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Abstract
Sail is a language for rigorous specification of instruction
set architectures (ISAs); it has been used to model various
production and research architectures, including ARMv8-A,
RISC-V, and CHERI-MIPS, sufficiently completely to boot
multiple operating systems. Intended to be engineer friendly,
Sail is an imperative first-order language with a light-weight
dependent type system; it can generate OCaml and C em-
ulators and Isabelle, HOL4, and Coq definitions. A recent
substantial redesign of the Sail type system has been done in
conjunction with the development of a core calculus, Mini-
Sail, along with paper proofs of type safety.
This paper presents further work to mechanise MiniSail

in the Isabelle theorem prover, making use of the Nomi-
nal2 Isabelle library to address binding structures and alpha-
equivalence; it includes the definition of the MiniSail type
system and operational semantics and proofs of preservation
and progress. We discuss how the mechanisation and paper
formalisations relate to each other, including the benefits and
pitfalls of each, and comment on how these have influenced
and been influenced by the Sail implementation redesign.
We also comment on whether the use of Nominal Isabelle
allows us to write proofs of programming language safety
that are human readable as well as being machine verified.
This mechanisation should in future provide a platform for
the mechanical generation of a verified implementation of a
type checker and evaluator for the language.

Keywords Language Verification, Isabelle/HOL, CPU Spec-
ification

1 Introduction
CPU architectures such as ARM, IBM POWER, MIPS and
x86 are a key part of our computing infrastructure and so
it is vital that they are engineered without defects or vul-
nerabilities. Commonly, an instruction set architecture (ISA)
is specified using a mix of English prose and imperative
pseudo-code. These specifications are complex and difficult
to reason with and so a more rigorous approach is warranted.
Sail [2] has been developed as a language for modelling in-
struction set architectures. It supports exporting the model
to theorem provers, for architecture property reasoning, and
to C, to provide an executable of the model. The latter is
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comprehensive enough to run the model so that it boots a
variety of operating systems. We introduce the Sail language
in Section 2.
Sail has a novel light-weight dependent type system and

uses the Z3 [6] SMT solver to assist with type checking. This
type checker has had to be carefully engineered to ensure the
decidability of type checking. To avoid the reliance on this
engineering, our prior work work [2] introduced MiniSail, a
kernel language for Sail and presented a paper formalisation
of MiniSail that provided a number of guarantees about the
Sail type system including decidability.
Decidability of type checking arises from the following:

First, the typing rules are syntax directed. This ensures that
there is a deterministic choice when deciding which rule to
use to type check a particular term. Second, we only send to
the SMT solver well-sorted problems in the quantifier-free
linear arithmetic logic fragment.
We review the choice of syntax, the type system and the

operational semantics of MiniSail in Section 3.
This paper builds on the paper formalisation and describes

a mechanisation of MiniSail in the Isabelle theorem prover
[12]. This mechanisation provides a stronger guarantee than
the paper proofs and gives a platform for the building of a
validated type checker and executable for MiniSail making
use of Isabelle’s code generation features. The mechanisation
has also uncovered a shortcoming in the paper proofs around
the area of sort checking (that we detail later).
We make use of Isar, the structured proof language of Is-

abelle, which allows us to write proofs that resemble how
paper proofs look. To address binding, α-equivalence and
capture avoiding substitution, we make use of Nominal logic
as provided by the Nominal2 Isabelle [4] package. The gram-
mar of MiniSail is specified using Isabelle datatypes and the
typing and reduction semantics by inductive predicates. We
prove the type safety property for MiniSail in the usual way
using progress and preservation lemmas. Progress tells us
that a statement is either a value or can be reduced to another
statement, and preservation tells us that types are preserved
across reduction. The proofs of preservation make exten-
sive use of substitution lemmas, which form the core of the
mechanisation. We present the architecture of the Isabelle
mechanisation in Section 4

The contributions of this work are as follows:
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• We provide further guarantees of the soundness of the
Sail ISA modelling language by mechanising it in a
theorem prover.
• We show how a language with a light-weight depen-
dent type system, that uses an SMT solver as part of
typing checking, can be formalised using Nominal Is-
abelle.
• We argue that, with some up front cost, the Isar struc-
tured proof language and Nominal Isabelle allow us to
write mechanised proofs that resemble proofs found in
paper formalisation and are understandable by those
without expert knowledge of theorem provers.
• We show the benefits of the three way co-development
of this mechanisation with the development of the pa-
per proofs and the full Sail implementation presented
in [2].

2 Sail
We give a flavour of the Sail language. The Sail specification
of an instruction set describes how bit strings map to in-
structions in the architecture and how these instructions are
executed. The execution of an instruction manipulates the
internal state of the CPU (such as the registers) and interacts
with the memory accessible from the CPU.

As expected, a large part of ISA specifications involve the
manipulation of bit vectors. For example, appending two bit
vectors, extending a bit vector with zeros or pattern match-
ing on bit vectors to decode an instruction. The instruction
sets modelled go far beyond small research architectures and
include commercial CPUs architectures that describe hun-
dreds or thousands of instructions. Keeping track of vector
lengths across all of the instructions is something that would
assist the specification developer. To support this, Sail pro-
vides a light-weight dependent types system which allows
the specification of constraints on the lengths of bit vectors
and the range of integers.

An example of a type that can be specified is range(0,32)
which is the type of integers that fall between 0 and 32. These
constraints extend to function signatures with type variables
that are universally quantified. For example, the type of a
function that appends two bit vectors is:
val append = forall ('n:Int)('m:Int).

(bits('n),bits('m))->bits('n+'m)

The 'n and 'm are integer type variables that specify the
length of the bit vectors and are used to constrain the length
of the bit vector returned by the function. Sail also makes
use of these refinement types in its definition of arithmetic
operators such as addition:
val add_atom = forall 'n 'm.

(atom('n),atom('m)) -> atom('n+'m)

The type atom('n) is the type of integers that are equal to
'n, and this is how program level values are lifted into type
level values and fed into the result type of this function. Sail

also provides record types (labelled product types) and union
types (algebraic datatypes). The former is used to model the
internal states of the CPU and the latter is used to model the
AST of the instruction set.

Figure 1 shows an example Sail function. The function
double_bits takes a bit vector of length 'm and produces a
bit vector of double the length with the bit pattern of the
input duplicated. The signature of double_bits illustrates
the dependent type nature of Sail: the length of the resulting
vector is dependent on the length of the supplied vector.
Furthermore, the signature includes the constraint that the
length is at least 1. In the body of the function, the mutable
variable ys is used to build the result vector. It is initialised
to a vector of zeros with length equal to the result vector
length. Then in the foreach loop, ys is first shifted left by the
length of xs and then these new bits are set to the bits from
xs. The final line of the function returns ys. Type checking
must check at each assignment that the value being assigned
to ys is a subtype of the original type of ys that was set when
it is first assigned. In addition, the type of the return value,
ys, is checked against the return type of the function.

$include <prelude.sail>

infix 7 <<

val operator << = "shift_bits_left" : forall 'n 'm.

