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1 Introduction

Giving Sail a formal specification and proving safety and decidability will provide us with a contract
between users of the language and builders of an implementation of the language. It will ensure that
changes to the language are carefully controlled and that we do not rely on a blessed implementation
for a complete reference of the language and clever engineering for a type checker that works ‘most
of the time’. With this in mind, we have developed MiniSail a core calculus that captures key
features of Sail and is a first step toward formalising the complete language. In this work we
present the syntax of MiniSail, a type system and operational semantics. We then prove a number
of lemmas leading to proofs of preservation, progress and safety. MiniSail, particularly the use of
bidirectional typing [2], the use of constraints and the interaction with the SMT solver, has already
informed the design of the Sail type system

We choose the features of Sail to include in MiniSail to be those that interact highly with
other features, those that are involved in the generation of SMT constraints and those that pose
interesting challenges for features satisfying the first two criteria. The features included are:

• Lightweight dependent types. This cuts across many of the other language features. It permits
immutable program variables to appear in types and means that reduction steps making use
of substitution, and hence the substitution lemmas, need to take into account substitution
into types and the type context.

• Refinement types with constraints that are limited to expressions within the decidable logic
of the SMT solver Z3 [1].

• Simple arithmetic expressions. These give us points where constraints are synthesised and
gives rise to arithmetic expressions in our constraint logic.

• Mutable variables. These require us to have an operational semantics that includes a mutable
store, a guarantee that values in the store preserve their types and a substitution function
substituting into the declared type for a mutable variable.

• While loops.

• Pairs and their associated typing syntax.

• Generalised sum types (corresponding to union types in Sail).

• Function definition and function application. Both of these require a subtyping check. For
function definition, we need a subtype check that the value returned from the function body
is a subtype of the return type given in the function signature. For function application we
need a subtype check that the provided function argument is a subtype of the argument’s
type as given in the function’s type signature.

As MiniSail is intended to be a calculus rather than a programming language, it has been designed
for mathematical rather than programming convenience. To achieve mathematical convenience, the
syntax of MiniSail is based on let-normal form and a stratification of what are expressions in the
Sail language into values, expressions and statements in MiniSail. This leads to a corresponding
stratification of the typing judgements and makes reasoning about the type system clearer. Ex-
pressions are function applications, binary operations + and ≤ and projection from a pair but the
arguments to these can only be values. Hence complex expressions, such as function application
to a sum of two variables, need to be broken into a nesting of let-statements where the parts of
the complex expression are bound to variables. This ensures that the types of the components of
complex expressions are made explicit as the typing of the nested let-statements, possibly nested,
will give us the type of each sub-expression.
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We make use of bidirectional typing for defining the type system with the main typing rules
for values and expressions being type synthesis and the typing rules for statements being type
checking. This provides clarity on where any type annotations are necesary in the language and
also aids implementation of a type checker.

Some of the features in Sail that are missing from MiniSail are:

• Vectors, including bit vectors.

• Complex pattern matching including bit vector pattern matching

• Records and mutable records.

• Overloaded functions.

The complete grammar, type system and specification of the operational semantics can be found
in the Appendix.

2 Decidability of Type Checking

Both Sail and MiniSail draw inspriration for their type systems from Liquid Types [3]. Syntactically,
types in MiniSail are composed of a program variable, a base type and a refinement predicate.
Unlike other refinement type languages, Sail and MiniSail do not include higher order functions
and so we are able to provide a strong argument that the constraints arising during MiniSail type
checking, and that are passed to the SMT solver, form a logic that is decidable within the solver.
We can go further and claim that the MiniSail type system is decidable - there is an algorithm for
type checking a program that will terminate with the correct answer. We sketch an algorithm and
indicate which features of the language are important for decidability:

• To each type checking judgement corresponds a function taking contexts, a term and a type.
It returns a boolean indicating that the term has the type with respect to the supplied
contexts.

• To each type synthesis judgement corresponds a function taking contexts and a term. It
returns a type.

• In each of the checking and synthesis functions, we have a match statement that matches on
the syntactic form of the term. As our typing rules are syntax directed we can put into each
branch the logic for a single inductive rule and all of the rules for a judgement will appear in
exactly one branch.

• In each branch we check the premises for the rule the branch corresponds to. The checks are
as follows:

– Lookup in a context. These are decidable since the contexts are finite.

– Invoking a check or synthesis typing function. As these are invoked with a simpler term,
the recursion will bottom out.

– Subtype check.

• The premises of some rules will reference ‘existential variables’ by this we mean that these are
variables appearing in the premises but not in the conclusion of a rule. All of the existential
variables in the MiniSail rules can be calculated deterministically. For example, in the rule
for infer v data cons we have a τ , Ci, τi that appear just in the premises however the
choice of values for these is determined by the C in the rule conclusion and that C can only
appear in one union definition by our well-scoping conditions.
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• The subtyping check can be implemented as a function to construct an SMT problem derived
from the constraints for each of the types being checked. The details of this are covered in
Section 7.3. We have ensured that the constraints generated are from a logic fragment that
is decidable within the SMT solver. We make use of the follow logics that are decidable in
Z3:

– Presburger arithmetic with inequality

– Algebraic data types

3 Syntax

In the syntax description below, we use the following metavariables:

• n - Numeric literals. We use n̄ to refer to the actual natural number corresponding to the
literal n.

• x - Program variables and variables bound in monotypes. Also used are z and w.

• u - Mutable variables.

• f - Function names.

• tid - Type identifiers.

• C - Datatype constructors.

We stratify the terms of the language into values, expressions and statements: Values are the things
that we want our program to produce when provided with an empty context, expressions are how
we combine values and statements give the principal structure to our programs. Values, expressions
and statements are defined by the following grammar:

Value v ::= x | n | T | F | (v, v) | C v | ()
Expression e ::= v | v + v | v ≤ v | f v | u | fst v | snd v

Statement s ::= v | let x = e in s| let x : τ = s in s
| if v then s else s |
| match v { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn}
| var u : τ = v in s
| u := v
| while (e) do {s}
| s1; s2

• Expressions only occur in let and while statements. During reduction, let is where the re-
duction of expressions occur and reduction of while involves unfolding it to a let-if-while
construct with the let containing the expression. Using expressions in the guard of the while
loop allows us to reference mutable variables in the guard and for these variables to change
value as the while body is processed. Any other occurrence of an expression, for example
function application to an expression, can be handled by writing as let.

