, P. (1964) A mechanical evaluator of expres-
sions. Computer Journal, 6, 308–320.

[15] Milner, R., Tofte, M., and Harper, R. (1990) The

Definition of Standard ML. MIT Press, Cambridge,
MA.

[16] Richards, M. (2011) The BCPL Programming Manual.
www.cl.cam.ac.uk/users/mr/bcplman.pdf.

[17] Moody, K. and Richards, M. (1980) A Coroutine Mech-

anism for BCPL. Software-Practice and Experience,
10, 765–771.

[18] Richards, M., Aylward, A., Bond, P., Evans, R.,
and Knight, B. (1979) The Tripos Portable Operating
System for Minicomputers. Software-Practice and

Experience, 9, 513–527.

[19] Richards, M. (2011) The Cintpos Distribution.
www.cl.cam.ac.uk/users/mr/Cintpos/cintpos.{tgz,zip}.

The Computer Journal, Vol. ??, No. ??, ????