(bits('n), atom('m)) -> bits('n)

val or_vec : forall 'n.

(bits('n), bits('n)) -> bits('n)

overload operator | = {or_bool, or_vec}

val length : forall 'n. bits('n) -> atom('n)

val zero_extend : forall 'n 'm, 'm >= 'n.

(bits('n), atom('m)) -> bits('m)

val double_bits : forall 'm, 'm >= 1.

(bits('m)) -> bits('m + 'm)

function double_bits(xs) = {

let m = length(xs)

ys : bits(m+m) = zeros(m+m);

foreach (i from 1 to 2) {

ys = ys << length(xs);

ys = ys | zero_extend(xs, length(ys))

};

ys

}

Figure 1. Example Sail Function

We can not adopt a full dependent type system, such as
that found in Agda[13], as we want the language to be un-
derstandable by the hardware engineers who are used to
classical imperative languages. In addition, we want the type
checking to be decidable and this motivates a light weight
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dependent type system based on liquid types [17] and us-
ing an SMT solver to resolve constraints. Even so, liquid
types are subtle and are easy to get wrong [21]. This moti-
vates a formalisation of the language and proofs that provide
soundness guarantees.
The Sail language includes the usual constructs for an

imperative language: if statements, mutable variables, as-
signment and while loops. Also included is pattern matching
in match statements and function arguments. Pattern match-
ing supports complex matching on bit patterns and this is
very useful when decoding bit patterns into instructions.

As well as making it engineer friendly, the imperative
nature of language makes it possible to export to to C and
OCaml to provide efficient execution of the model. In the
case of the C export, this performs sufficiently well that
an OS can be booted on this ‘virtual CPU’. To support the
formal validation of the model, the specification can also
be exported as theorem prover code for the Isabelle, HOL
and Coq theorem provers. Instruction set models have been
developed for commercial CPUs such as ARM [1] as well as
research architectures such as CHERI [22, 23].
A further motivation for a formal specification of Sail is

the following: Instruction set architectures for commercial
CPUs are long lived and evolve over decades and so if Sail is
to be used to write these architectural models, Sail should
itself be stable over this time. This stability could be achieved
by freezing the language and its implementation, but this
wouldmean that we can not take advantage of improvements
to SMT solvers or the implementation language. A clear
specification for Sail, that describes the language and type
system would mitigate the risks associated with changes to
the implementation technology.

To support the re-implementation of Sail, we decided that
rather than attempt a specification of the full language, we
would formalise a core-calculus of the language that contains
the key interesting features of Sail, such as dependent-types
and imperative constructs. This led us to MiniSail, which is
described in the next section.

3 MiniSail
3.1 Kernel Language Design
Before describing the syntax and semantics of MiniSail, we
motivate our choice of Sail features that have been included
in MiniSail. We have shown above that Sail has a depen-
dent type system, makes use of the Z3 SMT solver for type
checking and has some imperative language features such
as mutable variables.
We want the problems that we give to Z3 to be within a

decidable logic fragment for Z3. We choose as this fragment
quantifier-free linear arithmetic with algebraic datatypes
which is decidable in Z3. The problems we pass to the solver
are generated from the constraints within the types that pass

through the type checker. Types arise from typing annota-
tions in the MiniSail program or are synthesised by the type
checker. We choose as values and expressions a representa-
tive sample from Sail that will give us a variety of typing
rules that generate types.

Constraints in types can contain immutable variables but
not mutable variables, so we need to ensure that synthesised
types will not contain mutable variables. Also, we need to il-
lustrate that type checking for mutable variable, binding and
usage is sound as well; so we include some of the imperative
features of Sail into MiniSail.

Liquid typing [17] that is used in Sail provides flow typing
so we choose to include if andmatch statements in MiniSail
language and their associated flow typing rules.

3.2 Syntax
MiniSail is intended to be a calculus for Sail rather than a pro-
gramming language and has been designed for mathematical
rather than programming convenience. To achieve this, the
syntax of MiniSail is based on let-normal form and a strat-
ification of what are expressions in the Sail language into
values, expressions and statements in MiniSail. This leads
to a corresponding stratification of the typing judgements
and makes reasoning about the type system clearer. The
grammar for values, expressions and statements is shown in
Figure 2 along with other constructs in the language.

In the grammarwemake use of the followingmeta-symbols:

• n - Numeric literals.
• x - Immutable program variables.
• u - Mutable program variables.
• z - Variables bound in refinement types.
• f - Function names.
• tid - Type identifiers for datatypes.
• C - Datatype constructors.

We can motivate the assignment of a strata to a term as
follows: Values include the things that we want the reduction
of a program to produce and the things stored in mutable
variables. As values we have number, Boolean and bit vec-
tor literals, variables, pairing of values, construction of a
datatype instance and the unit value.
Expressions are how we obtain new values from old and

are: function application, application of the binary opera-
tions + and ≤, projection from a pair, mutable variables,
concatenation of bit vectors and calculation of the length of
a bit vector. Expressions can be formed from these operations
applied to values only and so a complex expression, such as
a function application to the sum of two variables, needs to
be written as a nesting of let-statements where the parts of
the complex expression are bound to intermediate variables.
This ensures that the types of the components of complex
expressions are made explicit since the typing of the nested
let-statements will give us the type of each sub-expression.

3
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We have two sorts of binding statements for variables: For
immutable variables, we have the conventional let statement,
let x = e in s , that binds e to x in s , and for mutable variables
we have var u : τ = v in s . Operationally, this allocates a
slot in the mutable variable store tou, and putsv into the slot.
The value can be accessed usingmutable variable expressions
in the statement s and subsequent assignments to u in s will
update the value stored for u.

In the previous section we introduced Sail types and how
they include type level variables and constraints on these
variables. For MiniSail, we use a different style of syntax
for types that is more in keeping with the Liquid type para-
digm. The form for a MiniSail type is {z : b | ϕ } where z is
the value variable, b is the base type and ϕ the refinement
constraint. The base type is the universe from which values
of the type will come from and the refinement constraint
is a logical predicate that can reference the value variable
and immutable program variables that are within scope. For
example, {z : int | 0 ≤ z} is the type for all integers greater
than or equal to zero. The refinement constraint can include
expressions. However, to ensure that the constraints fall
within a logical fragment that is decidable in Z3, we exclude
from the expression syntax for constraints function applica-
tion and mutable variable access; types can only depend on
immutable variables This restricted form for expressions is
indicated by e− in the grammar.

Within the language are constructs for declaring the type
of a function and for binding a function. The argument vari-
able for the function is given explicitly in the signature and
it can appear in the refinement constraint for the argument
and the type for the function’s return value. We also have
the means to define new datatypes by associating a type
identifier to a list of pairs C : τ where C is a constructor and
τ is the type that the constructor needs to be applied to give
an instance of the datatype.