• Mutable variables are expressions and the scope of a mutable variable is the statement in the
var statement.

• The grammar for the calculus omits bracketing with round brackets or curly brackets; these
would be included in a grammer for a MiniSail programming language.
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Typing constructs are as follows:

Base type b ::= int | bool | tid | b × b
Constraint φ ::= T| F| e− = e− | e− ≤ e− | φ ∧ φ | φ ∨ φ | ¬φ
Monotype τ ::= {x : b | φ }

The nonterminal e− is identical to the expression nonterminal e with the omission of mutable
variables and function application. e− defines what is permitted in the logic of SMT solver such as
Z3. Note that we are including pairing, pair projection and data-constructors in the logic we pass
to Z3. These are supported in Z3.

Constraints can include program variables and so well-scoping conditions are needed to ensure
that free variables in constraints are either bound in the monotype form {z : b|φ} (as z is here) or
are in the domain of the typing context. This is detailed below.

The top level structure of a program is composed of a sequence of type and function definitions
and a single statement:

Function Definition fd ::= val f : (x : b[φ])→ τ
function f(x) = s

Union Definition td ::= union tid = {C1 : τ1, ...,Cn : τn}
Definition def ::= td | fd
Program p ::= def1 ; .. ; defn ; s

Note that function definition is a combination of a type signature for the function and a function
body definition. In Sail these are two separate terms in the language.

We use the word ‘term’ to refer loosely to any syntactic construct.

4 Relationship to Sail

Apart from types, MiniSail is a sub-language of Sail. Types in Sail are constructed a little differently
from MiniSail types and in this section we define a mechanism for converting Sail types to MiniSail
types. Types in Sail are polymorphic in number, order and other types and constraints making
use of type level number expressions can be included in a type. In this respect, Sail types resemble
refinement types as described in [3, 4]. In refinement types, there is a value variable, a base type
and a constraint making use of the value variable and program variables that are in scope. In Sail,
constraints can be a separate component of the type but can also be implicitly combined with the
base in a type constructor such as range. Here the base type is int and the constraint is that the
value variable is between two type level number expressions. Furthermore, types in Sail can be
nested - for example a pair type is a nesting of two types. In MiniSail, this doesn’t occur - a pair
type of two types is indicated by a single top level mono-type with a paired base type and suitable
constraint. Finally, a type bind contain zero or more type level variables; in MiniSail they bind
exactly on value variable. We thus need to mechanism that extracts the base type and constraint
components from a Sail type and tells us how to map type level variables to value variable terms.

Types in Sail can be specified in a number of different ways and one of these is as an exis-
tential type. Prior to converting to a MiniSail type, we require that the Sail type is rewritten as
a Sail existential type without any nesting of existentials. More formally, we define the following
subgrammar of the Sail grammar and we require that the Sail type match this grammar. In the
grammar we have that n is a numeric literal and k is a Sail type level integer variable.
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Value v ::= k | n |
Expression e ::= v | v + v | v ≤ v
Constraint φ ::= T| F| e = e | e ≤ e | φ ∧ φ | φ ∨ φ | ¬φ
Simple Type σ ::= atom(k) | range(n, n) | (σ, σ) | tid
Type τ ::= {k1..kn, φ.σ} | σ
Function Type ψ ::= forall k1..kn, φ.σ → τ

As part of the conversion we will construct a mapping, ρ, that is a partial map from Sail
type level variables to MiniSail values. We define a series of partial functions that carry out the
conversion and Sail types not in the domain are not convertible.

We define a partial function that takes a τ and returns a MiniSail base type.

B(atom(k)) = int

B(range(n1, n2)) = int

B((τ1, τ2)) = B(τ1)×B(τ2)

B(tid) = tid

B({k1, ...kn, φ.σ}) = B(σ)

Next we define a function taking a MiniSail value, a mapping ρ and a τ and returns a constraint
and a mapping.

N(v, ρ, atom(k)) =

{
(v = ρ(k), ρ), if k ∈ dom(ρ)

(>, ρ[k 7→ v]), otherwise

N(v, ρ, range(c1, c2)) = (n1 ≤ v ∧ v ≤ n2, ρ)

N(v, ρ, (τ1, τ2)) = let (φ1, ρ1) = N(fst v, ρ, τ1) in

let (φ1, ρ1) = N(snd v, ρ1, τ2) in

(φ1 ∧ φ2, ρ2)
N(v, ρ, tid) = (>, ρ)

N(v, ρ, {k1, ...kn, φ.σ}) = {z : B(σ) | let (φ′, ρ′) = N(z, ρ, σ) in φ′ ∧ ρ′(φ)}

We write ρ[k 7→ t] to indicate ρ extended with a mapping of k to v. The function that performs
the top level conversion is:

M(σ) = let (φ, ρ) = N(z, ·, σ) in {z : B(σ)|φ}
M({k1, ...kn, φ.σ}) = N(z, ·, {k1, ...kn, φ.σ})

M(forall k1..kn, φ.σ → τ) = let (φ1, ρ1) = N(x, ·, σ) in

let (φ2, ρ2) = N(z, ρ1, τ) in

x : B(σ)[φ1 ∧ ρ1(φ)]→ {z : B(τ)|φ2}

We restrict the mapping to range types that only have numeric literals as their end points
and atom types that only include a type level variable. Sail permits a wide range of arithmetic
expressions in these positions however most of these can be rewritten by putting the expression
into the constraint.