3.3 Typing Judgements and Contexts
The MiniSail type system is described using a set of bidirec-
tional [7] typing judgements. For values and expressions, the
principal judgement is type synthesis, which has the form
_ ⊢ _⇒ τ . For statements, the judgement is type checking,
which has the form _ ⊢ _ ⇐ τ . The left placeholder stands
for one or more contexts and the right placeholder by the
term. Where we do need to check the type of an expression
or a value, for example in function application, we perform
type synthesis and then a check that the synthesised type
is a subtype of the required type. The key judgements and
contexts are listed in Figure 3.
Typing contexts are the structures that provide informa-

tion about variables and other names that might appear in
the terms that we are checking, and, importantly, that might
appear in types. Different sorts of information comes into
scope, or moves out of scope, at different times during the

type checking of a program and so we divide this information
into four structures:

• For type definitions, Θ. This is a map from type iden-
tifiers to datatype definitions. This context remains
static during the evaluation of a program and so we
will not need lemmas relating to changes to the con-
text such as weakening. The well-scoping conditions
for datatypes ensures that the definitions have no free
variables and so we don’t need to define a substitution
function for this context.
• For function definitions,Φ. This is a map from function
names to function definitions. This shares the same
properties as the Θ context given above. Function bod-
ies can reference only the immutable variable provided
by the input argument, functions anywhere in Φ and
datatype identifiers and constructors provided by a Θ
context.
• For immutable variables, Γ. This is an ordered list of
triples of the form x : b[ϕ] where x is an immutable
variable, b is a base type and ϕ a constraint. The con-
straint can reference x and any other immutable vari-
able given prior in the context as well as datatype
identifiers and constructors provided by a Θ context.
We define a substitution function for this context and
the application of substitution to a Γ can result in the
‘collapse’ of the context.
• For mutable variables, ∆. This is a map from a mutable
variable to a type. The type does not have to closed
and can reference immutable variables in the Γ context
and constructors from Θ

3.4 Sort Checking
Types are specified in program text or built up using the
type synthesis rules. At subtype checks, the two types be-
ing checked are used to build an SMT problem that is then
passed to the solver. We need to provide a guarantee that the
constraints within these types lead us to a problem statement
that falls within a decidable fragment of the SMT logic. This
fragment is quantifier-free linear arithmetic with algebraic
datatypes, it is multi-sorted and is decidable. As we will show
later in an example, immutable variables appearing in the
context and in types are mapped to variables in the SMT
problem and assigned a type in the SMT space. We need to
ensure that variables are assigned valid types and that the
problem statement we construct sort checks.

The sort checking judgement for expressions isΦ;Θ; Γ;∆ ⊢b
e : b. This says that e has base type (sort) b in the contexts on
the left hand side. A small example of the sort checking rules
are shown in Figure 4. When expressions are compared in a
constraint, we require that they both have the same sort and,
importantly, that they sort check in the context of empty
Φ and ∆ contexts. This ensures that function application
and mutable variables will not appear in the expressions.

4
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Value v ::= x | n | T | F | (v,v ) | C v | ()
Expression e ::= v | v +v | v ≤ v | f v | u | fst v | snd v | len v | concat v v

Statement s ::= v | let x = e in s | let x : τ = s in s
| if v then s else s |
| match v { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn }
| var u : τ = v in s | u := v
| while (s1) do {s2}

Base type b ::= int | bool | unit | bitvec | tid | b × b
Constraint ϕ ::= T| F| e− = e− | e− ≤ e− | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⇒ ϕ | ¬ϕ
Refinement Type τ ::= {z : b | ϕ }

Function Definition fd ::= val f : (x : b[ϕ]) → τ
function f (x ) = s

Datatype Definition td ::= union tid = {C1 : τ1, ...,Cn : τn }
Definition def ::= td | fd
Program p ::= def1 ; .. ; defn ; s

Figure 2. MiniSail Grammar

Φ Function definition context Θ Type definition context
Γ Immutable variable context ∆ Mutable variable context
⊢b Θ Sort checking Θ Θ; Γ ⊢b ∆ Sort checking ∆
Θ ⊢b Φ Sort checking Φ Θ; ⊢b Γ Sort checking Γ

Θ; Γ ⊢b v : b Sort checking values Φ;Θ; Γ;∆ ⊢b e : b Sort checking expressions
Θ; Γ ⊢b ϕ Sort checking constraints Θ; Γ ⊢b τ Sort checking types

Θ; Γ ⊢ v ⇒ τ Type synthesis values Θ; Γ ⊢ v ⇐ τ Type checking values
Φ;∆; Γ;Θ ⊢ e ⇒ τ Type synthesis expressions Φ;∆; Γ;Θ ⊢ s ⇐ τ Type checking statements
Θ; Γ ⊢ τ1 ≲ τ2 Subtyping Θ; Γ |= ϕ Validity

Figure 3. MiniSail Contexts and Judgements

Sort checking will also ensure that, for example, the two
arguments to an addition operation have the int sort.
Sort checking rules were added late in the development

of the mechanisation and replace and subsume the well-
scoping rules that are used in the paper formalisation. The
well-scoping rules were only checking that, for example,
variables appearing in a term are present in the Γ context
and were not checking that the base type of the variable was
compatible with the term it was appearing in.

3.5 Subtyping and Validity
The subtyping relation is Θ; Γ ⊢ τ1 ≲ τ2 and this breaks
down to a validity relation Θ; Γ |= ϕ1 −→ ϕ2 where ϕ1 and
ϕ2 are the refinement predicates for the types τ1 and τ2. The
SMT solver is used to check the validity relation.

We will illustrate how subtyping leads to an SMT problem
with an extended example. Suppose we have a function with
the signature:

val f : (x : int × int [0 ≤ fst x ∧ 0 ≤ snd x]) →
{z : int | fst x ≤ z ∧ snd x ≤ z}

and that we need to prove the following typing judgement
for the application of this function to the pair of variables
(a,b)

Φ;∆;a : int [a = 9],b : int [b = 10];Θ ⊢ f (a,b) ⇒ τ

where τ is {z : int | a ≤ z ∧ b ≤ z}.
The derivation of the judgement will include this subtyp-

ing check:

Θ;a : int [a = 9],b : int [b = 10] ⊢
{z : int × int |z = (a,b) } ≲

{x : int × int |0 ≤ fst x ∧ 0 ≤ snd x }

that gives this validity checking judgement:

Θ;a : int [a = 9],b : int [b = 10], z : int × int [z = (a,b)] |=
0 ≤ fst z ∧ 0 ≤ snd z

which is equivalent to checking the validity of this logical
expression:

a = 9 ∧ b = 10 ∧ z = (a,b) −→ 0 ≤ fst z ∧ 0 ≤ snd z

5
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To check this, we generate the following Z3 script where we
ask Z3 to check the satisfiability of the negated goal.

(declare-datatypes (T1 T2)

((Pair (mk-pair (fst T1) (snd T2)))))

(declare-const a Int)

(declare-const b Int)

(declare-const z (Pair Int Int))

(define-fun constraint () Bool (and (= a 9) (= b 10)

(= z (mk-pair a b)) (not (and ( <= 0 (fst z ))

( <= 0 (snd z))))))

(assert constraint)

(check-sat)

The first line is a datatype declaration for a pair type. If
our context had included variables for a datatype, then a
declaration for this type would appear here. The next three
lines declare the variables used; one declaration for each
variable in the context. The Z3 type for the variable is derived
from theMiniSail base type for the variable as per the context.
The final three lines define the goal and request Z3 to check
that the goal is satisfiable or not. If the goal is unsatisfiable,
then it means that the subtype check has succeeded.

3.6 Typing Rules
A MiniSail program is composed of a set of datatype defini-
tions, a set of function definitions and a single statement. To
check a program, we will sort check the datatype and the
function definitions. We will also check that the functions
type-check meaning that a function body has the type indi-
cated by the function’s return type in a context containing
just the functions argument and type. Typing checking of a
statement cascades down the statement’s structure and at
points where checking of expressions or variables occurs, it
flips over to type synthesis with subtyping checks occurring
at the change over points. The important typing rules are
show in Figure 5.

For all of the rules, if a context appears in the rule conclu-
sion but not in a typing premise, then we need to include a
sort checking judgement as a premise. For example, in rule
8 we include sort checking for ∆ as we are introducing the
∆ context. Sort checking of ∆ will sort check the types in ∆,
ensure that all free variables in the types are in the context
Γ and that all data constructors are in Θ.
For the type synthesis rules for values, we only require

the Θ and Γ contexts and the form for the type synthesised
for a value v is always {z : b |z = v}. We are able to include
v in the constraint as the rules check that v is well-sorted:
for the base cases, literals are automatically well-sorted and
variables are well sorted if they are in a well-sorted Γ context.

As mutable variables and function applications are in-
cluded as expressions, we include the contexts ∆ and Φ.
The type synthesised can not have the form {z : b |z = e},

as not all expressions in our language are valid constraint-
expressions. For mutable variables, the type synthesised is
the type of the variable as recorded in the ∆ context and
for function application expressions, the type synthesised
is the return type of the function with substitution of the
argument value into the return type.

In a number of the rules, for example function application
(12), mutable variable assignment (16) and while loops (20),
we are required to check that the variable or expression has
a particular type so we have a single type checking rule for
values (rule 23) and for expressions (rule 24).

For statements, we have just a checking judgement. The
statement var u : τ = v in s , that introduces and scopes
mutable variables, has a typing rule where we check v is
a subtype of τ and that s has the required type with u : τ
added to the mutable variable context ∆. For assignment
statements u := v , we require the type of these to be unit
and check that the type of v is a subtype of τ where u : τ is
an entry in ∆.
Typing for the if and thematch statement incorporates

flow typing. This is where the predicate for the type being
checked for in the branches is checked under the assumption
that the discriminator has the value associated to the branch.
For example, in the positive branch of the if statement (rule
19), we type check against a type that has the constraint v =
T ∧ (ϕ1[v/x]) =⇒ (ϕ[z1/z]). For the match statement (rule
21), we use a slightly different form. Since we are binding a
new variable xi in each branch, we add this variable to the
context with the constraintϕi [xi/zi ]∧v = Ci xi . While loops
are straight-forward - the condition needs to be a Boolean
and the body the unit. We don’t attempt flow typing for while
loops. One difficulty is that the discriminator for the while
statement is a statement it is not obvious how to include
a constraint on this in the type checking of the positive
branch (while statement body) and the negative branch (the
statements after the while loop).

3.7 Operational Semantics
We define the operational semantics using a small-step tran-
sition relation:

Φ ⊢ ⟨δ , s⟩ −→ ⟨δ ′, s ′⟩

Where δ is themutable store that maps frommutable variable
names to values and gives the current value of a mutable
variable. For immutable variables, we rely on the substitution
function to replace immutable variables with the value from
the variable’s binding statement.
We now outline how the transition relation works on

different forms of statements. For let statements, let x =
v in s , we have a transition step case for each form for e . If
e is a value, then the reduction is to ⟨δ , s[v/x]⟩. For the case
where e is the application of a binary operator, and the two
arguments are integers, then we will perform the calculation
and the resulting statement is s with the e replaced with
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Θ; Γ ⊢b ∆
Θ ⊢b Φ
Θ; Γ ⊢b v : b
val f : (x : b[ϕ]) → τ ∈ Φ

Φ;Θ; Γ;∆ ⊢b f v : b(τ )
2

ϵ ;Θ; Γ; ϵ ⊢b e1 : b
ϵ ;Θ; Γ; ϵ ⊢b e2 : b
Θ; Γ ⊢b e1 = e2

1

Figure 4.MiniSail Sort Checking

Θ ⊢b Γ

Θ; Γ ⊢ n ⇒ {z : int|z = n}
1

Θ ⊢b Γ

Θ; Γ ⊢ T⇒ {z : bool|z = T}
2

Θ ⊢b Γ

Θ; Γ ⊢ F⇒ {z : bool|z = F}
3

Θ ⊢b Γ

Θ; Γ ⊢ () ⇒ {z : unit|z = ()}
4

Θ ⊢b Γ
x : b[ϕ] ∈ Γ

Θ; Γ ⊢ x ⇒ {z : b|z = x}
5

Θ; Γ ⊢ v1 ⇒ {z1 : b1 |ϕ1}

Θ; Γ ⊢ v2 ⇒ {z2 : b2 |ϕ2}

Θ; Γ ⊢ (v1, v2) ⇒ {z : b1 ∗ b2 |z = (v1, v2)}
6

union tid = { Ci : τi
i
} ∈ Θ

Θ; Γ ⊢ v ⇐ τ

Θ; Γ ⊢ Cj v ⇒ {z : tid |z = Cj v}
7

Θ ⊢b Φ
Θ; Γ ⊢b ∆
Θ; Γ ⊢ v1 ⇒ {z1 : int|ϕ1}

Θ; Γ ⊢ v2 ⇒ {z2 : int|ϕ2}

Φ;∆; Γ;Θ ⊢ v1 + v2 ⇒ {z3 : int|z3 = v1 + v2}
8

Θ ⊢b Φ
Θ; Γ ⊢b ∆
val f : (x : b[ϕ]) → τ ∈ Φ
Θ; Γ ⊢ v ⇐ {z : b|ϕ}
Φ;∆; Γ;Θ ⊢ f v ⇒ τ [v/x]