Examples of translation are:

M({n, 10 ≤ n. int (n)}) = {z : int|10 ≤ z}
M({n, 42 ≤ n.( atom (n), atom(n))}) = {z : int× int|42 ≤ fst z ∧ fst z = snd z}

M(range(0, 31)) = {z : int|0 ≤ z ∧ z ≤ 31}
M({n, 4 ≤ n. (range(0, 10), atom (n))})) = {z : int ∗ int|0 ≤ fst z ∧ fst z ≤ 10 ∧ 4 ≤ snd z}
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An example of a function type translation is:

M(forall n m.{p,>.(atom(n), atom(m))} → {k, k = m+ n. atom(k)})
= x : int × int [>]→ {z : int|z = fst x+ snd x)}

The following type will not be translated:

M({n, 10 ≤ n. int (n+ 1)})

but this following equivalent type will be:

M({n, 11 ≤ n. int (n)}) = {z : int |11 ≤ z}

The following type will not be translated:

forall n m k, k = m+ n. {(atom(n), atom(m))} → {atom(k)}

5 Example Programs

We present three short programs that illustrate a number of language features rather than being
a realistic example of how Sail is used to model ISAs. The first program is written in ‘idiomatic’
Sail making use of a number of short-hands, the second is an equivalent Sail program, de-sugared
somewhat to match the MiniSail grammer and the third is the corresponding MiniSail program
that has had the type translation described above applied to it.

default Order dec

$include <prelude.sail>

$include <flow.sail>

union foo = {
Bar : int(42),

Baz : int

}

val f : foo -> int(42)

function f ( x ) = {
y : int(42) = 42;

foreach(i from 1 to 10) {
if i==9 then

match x {
Bar(j) => y = j,

Baz(j) => y = 42

}
};
y

}

The following is the de-sugared version and is still valid Sail. The typing constructs that we
need to convert are indicated with a grey background.

default Order dec

$include <prelude.sail>
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$include <flow.sail>

union foo = {
Bar : { ’n , ’n = 42 . int(’n) } ,
Baz : { ’n . int(’n) }

}

val h : foo -> { ’m , ’m = 42 . int(’m) }
function h ( y ) = {
var w : foo = Baz (1) in

var u : { ’m , ’m = 42 . int(’m) } = 42 in

var i : { ’m . int(’m) } = 1 in

while ( i <= 10 ) do {
let x1 = i + 1 in i = x1;

if i == 9 then

w = Bar(42)

else

w = Baz(i);

match w {
Bar(j) => u = j,

Baz(j) => u = 42

}
};
u

}

The third is the MiniSail version that has undergone translation of the types:

union foo = {
Bar : { z : int | z = 42 },
Baz : { z : int | T }
}

val h : x : foo [T] -> { z : int | z = 42 }
function h ( y ) = {
var w : foo = Baz (1) in

var u : { ’m , ’m = 42 . int(’m) } = 42 in

var i : { ’m . int(’m) } = 1 in

while ( i <= 10 ) do {
let x1 = i + 1 in i = x1;

if i == 9 then

w = Bar(42)

else

w = Baz(i);

match w {
Bar(j) => u = j,

Baz(j) => u = 42

}
};
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u

}

6 Substitution

Substitution is the key mechanism used to execute MiniSail program and is used extensively in the
typing rules. We are careful to only allow substitution of immutable variables by values. We use

[v/x] to denote the substitution of variables appearing in terms, constraints and types with values.
Substitution associates to the left and distributes over connectives. So the following equivalence
holds:

(φ =⇒ φ′)[v′/z][v/x] ≡ ((φ[v′/z])[v/x]) =⇒ ((φ′[v′/z])[v/x])

We now define substitution for each sort of term in the language. In the following, the notation
x#v means that x does not occur in v this is to ensure capture avoiding substitution and renaming
of variables is permitted to ensure this occurs.
Substitution in values:

x[v/z] =

{
v, if x = z

x, if x 6= z

n[v/z] = n

T[v/z] = T

F[v/z] = F

()[v/z] = ()

(v1, v2)[v/z] = (v1[v/z], v2[v/z])

(C v′)[v/z] = C (v′[v/z])

Substitution in expressions:

(v1 + v2)[v/z] = v1[v/z] + v2[v/z]

(v1 ≤ v2)[v/z] = v1[v/z] ≤ v2[v/z]
(f v′)[v/z] = f(v′[v/z])

(fst v′)[v/z] = fst (v′[v/z])

(snd v′)[v/z] = snd (v′[v/z])

u[v/z] = u

Substitution in statements. Where a statement includes a type annotation, substitution needs to
occur in the type as well.

(let x = e in s)[v/z] = let x = e[v/z] in s[v/z]

(provided x 6= z and x#v)

(if v1 then s1 else s2)[v/z] = if v1[v/z] then s1[v/z] else s2[v/z]

(let x : τ = s1 in s2)[v/z] = let x : τ [v/z] = s1[v/z] in s2[v/z]

(provided x 6= z and x#v)

(u := v′)[v/z] = u := v′[v/z]

(var u : τ = v′ in s)[v/z] = var u : τ [v/z] = v′[v/z] in s[v/z]

(while (e) do {s})[v/z] = while (e[v/z]) do {s[v/z]}
(match v′ { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn})[v/z] =

match (v′[v/z]) { C1 x1 ⇒ (s1[v/z]) , .. , Cn xn ⇒ (sn[v/z])}
(provided z 6= xi and xi#v, for i = 1..n)
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Substitution in constraints:

T[v/z] = T

F[v/z] = F

(e1 = e2)[v/x] = e1[v/x] = e2[v/x]

(e1 ≤ e2)[v/x] = e1[v/x] ≤ e2[v/x]

(φ1 ∧ φ2)[v/x] = φ1[v/x] ∧ φ2[v/x]

(φ1 ∨ φ2)[v/x] = φ1[v/x] ∨ φ2[v/x]

(φ1 =⇒ φ2)[v/x] = φ1[v/x] =⇒ φ2[v/x]

(¬φ)[v/x] = ¬(φ[v/x])

Substitution in monotypes:

({z : b|φ})[v/x] = {z : b|φ[v/x]} provided x 6= z and z#v

7 Type System

7.1 Contexts

We have a type context, Γ, for immutable variables defined as follows:

Γ = x1 : b1[φ1], .., xn : bn[φn]

New variables are added to the right. We also have a definition context Π that contains the list of
functions and type definitions. As in Sail, we do not allow the same string to be used as a function
identifier, type identifier, constructor or variable name, hence Π can contain both function and
type definitions without conflict. We have a context for mutable variables, ∆. These three contexts
can be viewed as functions with the domain of Γ being immutable program variables, domain of Π
being function names and type identifiers and the domain of ∆ being mutable variable names.