9

Θ ⊢b Φ
Θ; Γ ⊢b ∆
u : τ ∈ ∆

Φ;∆; Γ;Θ ⊢ u ⇒ τ
10

Θ ⊢b Φ
Θ; Γ ⊢b ∆
Θ; Γ ⊢ v ⇒ {z : b1 ∗ b2 |ϕ}

Φ;∆; Γ;Θ ⊢ fst v ⇒ {z : b1 |z = fst v}
11

Θ ⊢b Φ
Θ; Γ ⊢b ∆
Θ; Γ ⊢ v ⇒ {z : b1 ∗ b2 |ϕ}

Φ;∆; Γ;Θ ⊢ snd v ⇒ {z : b2 |z = snd v}
12

Θ ⊢b Φ
Θ; Γ ⊢b ∆
Θ; Γ ⊢ v ⇐ τ

Φ;∆; Γ;Θ ⊢ v ⇐ τ
13

Φ;∆; Γ;Θ ⊢ e ⇒ {z : b|ϕ}
Φ;∆; Γ, x : b[ϕ[x/z]];Θ ⊢ s ⇐ τ

Φ;∆; Γ;Θ ⊢ let x = e in s ⇐ τ
14

Φ;∆; Γ;Θ ⊢ e ⇒ {z : b|ϕ}
Φ;∆; Γ, x : b[ϕ[x/z]];Θ ⊢ s ⇐ τ

Φ;∆; Γ;Θ ⊢ let x = e in s ⇐ τ
15

u < dom(δ )
Θ; Γ ⊢ v ⇐ τ
Φ;∆, u : τ ; Γ;Θ ⊢ s ⇐ τ2

Φ;∆; Γ;Θ ⊢ var u : τ := v in s ⇐ τ2
16

Θ ⊢b Φ
Θ; Γ ⊢b ∆
u : τ ∈ ∆
Θ; Γ ⊢ v ⇐ τ

Φ;∆; Γ;Θ ⊢ u := v ⇐ {z : unit|⊤}
17

Φ;∆; Γ;Θ ⊢ s1 ⇐ {z : unit|⊤}
Φ;∆; Γ;Θ ⊢ s2 ⇐ τ

Φ;∆; Γ;Θ ⊢ s1; s2 ⇐ τ
18

Θ; Γ ⊢ v ⇒ {x : bool|ϕ1}

Φ;∆; Γ;Θ ⊢ s1 ⇐ {z1 : b|(v = T ∧ (ϕ1[v/x])) =⇒ (ϕ[z1/z])}
Φ;∆; Γ;Θ ⊢ s2 ⇐ {z2 : b|(v = F ∧ (ϕ1[v/x])) =⇒ (ϕ[z2/z])}

Φ;∆; Γ;Θ ⊢ if v then s1 else s2 ⇐ {z : b|ϕ}
19

Φ;∆; Γ;Θ ⊢ s1 ⇐ {z : bool|⊤}
Φ;∆; Γ;Θ ⊢ s2 ⇐ {z : unit|⊤}

Φ;∆; Γ;Θ ⊢ while (s1) do {s2} ⇐ {z : unit|⊤}
20

union tid = { Ci : {zi : bi |ϕi}
i
} ∈ Θ

Θ; Γ ⊢ v ⇒ {z : tid |ϕ}
Φ;∆; Γ, xi : bi[ϕi[xi/zi] ∧ v = Ci xi ∧ (ϕ[v/z])];Θ ⊢ si ⇐ τ

i

Φ;∆; Γ;Θ ⊢ match v of Ci xi ⇒ si
i
⇐ τ

21

Θ; Γ ⊢b {z1 : b|ϕ1}

Θ; Γ ⊢b {z2 : b|ϕ2}

P; Γ, z3 : b[ϕ1[z3/z1]] |= ϕ2[z3/z1]
Θ; Γ ⊢ {z1 : b|ϕ1} ≲ {z2 : b|ϕ2}

22

Θ; Γ ⊢ v ⇒ {z2 : b|ϕ2}

Θ; Γ ⊢ {z2 : b|ϕ2} ≲ {z1 : b|ϕ1}

Θ; Γ ⊢ v ⇐ {z1 : b|ϕ1}
23

Φ;∆; Γ;Θ ⊢ e ⇒ {z2 : b|ϕ2}

Θ; Γ ⊢ {z2 : b|ϕ2} ≲ {z1 : b|ϕ1}

Φ;∆; Γ;Θ ⊢ e ⇐ {z1 : b|ϕ1}
24

Figure 5.MiniSail Type System

the result of the operator. For the case where e is fst (v1,v2)
or snd (v1,v2), then the resulting statement is s with the
e replaced by v1 or v2. For the case where e is a function
application, f v , then the reduction is to let x : τ [v/y] =

s ′[v/y] in s where s ′ is the body of the function f , y is the
function argument and τ is the return type of the function.
We substitute the value the function is applied to into both
the return type and the body of the function s ′. This means
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that, any types in s ′ (in var statements) will also undergo
substitution. This step is conditional on f having an entry
in the function context Φ.

For the statement let x : τ = s1 in s2, we have two rules: if
s1 is a valuev , then the reduction is to (δ , s2[v/x]) otherwise
the reduction is to (δ ′, let x : τ = s ′1 in s2) where (δ ′, s ′1) is
the reduction of (δ , s1).

For the statement if v then s1 else s2, we have a case for
when v is T and one for when v is F. For the statement
while (s1) do {s2}, we unroll this to

let x : {z : bool |T} = s1 in
if x then s2;while (s1) do {s2} else ()

For var u : τ = v in s , we extend the variable store with the
pair (u,v ) and the reduced statement is s . For assignment
u := v , we update the value of u in the store with v . Note
that at this stage, the value being assigned to the mutable
variable will have no immutable variables.

For the sequence statement s1; s2, we have two rules: If s1
is the unit value, then we reduce to s2. If s1 is not the unit
value, then we reduce to (δ ′, s ′1; s2) where (δ

′, s ′1) is the result
of the reduction of (δ , s1). For the match statement,

match v { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn }

statements where v is of the form C v ′ and C matches one
of the Ci , then the reduction is to (δ , si [v ′/xi ]).

4 Mechanisation in Isabelle
Isabelle has been used previously to formalise a number of
programming languages, such as Lightweight Java [19] and
WebAssembly [24]. Languages have also been formalised
using other provers, for example C in the Coq theorem
prover [11], and CakeML using HOL4 [10].

In this section we describe how the grammar, type system,
and operational semantics of MiniSail are mechanised in
Isabelle.

4.1 General Approach
A key motivation for our mechanisation was our experience
with proving soundness forMiniSail on paper.We beganwith
a (paper) proof outline following the usual path for language
soundness proofs but incorporating additional lemmas as
needed by novel aspects of the type system. However, we
realised that there was a lot of detail that needed to be tracked
in the paper proof, particularly around variables, as these
can now appear in types, and the structure of the various
inductive cases. The mechanisation was then begun with the
intention that this would replace the paper proofs.
At the high-level, the main argument closely follows the

structure of the paper formalisation. In addition to work-
ing on the main argument, there is also significant work
providing the necessary scaffolding in the form of technical
lemmas that don’t appear in paper proofs. An example of
one of these lemmas is the associativity of concatenation for

the Γ-context. Spending time writing the technical lemmas
is important for a number of reasons: First, we avoid having
to re-prove similar facts in the proofs of the larger lemmas.
Second, they act as a check of the definitions of data struc-
tures and functions; if we fail to prove a trivial technical
lemma about a definition, or the proof is more complex than
expect, then it can indicate a problem with the definition
and that the definition needs fixing or optimising. Finally,
these technical lemmas are available for use by Isabelle’s
automatic proof methods and sledgehammer.
At the proof-level, there was a lot of technical detail in-