Γ(xi) = bi[φi]

Π(fi) = val fi : (xi : bi[φi])→ τi; function fi(xi) = si

Π(tidi) = tidi : {Ci1 : τi1 .. Cin : τin}
∆(ui) = τi

It is important to note that the context Γ has an ordering since the constraint in the type of a
variable might make use variables introduced earlier in the context and so we need these latter
variables to appear in the list prior to the variable being defined. We use well-scoped rules to
capture this formally and these can be found in the appendix.

We do not include the side condition x /∈ vars(Γ) in the g ws cons rule. Instead, globally,
we adopt the Barendregt Convention where we apply alpha-conversion as needed to ensure that
capture avoiding substitution is possible and a variable doesn’t appear twice in the context. With
the latter, the renaming will occur when a new variable and type is added to the context as in the
check anf let and check anf let2 rules below: we rename the variable x bound in the let
statemewnt if it already appears in the context.

Π ` Γws Context Γ is wellformed in context Π

Πws

Π ` ·ws
g ws empty
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Π ` Γws
Π ` b ws
Π; Γ, x : b[>] ` φws
x /∈ dom(Γ)

Π ` Γ, x : b[φ]ws
g ws cons

We also define a substitution operation on the context Γ. If Γ is as above then:

Γ[v/x] = x1 : b1[φ1[v/x]], ..., xn : bn[φn[v/x]]

also in the case where x appears in the context we have:

(Γ, x : b[φ],Γ′)[v/x] = Γ,Γ′[v/x]

We do need define substitution on ∆:

{(u1, τ1), .., (un, τn)}[v/x] = {(u1, τ1[v/x]), .., (un, τn[v/x])}

We do not need to apply substitution to the contexts Π.

7.2 Bidirectional Typing Rules

In this section we introduce and describe the key typing judgements and their inductive definitions.
The first of these is the subtyping judgement. This provides the link between the typing rules and
the SMT solver through the validity judgement Π; Γ |= φ which we discuss below.

Π; Γ ` τ1 . τ2

Π; Γ ` {z1 : b|φ1}ws
Π; Γ ` {z2 : b|φ2}ws
Π; Γ, z1 : b[φ1] |= φ2[z1/z1]

Π; Γ ` {z1 : b|φ1} . {z2 : b|φ2}
subtype subtype

For the typing judgements for values, expressions and statements we make use of bidirectional
judgements. We have the type synthesis judgements Π; Γ ` v ⇒ τ and Π; Γ; ∆ ` e ⇒ τ for values
and expressions respectively. It is important that the rules for these judgements synthesise types
that have constraints that are within the decidable logic of the SMT solver. With some of the
rules, for example infer e plus, we do not need to include the constraints φ1 or φ2 explicitly in
the conclusion of the rule: If v1 is a variable then it and φ1 will appear in Γ; if v1 is a number or
a boolean then φ1 is a trivial equality constraint and will be reflected in the type synthesised by
infer e plus as v1 appears in the constraint of the type.

Π; Γ ` v ⇒ τ Infer that type of v is τ

Π ` Γws
x : b[φ] ∈ Γ

Π; Γ ` x ⇒ {z : b|z = x} infer v var

Π ` Γws

Π; Γ ` ()⇒ {z : unit|z = ()} infer v unit

Π ` Γws

Π; Γ ` T⇒ {z : bool|z = T} infer v true

Π ` Γws

Π; Γ ` F⇒ {z : bool|z = F} infer v false
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Π ` Γws

Π; Γ ` n⇒ {z : int|z = n} infer v num

Π; Γ ` v1 ⇒ {z1 : b1|φ1}
Π; Γ ` v2 ⇒ {z2 : b2|φ2}

Π; Γ ` (v1, v2)⇒ {z : b1 ∗ b2|z = (v1, v2)}
infer v pair

union tid = {Ci : τi
i } ∈ Π

Π; Γ ` v ⇐ τ

Π; Γ ` Cj v ⇒ {z : tid |z = Cj v} infer v data cons

Π; Γ; ∆ ` e ⇒ τ Infer that type of e is τ

Π; Γ ` ∆ws
Π; Γ ` v1 ⇒ {z1 : int|φ1}
Π; Γ ` v2 ⇒ {z2 : int|φ2}

Π; Γ; ∆ ` v1 + v2 ⇒ {z3 : int|z3 = v1 + v2}
infer e plus

Π; Γ ` ∆ws
Π; Γ ` v1 ⇒ {z1 : int|φ1}
Π; Γ ` v2 ⇒ {z2 : int|φ2}

Π; Γ; ∆ ` v1 ≤ v2 ⇒ {z3 : bool|z3 = v1 ≤ v2}
infer e leq

Π; Γ ` ∆ws
val f : (x : b[φ])→ τ ∈ Π
Π; Γ ` v ⇐ {z : b|φ}

Π; Γ; ∆ ` f v ⇒ τ [v/x ]
infer e app

Π; Γ ` ∆ws
Π; Γ ` v ⇒ {z : b1 ∗ b2|φ}

Π; Γ; ∆ ` fst v ⇒ {z : b1|z = fst v} infer e fst

Π; Γ ` ∆ws
Π; Γ ` v ⇒ {z : b1 ∗ b2|φ}

Π; Γ; ∆ ` snd v ⇒ {z : b2|z = snd v} infer e snd

Π; Γ ` ∆ws
u : τ ∈ ∆

Π; Γ; ∆ ` u ⇒ τ
infer e mvar

We also require for values and expressions type checking judgements. The rules for these
synthesis a type and then check that it is a subtyping of the type that we are checking against.

Π; Γ ` v ⇐ τ Check that type of v is τ

Π; Γ ` v ⇒ {z2 : b|φ2}
Π; Γ ` {z2 : b|φ2} . {z1 : b|φ1}

Π; Γ ` v ⇐ {z1 : b|φ1}
check v val

Π; Γ; ∆ ` e ⇐ τ Check that type of e is τ

Π; Γ; ∆ ` e ⇒ {z2 : b|φ2}
Π; Γ ` {z2 : b|φ2} . {z1 : b|φ1}

Π; Γ; ∆ ` e ⇐ {z1 : b|φ1}
check e expr
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For statements, we have just a checking judgement. For the typing of the if statement we make
use of knowledge about the value of the condition in each of the two branches. We do similar in
the match statement. Note also the two different forms for let statements. The first is the one
without the type annotation and here we need to synthesis the type to give to the variable x. The
second is the one without the type and here we merely need to check the type of the statement s1
against the type in the annotation. The second of these is used when reducing function application
where the s1 is the function body.

Π; Γ; ∆ ` s ⇐ τ Check that type of s is τ

Π; Γ ` ∆ws
Π; Γ ` v ⇐ τ

Π; Γ; ∆ ` v ⇐ τ
check s val

u /∈ dom(δ)
Π; Γ ` v ⇐ τ
Π; Γ; ∆, u : τ ` s ⇐ τ2

Π; Γ; ∆ ` var u : τ := v in s ⇐ τ2
check s var

Π; Γ ` ∆ws
u : τ ∈ ∆
Π; Γ ` v ⇐ τ

Π; Γ; ∆ ` u := v ⇐ {z : unit|>} check s assign

Π; Γ ` v ⇒ {x : bool|φ1}
Π; Γ; ∆ ` s1 ⇐ {z1 : b|(v = T ∧ (φ1[v/x ])) =⇒ (φ[z1/z ])}
Π; Γ; ∆ ` s2 ⇐ {z2 : b|(v = F ∧ (φ1[v/x ])) =⇒ (φ[z2/z ])}

Π; Γ; ∆ ` if v then s1 else s2 ⇐ {z : b|φ} check s if

Π; Γ; ∆ ` e ⇒ {z : b|φ}
Π; Γ, x : b[φ[x/z ]]; ∆ ` s ⇐ τ

Π; Γ; ∆ ` let x = e in s ⇐ τ
check s let

Π; Γ; ∆ ` s1 ⇐ {z : b|φ}
Π; Γ, x : b[φ[x/z ]]; ∆ ` s2 ⇐ τ

Π; Γ; ∆ ` let x : {z : b|φ} = s1 in s2 ⇐ τ
check s let2

union tid = {Ci : {zi : bi |φi}
i } ∈ Π

Π; Γ ` v ⇒ {z : tid |φ}
Π; Γ, xi : bi [φi [xi/zi ] ∧ v = Ci xi ∧ (φ[v/z ])]; ∆ ` si ⇐ τ

i

Π; Γ; ∆ `match v of Ci xi ⇒ si
i ⇐ τ

check s match

Π; Γ; ∆ ` e ⇐ {z : bool|>}
Π; Γ; ∆ ` s ⇐ {z : unit|>}

Π; Γ; ∆ ` while (e)do {s} ⇐ {z : unit|>} check s while

Π; Γ; ∆ ` s1 ⇐ {z : unit|>}
Π; Γ; ∆ ` s2 ⇐ τ

Π; Γ; ∆ ` s1; s2 ⇐ τ
check s seq
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7.3 SMT Validity

We have a judgement Γ |= φ that represents the property that a constraint φ when considered as
a logical predicate is valid in the context Γ. In an implementation judgements of this form will be
checked using an SMT solver such as Z3.

We introduce a function | | that translates judgements of the form Γ |= φ into SMT logic
fragment. If Γ = x1 : b1[φ1], ..., xn : bn[φn] then:

|Γ |= φ| = |Γ| =⇒ |φ|
|Γ| = |φ1| ∧ .. ∧ |φn|

The conversion of constraints, expressions and values are done in the obvious way. The exceptions
to note are that expressions that are mutable variables or function application do not have a
conversion, however, as we will argue below, these will never appear in refinement constraints. We
take advantage of the support for algebraic data types in SMT solvers such as Z3 so that we permit
forming of pairs, projection out of pairs and use of data constructors in the expressions that can
appear in constraints.

The use of the Γ |= φ appears in the subtyping judgement and an important use of the subtyping
check is during function application. By means of an example, we show how the SMT solver is
used. Suppose we have a function with the signature:

val f : (x : int × int [0 ≤ fst x ∧ 0 ≤ snd x])→ {z : int | fst x ≤ z ∧ snd x ≤ z}

and that we need to prove the following function application judgement:

Π; a : int [a = 9], b : int [b = 10]; ∆ ` f (a, b)⇒ τ

The derivation of the judgement will include this subtyping check:

Π; a : int [a = 9], b : int [b = 10] ` {z : int × int |z = (a, b) } . {x : int × int |0 ≤ fst x ∧ 0 ≤ snd x}

and this validity check judgement:

a : int [a = 9], b : int [b = 10], z : int × int [z = (a, b)] |= 0 ≤ fst z ∧ 0 ≤ snd z

To check the validity of this, we generate the following Z3 script where we ask Z3 to check the
satisfiability of the negated goal.

(declare-datatypes (T1 T2) ((Pair (mk-pair (fst T1) (snd T2)))))

(declare-const a Int)

(declare-const b Int)

(declare-const z (Pair Int Int))

(define-fun constraint () Bool (and (= a 9) (= b 10)

(= z (mk-pair a b)) (not (and ( <= 0 (fst z )) (<= 0 (snd z))))))

(assert constraint)

(check-sat)

The first line is a datatype declaration for a pair type. If our context included variables of union
type then we would add a declaration for those types. The next three lines declare the variables
used; one declaration for each variable in the context. The Z3 type is derived from the MiniSail
base type for the variable as per the context. The final three lines are where we define the goal
and request Z3 to check that the goal is satisfiable. If the goal is satisfiable then it means that the
subtype check has failed.
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8 Operational Semantics

In this section we describe the operational semantics; that is how we ‘run’ a MiniSail program.
As indicated above, a MiniSail program is a set of definitions and a single statement. We assume
at this stage that the definitions have been processed so that running a program is equivalent
to reducing the single statement. Our aim is to reduce the statement to a value however as we
have permitted non-terminated while loops and unbounded recursion into the language, a program
might not terminate. Since we have mutable variables, we need a store for these variables and so
the reduction is the reduction of a store-statement pair to a new store-statement pair. To avoid
overwriting existing mutable variable values, for example during recursive function calls, we assume
renaming of mutable variables in a function body to fresh variables when applying a function (the
rule reduce let app below) The reduction relation is defined in the context of Π that contains
the function definitions that we will need when reducing function application.