volved in each proof. Proving facts about freshness and ba-
sic manipulation of contexts occurred frequently. and the
choices around supporting data structures and functions
had to be made carefully to avoid making the proofs overly
complex. For example, the Φ and Θ contexts given above
were originally one context, Π. It was realised that when we
added sort checking for expressions, we wanted a Π that had
no functions but could contain datatype definitions. This
required some messy filtering and associated lemmas and
we realised two separate contexts would be easier and make
things clearer.
Many theorem provers follow a backward reasoning pat-

tern - you start with the goal and the game is to pick a tactic
that reduces the current goal to a new set of goals, and to
iterate these steps until no goals are left. All that is captured
in the text of the theory is the sequence of invocations of
the tactics used - the proof script.
Proofs using Isar are written closer to how paper math-

ematics looks and will include not only the proof tactics
used but also the goals and subgoals explicitly written out
in a hierarchical way. This allowed us to use the high level
outline of the proof from our paper formalisation (or a paper
sketch if the paper formalism doesn’t include the lemma
we are working on) as the starting point for many proofs.
From the outline, we then iteratively filled in the detail, and
when we got to a goal that we thought was simple enough
to be proved by Isabelle’s automatic proof methods, or by
sledgehammer, we invoked these to see if the goal could be
proved.
Sledgehammer [14] is a tool in Isabelle, that uses exter-

nal provers to find a proof for goal. Isabelle will then recon-
struct this proof, making use of only proof methods available
within Isabelle itself. The sledgehammer mechanism is able
to choose a set of facts from those available in the current
proof context to use in addition to those explicitly specified
by the user. However sledgehammer didn’t always come up
with a proof but in these cases it was usually clear what
lemmas needed to be used but not how to wire them up. A
common problem was that there were small errors in the
goal, such as misspelling a predicate, and a useful improve-
ment to the automatic proof methods, and sledgehammer,
would be for Isabelle to report to the user the reasons, or
possible reasons, why the method or sledgehammer failed.
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The presentation style of Isar, whilst requiring each step
and goal to be explicitly spelled out1, does have some ad-
vantages when it comes to handling changes to proofs. For
example, when we introduced sort checking to the mecha-
nisation it was clear from the Isabelle user interface what
proofs needed fixing. With a proof-script style of reasoning,
this information is hidden inside the reasoning engine and
only by attempting the reasoning steps would you see what
was wrong from information shown in the user interface.

Amajormilestonewas of course having everything proved.
At this stage we are on stable platform and we can begin
the process of incrementally tidying up and optimising the
proofs. For the current version of the mechanisation, more
optimisation can be done in conjunction with building up a
better collection of technical lemmas.

4.2 Syntax
As with many formalisation of programming languages, sub-
stitution is an important operation. In the operational se-
mantics we use it to drive the reduction of let and match
statements as well as function application. Since MiniSail
contains binding statements, we need to be careful about
how substitution operates on these statements. The nota-
tion we use for substitution of a variable x for a value v
in the statement s is s[x ::= v]. Where the statement is
a binding statement then there are a number of precondi-
tions associated with the substitution: In the substitution
(letw = e in s )[x ::= v] we want to ensure that no free
variable inv is captured by the binding and if x = w then we
want the substitution to occur after renamingw in the state-
ment to some other variable. In paper mathematics these
requirements are handled by the convention that we are free
to replace a term by one that is α-equivalent to it obtained by
renaming bound variables with a new name. In mechanical
formalisations there has to be something in the formalisation
to handle this.
There are a variety of approaches to this including De

Bruijn indices [5] and the locally nameless representation [3].
The approach that we adopted is to make use of Nominal
logic ideas [16] as realised in the Isabelle Nominal2 package
[8, 20]. We chose Nominal-Isabelle as we wanted to write
the formal proofs in a way that matches the paper proofs,
and we wanted to take the opportunity to see how it works
in a language formalisation.
The following is an outline of Nominal Isabelle as it per-

tains to this formalisation. The basic building block in Nom-
inal Isabelle is the multi-sorted atom which correspond to
variables. Atoms can be declared as part of the structure of
terms and in MiniSail we have one sort of atoms for mutable
variables and one for immutable variables. A basic operation

1This effort can be reduced a little by using experimental tools such as
‘explore’ introduced on the Isabelle mailing list https://www.mail-archive.
com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg04443.html

on terms is the operation of permuting atoms. For example,
in the syntax of Nominal-Isabelle, we have:

(z ↔ w ) • (let x = 1 in z) = (let x = 1 inw )

where (z ↔ w ) is the permutation that swaps the two atoms
z andw and • is the permutation application operator. From
this is defined the support for a term, which is equivalent
in our case to the notion of free variables, and from this the
definition of freshness, written as ‘atom x # v’, is defined as
non-membership of the support of the term v .
Nominal-Isabelle uses these concepts to automatically

generate, from provided binding information, definitions
of α-equivalence for each sort of term. For example, the
statements let x1 = e1 in s1 and let x2 = e2 in s2 are α-
equivalent if e1 = e2 and for any c # (x1, s1,x2, s2) we have
(c ↔ x1) • s1 = (c ↔ x2) • s2.
We represent the MiniSail grammar AST as a set of nom-

inal datatypes. These are like conventional datatypes but
allow us to specify the binding structure of terms and will
also trigger Isabelle to generate the freshness, support and α-
equivalence facts as described above. Isabelle will construct
an internal representation for the datatype and quotient it
using α-equivalence to give the surface datatype.

nominal_datatype case_s = — Statements
C_final dc x::x s::s binds x in s

| C_branch dc x::x s::s case_s binds x in s

and s =

AS_val "v"

| AS_let x::x "e" s::s binds x in s

| AS_let2 x::x "τ" "s" s::s binds x in s

| AS_if "v" "s" "s"

| AS_var u::u τ v s::s binds u in s

| AS_assign u v

| AS_case "v" case_s

| AS_while s s

| AS_seq s s

Figure 6. Statement Datatype

Figure 6 shows the nominal datatype definition for state-
ments. The “binds” keyword is used to indicate the binding
structure for the let, let2 and var statements. The datatype
for the branches of the case statement are also defined here
and we enforce that there is at least one branch.

An important property of functions that is used in proofs
is equivariance: permuting atoms on the result of a function
is equal to applying the function to permuting atoms on the
arguments. Informally, equivariance means that the function
is well-behaved with respect to α-equivalence. Equivariance
also extends to propositions and inductive predicates includ-
ing typing judgements. When defining nominal functions,
Isabelle generates a proof obligation for equivariance that
we need to prove. In most cases these are easy to prove.