One step and multi-step reduction is defined as follows:

Π ` 〈δ, s〉 → 〈δ′, s ′〉 One step reduction

Π ` 〈δ, if T then s1 else s2〉 → 〈δ, s1〉
reduce if true

Π ` 〈δ, if F then s1 else s2〉 → 〈δ, s2〉
reduce if false

Π ` 〈δ, let x = v in s〉 → 〈δ, s[v/x ]〉 reduce let value

v1 + v2 = v

Π ` 〈δ, let x = v1 + v2 in s〉 → 〈δ, let x = v in s〉 reduce let plus

v1 ≤ v2 = v

Π ` 〈δ, let x = v1 ≤ v2 in s〉 → 〈δ, let x = v in s〉 reduce let leq

val f : (x : b[φ])→ τ ∈ Π
function f (x ) = s1 ∈ Π

Π ` 〈δ, let y = f v in s2〉 → 〈δ, let y : τ [v/x ] = s1[v/x ] in s2〉
reduce let app

Π ` 〈δ, let x = fst (v1, v2) in s〉 → 〈δ, let x = v1 in s〉 reduce let fst

Π ` 〈δ, let x = snd (v1, v2) in s〉 → 〈δ, let x = v2 in s〉 reduce let snd

v = δ(u)

Π ` 〈δ, let x = u in s〉 → 〈δ, let x = v in s〉 reduce let mvar

u /∈ dom(δ)

Π ` 〈δ,var u : τ := v in s〉 → 〈δ[u 7→ v ], s〉 reduce mvar decl

δ′ = δ[u 7→ v ]

Π ` 〈δ, u := v〉 → 〈δ′, ()〉 reduce mvar assign

Π ` 〈δ, s1〉 → 〈δ′, s ′1〉
Π ` 〈δ, s1; s〉 → 〈δ′, s ′1; s〉 reduce seq1

Π ` 〈δ, (); s〉 → 〈δ, s〉 reduce seq2

Π ` 〈δ, let x : τ = v in s2〉 → 〈δ, s2[v/x ]〉 reduce let2 val

Π ` 〈δ, s1〉 → 〈δ′, s ′1〉
Π ` 〈δ, let x : τ = s1 in s2〉 → 〈δ′, let x : τ = s ′1 in s2〉

reduce let2 stmt
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Π ` 〈δ,match (Cj v)of Ci xi ⇒ si
i〉 → 〈δ, sj [v/xj ]〉

reduce match

x fresh

Π ` 〈δ,while (e)do {s}〉 → 〈δ, let x = e in if x then (s;while (e)do {s}) else ()〉 reduce while

Π ` 〈δ1, s1〉 ∗−→ 〈δ2, s2〉 Multi-step reduction

Π ` 〈δ1, s1〉 → 〈δ2, s2〉
Π ` 〈δ1, s1〉 ∗−→ 〈δ2, s2〉

reduce many single step

Π ` 〈δ1, s1〉 → 〈δ2, s2〉
Π ` 〈δ2, s2〉 ∗−→ 〈δ3, s3〉
Π ` 〈δ1, s1〉 ∗−→ 〈δ3, s3〉

reduce many many step

We prove later that the rules presented above are the only rules needed to ensure progress.
Although the if statement takes any value, we only need to include the cases for T and F. We can
excluded the case where v is a variable as the statement being reduced contains no free variables (it
will contain none when the reduction starts and the preservation typing lemma tells us that it will
continue to have no free variables after each reduction). Similarly, from the premises of the preser-
vation lemma, we are only considering well typed statements and so v cannot be anything other
than boolean literals. A similar argument applies to the reduce let plus and reduce let leq
rules.

The ‘let x : τ = s1 in s2’ construct is a form that is introduced during the function application
reduction step and allows us to process the body of a function, step-wise reducing the body until
we get a value and then using reduce let app to substitute this value into the body of the let
statement. The type annotation on the let-bound variable is needed for the proofs below.

In the reduction rule for application, occurrences of x, the function argument variable, in types
(particularly types for mutable variables in the statement of the function body, s1) will have been
substituted away and so these types will contain no free variables. This is important for the
operational typing rule where we check that the value for each variable in the mutable variable
store is a subtype of the variable’s type as specified in ∆.

9 Lemmas

This section states and proves and number of lemmas that build up to a proof of the type safety
property of MiniSail. We start with the inversion lemmas, then move on to the regularity lemmas
that tell us that well-scoping is preserved in the judgements that we work with. Next are lemmas
that link the constraints in the types to validity. Following are substitution lemmas, proofs of
preservation and progress, and finally the safety lemma.

9.1 Inversion Lemmas

Each typing judgement is defined by a set of inductive rules that can include in their premises
instances of the judgement being defined, instance of other judgements defined by other rules or
predicates such as membership in a context. The complete set of valid judgements of any form is
the set of judgements that can be generated by all of rules and no more. Each valid judgement has
a derivation tree associated to it where each node represents the application of a rule and the root
node represents the rule that leads directly to the judgement. It is a feature of the MiniSail type
system that there is only one possible derivation tree for a valid judgement and in particular only
one rule for the root node. This is a consequence of the fact that the type synthesis rules for value
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and expression and the type checking rules for statement have been constructed so that there is
one rule per syntactic form of values, expressions and statements. To put it another way: the rules
are syntax directed.

Associated with each judgement, and its rules, is an inductive proof principle. This principle
allows us to prove that a property holds for every valid judgement if we can show for every rule the
following holds: If the property holds for the premises of the rule then the property holds for the
conclusion of the rule. A consequence of this, and the syntax directness property, is that given any
valid judgement then the only way that the judgement can arise is by an application of exactly one
of the rules. This is known as “inversion” and will be used extensively in the subsequent proofs.
We state the inversion lemmas for each of the key typing judgements and give one of example of
a proof for one of the cases. We use a more canonical form of the rules in the statement of the
lemmas: the type part of the rule conclusion is in a general form and the premises include equalities
relating terms in the conclusion to more specific forms.