9
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The first set of functions that we define are the impor-
tant substitution functions for the language terms. Nomi-
nal Isabelle allows us to encode the capture avoiding prop-
erty substitution that we need by allowing the specifica-
tion of a freshness condition for a branch of the function as
shown in Figure 7. We prove a number of lemmas related

nominal_function subst_t :: "x ⇒ v ⇒ τ ⇒ τ" where
"atom z ♯ (x,v) =⇒ subst_t x v {| z : b | c |} = {| z :

b | c[x::=v]c |}"

Figure 7. Substitution Function For Types

permutation of variables to substitution using the lemmas
from [15] as a guide. An example is that substituting in a
variable is the same as permutation provided y is fresh in t :
(x ↔ y) • t = t[x := y]. As program variables can appear
in types, we define substitution for types. When we define
substitution for statements, we include in the clause for the
var statement substitution into the type annotation. The
structures for contexts Φ, Π, Γ and ∆ are defined using list,
or list-like, datatypes. We define substitution for ∆, which is
just a mapping of the substitution function over the types for
the mutable variables. Substitution in Γ, Γ[x/v] may result
in the ‘collapse’ of Γ if x has an entry in Γ. Finally, for the
syntax part, we define the inductive predicates capturing the
well-scoping and sort checking rules.

4.3 SMT Model
As mentioned above, the subtyping check boils down to
a validity check in a logic supported by the SMT solver
Z3. In order to prove lemmas about subtyping, for example
transitivity, substitution and weakening, we need to build a
model of the SMT logic and setup definitions and supporting
lemmas. Themodel also allows us to prove specific subtyping
relations between types used by the progress lemma.
The logic is multi-sorted and we can reuse the base type

datatype to define the sorts for variables and terms in this
logic. We first define a datatype representing the values in
this logic and define the type of valuation that is a map
of variables to values. To ensure that the valuation maps
variables to the value of the appropriate sort, we define a
notion of well-formedness for valuations with respect to
the contexts Θ and Γ. This well-formedness condition also
ensures that all the variables in Γ are given a value by the
valuation. We then define a series of evaluation relations for
literal, values, expressions and constraints that define how
these terms are evaluated by a valuation. Importantly we
prove an existence lemma that says that there is a value for
a term under a valuation if the term is well-sorted and the
valuation is well-formed. We will then prove later that type
synthesis for values and expressions produce well-formed
constraints and so have shown that synthesised types fall
within the decidable logic fragment.

Building on evaluation of constraints, we define satisfac-
tion of a constraint in Θ and Γ contexts and then validity. We
prove strengthening, weakening and substitution properties
for validity.

4.4 Typing
In this subsectionwe describe how the typing rules presented
in Figure 5 are translated into inductive predicates in Isabelle.
For the most part, the Isabelle rules are a transcription

from the paper formalisation into Isabelle. The only differ-
ence is that we need to add freshness conditions to the
premises of some of the rules. For example, for the type
synthesis rules for values, we need to ensure that z appear-
ing in a synthesised type does not also appear in v or the
context Γ.
Equivariance for the predicate is proved automatically

and induction rules are generated. For nominal predicates
and datatypes we also have strong induction rules gener-
ated that we can use in nominal inductive proofs to ensure
that freshness conditions are automatically built into the
proof. We also instruct Isabelle to generate various forms of
elimination rules that we can use in proofs.

For proving lemmas about the typing judgements, we can
use induction over the syntax of the term, or induction over
the structure of the derivation, making use of the induction
rules generated from the typing predicate. Nominal-Isabelle
generates induction rules and provides a proof method for
doing induction over inductive predicates which assists par-
ticularly with proving lemmas over terms with binders. How-
ever for proving lemmas about statements care was required
to construct the lemma correctly and to invoke the proof
method due to the mutual recursive nature of statements
and case branches.
We prove lemmas that assure us that synthesised types

are well-formed and are unique up to alpha-equivalence. Fur-
thermore we prove weakening. This tells us that a judgement
continues to hold if a context is replaced with a larger one
- when considered as a set, the larger is a superset of the
smaller and that the larger is also well-scoped. We do this
for the Γ and ∆ contexts.

4.5 Substitution Lemmas
The key enabling lemmas are the substitution lemmas, pri-
marily the substitution lemma for statements which is shown
in Figure 8. The substitution lemma ensures that reduction
steps using substitution preserve the type over the reduc-
tion. Before being able to prove this lemma for statements,
we need to prove it for expressions and values and, since
substitution occurs into types as well, we need to prove lem-
mas involving substitution for types, subtyping and validity.
Prior to this we need to prove a set of narrowing lemmas.
These are lemmas telling us that if a variable x has an en-
try x : b[ϕ] in a context Γ and we replace ϕ with a more
restrictive constraint in Γ, then type checking and synthesis

10
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lemma subst_infer_check_s:

fixes v::v and s::s and cs::case_s and x::x and c::c and b::b and Γ1::Γ and Γ2::Γ
assumes "Θ ; Γ1 ⊢ v ⇒ τ" and "Θ ; Γ1 ⊢ τ ≲ {| z : b | c |}" and "atom z ♯ (x, v)"

shows "Φ; ∆; Γ; Θ ⊢ s ⇐ τ’ =⇒ Γ = (Γ2@((x,b,c[z::=V_var x]c)#Γ1)) =⇒

Φ; ∆[x::=v]∆; Γ[x::=v]Γ; Θ ⊢ s[x::=v]s ⇐ τ’[x::=v]τ " and
"Φ; ∆; Γ; Θ; tid ⊢ cs ⇐ τ’ =⇒ Γ = (Γ2@((x,b,c[z::=V_var x]c)#Γ1)) =⇒

Φ; ∆[x::=v]∆; Γ[x::=v]Γ; Θ; tid ⊢ cs[x::=v]s ⇐ τ’[x::=v]τ "

Figure 8. Substitution Lemma for Statements

judgements for statements, expressions and values will hold
if they hold for the original Γ.
To prove the substitution lemma for statements we use

rule induction and outline now how this proceeds for the
let statement. The typing rule for the let statement is shown
in Figure 9. Rule induction will invert the statement of the
lemma and the premises for the rule will be added as premises
for the case with the appropriate instantiation of variables.
Our task is to apply the typing rule for the let statements in
the forward direction to show substitution is true for the let
statement. To get to the point where we can do this, there
are some steps we need to do:
• Apply the substitution lemma for expressions to e to
obtain a subtype of the type for e
• Use the induction hypothesis to get the substitution
for s .
• Apply the narrowing lemma for the type of e in the
context.
• Prove the required freshness conditions.

The first three steps are shared with a paper proof however
the last is not.
A common proof pattern we encountered was that in

order to satisfy a freshness condition, we needed to obtain
a new variable that is fresh for a set of terms and contexts.
Obtaining the new variable is a one-liner but the tricky step
is proving facts that hold for terms containing the original
variable continue to hold, in some way, for terms with the
fresh variable. For example, in the weakening lemma for
the let statement let x = e in s , the typing rule for this
requires that x does not occur in the context Γ. However
with weakening there is no restriction on what might have
been added to the expanded context, and this might have
been x . Therefore we have to prove weakening for an α-
equivalent let statement where the bound variable does not
occur in the context.