Lemma 1 (Inversion-⇒ values).
If Π; Γ ` x⇒ {z : b|φ} then

Π ` Γ ws

x ∈ dom(Γ) ∧ φ = (z = x)

If Π; Γ ` n⇒ {z : b|φ} then

Π ` Γ ws

b = int ∧ φ = (z = n)

If Π; Γ ` T⇒ {z : b|φ} then

Π ` Γ ws

b = bool ∧ φ = (z = T)

If Π; Γ ` F⇒ {z : b|φ} then

Π ` Γ ws

b = bool ∧ φ = (z = F)

If Π; Γ ` (v1, v2)⇒ {z : b|φ} then there are b1, b2, φ1 and φ2 such that:

Π; Γ ` v1 ⇒ {z1 : b1|φ1}
Π; Γ ` v2 ⇒ {z2 : b2|φ2}

b = b1 ∗ b2 ∧ φ = (z = (v1, v2))

If Π; Γ ` C v ⇒ {z : b|φ} then there is a type id tid and τ such that:

b = tid ∧ φ = (z = C v)

Π; Γ ` v ⇐ τ

union tid = {C1 : τ1, ..,C : τ, ...Cn : τn} ∈ Π

If Π; Γ ` ()⇒ {z : b|φ} then:

Π ` Γ ws

b = unit ∧ φ = (z = ())

Proof. We use proof by rule induction with the type synthesis rules for values. We need to show
that for each rule the statement of the lemma holds for the conclusion of the rule if it holds for the
premises and any side conditions are satisfied. We only show the proof for the pair rule, for the
other rules, the proofs follow in the same manner.
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Case infer v pair. From the induction principle, we assume that the premises of the rule in-
fer v pair hold. Hence we have

Π; Γ ` v1 ⇒ {z1 : b1|φ1}
Π; Γ ` v2 ⇒ {z2 : b2|φ2}

b = b1 ∗ b2 ∧ φ = (z = (v1, v2))

The property we need to prove is a conjunction of implications and we need to prove that it holds
for Π; Γ ` (v1, v2) ⇒ {z : b|φ}. All of the implications, except for the pair one, hold immediately
as their antecendants do not. For the pair part, the antededent holds and the consequent holds as
these are precisely the assumptions we made following the induction principle. Hence the lemma
conclusions holds for this rule.

The proof for the other cases follows the same pattern with a different implication taking the
role of the pair implication depending on the rule being considered.

Lemma 2 (Inversion-⇐ values). If Π; Γ ` v ⇐ τ there there is a τ ′ such that Π; Γ ` v ⇒ τ ′ and
Π; Γ ` τ ′ . τ
Lemma 3 (Inversion-⇒ expressions).
If

Π; Γ; ∆ ` v1 + v2 ⇒ {z : b|φ}

then there are φ1 and φ2 such that:

Π; Γ ` ∆ ws

b ≡ int

φ ≡ (z = v1 + v2)

Π; Γ ` v1 ⇒ {z1 : int|φ1}
Π; Γ ` v2 ⇒ {z2 : int|φ2}

If

Π; Γ; ∆ ` v1 ≤ v2 ⇒ {z : b|φ}

then there are φ1 and φ2 such that:

Π; Γ ` ∆ ws

b ≡ bool

φ ≡ (z = v1 ≤ v2)
Π; Γ ` v1 ⇒ {z1 : int|φ1}
Π; Γ ` v2 ⇒ {z1 : int|φ2}

If

Π; Γ; ∆ ` f v ⇒ {z : b|φ}

then there are b1, φ1, τ and φ2 such that:

Π; Γ ` ∆ ws

f :: (x : b1[φ
′
1])→ τ ∈ Π

Π; Γ ` v ⇒ {z1 : b1|φ1}
Π; Γ ` {z1 : b1|φ1} . {z1 : b1|φ′1}

φ ≡ τ [v/z]
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If

Π; Γ; ∆ ` u⇒ {z : b|φ}

then:

Π; Γ ` ∆ ws

{z : b|φ} = ∆(u)

If

Π; Γ; ∆ ` fst v ⇒ {z : b|φ}

then there are b′ and φ′ such that:

Π; Γ ` ∆ ws

φ ≡ (z = fst v)

Π; Γ ` v ⇒ {z : b ∗ b′|φ′}

If

Π; Γ; ∆ ` snd v ⇒ {z : b|φ}

then there are b′ and φ′ such that:

Π; Γ ` ∆ ws

φ ≡ (z = snd v)

Π; Γ ` v1 ⇒ {z : b′ ∗ b|φ′}

Proof. Proof follows the same pattern as the one for Lemma 1.

Lemma 4 (Inversion-⇐ expressions).
If Π; Γ; ∆ ` e⇐ τ there there is a τ ′ such that Π; Γ; ∆ ` e⇒ τ ′ and Π; Γ ` τ ′ . τ

Lemma 5 (Inversion-⇐ statements).
If

Π; Γ; ∆ ` v ⇐ τ

then:

Π; Γ ` ∆ ws

Π; Γ ` v ⇐ τ

If

Π; Γ; ∆ ` if v then s1 else s2 ⇐ τ

then there are b, φ1 and φ such that:

Π; Γ; ∆ ` v ⇒ {z : bool |φ1}
Π; Γ; ∆ ` s1 ⇐ {z1 : b|v = T ∧ φ1[v/z] =⇒ φ[z1/z]}
Π; Γ; ∆ ` s2 ⇐ {z2 : b|v = F ∧ φ1[v/z] =⇒ φ[z2/z]}

τ ≡ {z : b|φ}

19



If

Π; Γ; ∆ ` let x = e in s⇐ τ

then there are b and φ such that:

Π; Γ; ∆ ` e⇒ {z : b|φ}
Π; Γ, x : b[φ[x/z]]; ∆ ` s⇐ τ

If

Π; Γ; ∆ ` let x : τ ′ = s1 in s2 ⇐ τ

then there are b and φ such that:

τ ′ ≡ {z : b|φ}
Π; Γ; ∆ ` s1 ⇐ {z : b|φ}

Π; Γ; ∆, x : b[φ[x/z]] ` s2 ⇐ τ

If

Π; Γ; ∆ ` while (s1) do {s2} ⇐ τ

then

τ ≡ {z : unit |>}
Π; Γ; ∆ ` s1 ⇐ {z : bool|>}
Π; Γ; ∆ ` s2 ⇐ {z : unit|>}

If

Π; Γ; ∆ ` var u : τ = v in s⇐ τ ′

then

Π; Γ; ∆ ` v ⇐ τ

Π; Γ; ∆, u : τ ` s⇐ τ ′

If

Π; Γ; ∆ ` u := v ⇐ τ

then there is a τ ′ such that:

τ = {z : unit|>}
τ ′ = ∆(u)

Π; Γ; ∆ ` v ⇐ τ ′

If

Π; Γ; ∆ ` s1; s2 ⇐ τ
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then

Π; Γ; ∆ ` s1 ⇐ {z : unit|>}
Π; Γ; ∆ ` s2 ⇐ τ

If

Π; Γ; ∆ `match v { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn} ⇐ τ

then there is a tid and φ such that:

union tid = {C1 : {z1 : b′′1|φ′′1}..Cn : {zn : b′′n|φ′′n}} ∈ Π

Π; Γ ` v ⇒ {z : tid|φ}
Π; Γ, xi : b′′i [φ′′i ∧ v = Ci xi ∧ φ[v/z]]; ∆ ` si ⇐ τ i = 1..n

Proof. Proof follows the same pattern as the proof of Lemma 1.