4.6 Progress, Preservation and Safety
We finish the formalisation with proofs of progress, preser-
vation and finally safety. The statement of these as Isabelle
text is shown in Figure 10

For type preservation, we don’t just prove preservation of
the type of the statement under reduction but we also need
to ensure that the types of the values in the possibly updated

mutable storeδ remain compatible with the∆ context. To this
end, we introduce a new typing judgement: Φ;Θ ⊢ (δ , s ) ⇐
τ ;∆. This judgement holds if we have Φ;Θ; ϵ ;∆ ⊢ s ⇐ τ
and for every (u,v ) in δ , if there is a pair (u,τ ) ∈ ∆, then
Θ; ϵ ⊢ v ⇐ τ .

The progress lemma states that if a statement and store are
well-typed, then the statement is either a value or a reduction
step can be made. Finally, we prove the type safety lemma
for MiniSail that says that if s is well-typed, and we can
multi-step reduce s to s ′, then either s ′ is a value or we can
make another step.

These final lemmas here are starting to look like the paper
proofs as we have by this stage established a foundation with
the substitution lemmas and have left the realm of syntax
and typing.

5 Experience and Discussion
The development of the MiniSail has fed back into the de-
velopment of the full Sail language. Early versions of Sail
had an ad-hoc hand-written constraint solver, which was
often incapable of proving all constraints found in our ISA
specifications. By co-developing the MiniSail formalisation
with re-development of the full Sail type checker, we were
able to guarantee the decidability of all constraints, while si-
multaneously increasing the expressiveness of the constraint
language.
Not only has the MiniSail formalisation significantly in-

creased our confidence in the robustness of our type system
design, the use of an off-the-shelf constraint solver (Z3), com-
bined with the bi-directional type-checking approach used in
MiniSail has increased the performance of the Sail language
significantly: before starting our MiniSail formalisation, a
fragment of ARMv8 specified in Sail would take several min-
utes to type-check due to pathological cases in the ad-hoc
constraint solver. In recent versions, type-checking the entire
64-bit fragment of the ARMv8 instruction set can be done in
under 3 seconds on a modern computer (Intel i7-8700).

We have both a paper formalisation of MiniSail, presented
in [2] and a mechanised formalisation presented in this paper
and so there is an opportunity to compare the two. The first
point of comparison is in the lengths of the two works: The
paper formalisation take 85 pages of typeset mathematics,
with associated commentary, and the Isabelle mechanisation

11
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check_letI: "[[
atom x ♯ (z,c,τ,Γ); atom z ♯ Γ ;

Φ ; ∆ ; Γ ; Θ ⊢ e ⇒ {| z : b | c |} ;

Φ ; ∆ ; ((x,b,c[z::=V_var x]c)#Γ) ; Θ ⊢ s ⇐ τ ]] =⇒
Φ ; ∆ ; Γ ; Θ ⊢ (AS_let x e s) ⇐ τ"

Figure 9. Typing rule for Let statement

lemma progress:

fixes s::s

assumes "Φ ; Θ ⊢ ⟨ δ , s ⟩ ⇐ τ ; ∆ "

shows "(∃ v. s = AS_val v) ∨ (∃ δ’ s’. Φ ⊢ ⟨ δ , s ⟩ −→ ⟨ δ’ , s’ ⟩)"

lemma preservation:

fixes s::s and s’::s and cs :: case_s

assumes " Φ ⊢ ⟨ δ , s ⟩ −→ ⟨ δ’ , s’ ⟩" and "Φ ; Θ ⊢ ⟨ δ , s ⟩ ⇐ τ ; ∆"
shows "∃∆’. Φ ; Θ ⊢ ⟨ δ’ , s’ ⟩ ⇐ τ ; ∆’ ∧ set ∆ ⊆ set ∆’"

lemma safety:

assumes " Φ ⊢ ⟨ δ , s ⟩ −→∗ ⟨ δ’ , s’ ⟩" and "Φ ; Θ ⊢ ⟨ δ , s ⟩ ⇐ τ ; ∆"
shows "(∃ v. s’ = AS_val v) ∨ (∃ δ’’ s’’. Φ ⊢ ⟨ δ’ , s’ ⟩ −→ ⟨ δ’’ , s’’ ⟩)"

Figure 10. Preservation, Progress and Safety Lemmas

takes 402 pages of typeset Isabelle code. The Isabelle formal-
isation also took around 4 times as long to complete as the
paper proofs. This included the initial mechanisation that
was using the paper proofs as a starting point and the extra
time to add the sort-checking that isn’t in the paper proofs.

To decrease the effort better tools and practices are needed
to remove some of the boilerplate proof code and the repet-
itive nature of the proofs. Ott [18] was used to typeset the
typing rules and operational semantics for the paper proofs.
Ott can be used to specifying binding structure and does
export to Isabelle (but not in the Nominal style). So future
work is to enhance Ott and to see if can be used to tame the
boilerplate similar to the work described in [9].
A feature of paper proofs is that the author has greater

control over the structure of the proof and can ensure that the
main thread of the argument is made clear and that ancillary
detail is elided. With a mechanised proof, the detail has to be
present somewhere. The challenge in this mechanisation has
been to ensure that the detail, particularly the detail about
freshness, which wouldn’t appear in the paper proof, doesn’t
swamp or hide the main argument. Isabelle provides a means
to structure proofs and this has been taken advantage of in
most places in the mechanisation. However some more work
is required to clean up some of the proofs possibly with the
help of suitable technical lemmas that will enable Isabelle
automatic proof methods.
Another point of comparison between paper and mecha-

nised proofs is around the level of abstraction. In the paper
proofs, we deal directly with the language syntax, whereas
in the mechanisation we have to go through datatypes that
represent the syntax. When constructing the datatypes, we
can choose to have a datatype constructor corresponds to

a single production rule in the syntax or we can abstract
and have the datatype represent a number of similar rules
and have some parameterisation mechanism. For example,
in the Isabelle mechanisation for the binary operators + and
≤, we have a single constructor for the binary operator and
parameterise over the operator.

In the definition of the typing predicate, we give one rule
for + and one for ≤. The impact of this choice is how the
cases for the inductive proofs look when we do induction
over the AST or the rules. If we go for a match between AST
and grammar, such as with the fst and snd operators, then
there will be a overlap in the proof text for the cases for these
operators. The proofs follow the same overall pattern with
difference being in how the value and type are projected out.
In a paper proofs, the author can present the proof for just
one case and appeal to proof by analogy for the other; in the
mechanisation the analogy has to be made explicit.
There are number of avenues to explore making use of

this work and the experience: The first is to investigate if the
mechanisation can be used to generate an implementation of
a type checking and interpreter for MiniSail. Code exporting
is a well used feature of Isabelle however the challenge here
is that code exporting for Nominal-Isabelle has not been
solved. Second, formalise a larger subset of Sail either within
the Nominal framework or use another representation. In
the case of the latter, prove some sort of correspondence.
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