9.2 Regularity Lemmas

The following lemma guarantees that for valid typing judgements, the component terms are well-
scoped. This means that we can limit the use of well-scoping premises in the rules and only need
to use them when well-scoping for a term cannot be inferred from other premises that may include
well-scoping judgements.

Lemma 6 (Regularity lemma for values with type synthesis). If Π; Γ ` v ⇒ {z : b|φ} then
Π; Γ ` v ws and Π; Γ ` {z : b|φ} ws and Π ` Γ ws

Proof. We prove the first part of the conclusion by induction on v.
If v is a literal then by inversion of the appropriate type synthesis rule for literals we have

Π ` Γ ws. Using this with the appropriate well-scoping rule for literals we have Π; Γ ` v ws.
If v is a variable then using inversion of infer v var we have that x ∈ dom(Γ) and Π ` Γ ws.

Using these with the rule v ws var we get required conclusion.
If v is a pair (v1, v2), then using inversion and then the induction hypothesis we have that v1,

v2 and Γ are well-scoped and hence (v1, v2) is well-scoped using the rule v ws pair.
If v is the application of a data constructor, i.e. v ≡ C v′, then from inversion of in-

fer v data cons we have:

Π; Γ ` v′ ⇒ τ ′

union tid = {C1 : τ1, ..,C : τ ′, ...Cn : τn} ∈ Π

By the induction hypothesis, v′ and Γ are well-scoped and so we have the required premises for the
v ws cons rules and so C v′ is well-scoped.

We now prove the second conclusion. For values, φ always has the form z = v. To show that
Γ ` {z : b|z = v} ws we need to show that Γ, z : b[z = v] ` z = v ws and to show that we need to
show:

Γ, z : b[z = v] ` z ws

Γ, z : b[z = v] ` v ws

The first follows from the rule v ws var rule as z is provided by the context Γ, z : b[z = v] and the
second from the first part of this proof making use of weakening of well-scoping: v is well-scoped
under Γ and so is well-scoped under Γ, z : b[z = v] ` z

21



Lemma 7 (Regularity lemma for values with type checking).
If Π; Γ ` v ⇐ {z : b|φ} then Π; Γ ` v ws and Π; Γ ` {z : b|φ} ws and Π ` Γ ws

Proof. From inversion with the rule check v we have that there is a τ such that:

Π; Γ ` v ⇒ τ

Π; Γ ` τ . {z : b|φ}

From the previous lemma we have that v and Γ are well-scoped and using inversion on subtype subtype
we have that {z : b|φ} is well-scoped.

Lemma 8 (Regularity lemma for expressions with type synthesis). If Π; Γ; ∆ ` e⇒ {z : b|φ} then
Π; Γ; ∆ ` e ws and Π; Γ ` {z : b|φ} ws and Π ` Γ ws and Π; Γ ` ∆ ws

Proof. Proof is by cases on the structure of e

Case e ≡ v1 + v2
Using the inversion lemma with infer anf plus we have:

Π; Γ ` ∆ ws (1)

{z : b|φ} = {z : int |z = v1 + v2} (2)

Π; Γ ` v1 ⇒ {z : int |φ1} (3)

Π; Γ ` v2 ⇒ {z : int |φ2} (4)

From the last two, and the previous lemma, v1, v2 and Γ are well-scoped so using the rule
e ws plus, v1 + v2 is well-scoped. To show

Π; Γ ` {z : int |z = v1 + v2} ws

We need to show that:

Π; Γ, z : int [z = v1 + v2] ` z ws

Π; Γ, z : int [z = v1 + v2] ` v1 ws

Π; Γ, z : int [z = v1 + v2] ` v2 ws

and then use the rules wf cons pred and e ws plus, The first holds as z is in the domain of the
context; the second two hold using Lemma 6 and (2) and (3) with weakening.

Case e ≡ v1 ≤ v2
Similar to above.

Case e ≡ fv
Using inversion with infer anf app we have that

Π; Γ ` ∆ ws (1)

val f : (x : b1[φ1]) → τ ∈ Π (2)

Π; Γ ` v ⇒ {z : b|φ2} (3)

Π; Γ ` {z : b|φ2} . {z : b|φ1[z/x]} (4)

Using using Lemma 6 with (2), we have that v and Γ are well-scoped and this along with (1) and
(2), gives us that e is well-scoped using the rule e ws app.
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Case e ≡ fst v
From the inversion lemma, we have that there is a b′ and φ such that

Π; Γ ` ∆ ws (1)

Π; Γ ` v ⇒ {z : b ∗ b′|φ} (2)

τ = {z : b1|z = fst v}. (3)

Thus Π; Γ ` v ws, using regularity for values, and so Π; Γ ` fst v ws from e ws fst. With
weakening we have Π; Γ, z : b1[z = fst v] ` fst v ws and we have Π; Γ, z : b1[z = fst v] ` z ws and
so we have Π; Γ ` {z : b1|z = fst v} ws by wf cons eq and wf type type.

Case e ≡ snd v
As for the previous case.

Case e ≡ u
From inversion of infer e mvar we have that:

{z : b|φ} = ∆(u)

Π; Γ ` ∆ wf

From the first and using e ws mvar we have that Π; Γ; ∆ ` u ws. From the second with a finite
number of inversions of rule d ws cons, we have that Π; Γ ` {z : b|φ} bf and so Π; Γ ` τ ws

Lemma 9 (Regularity lemma for expressions with type checking). If Π; Γ; ∆ ` e⇐ {z : b|φ} then
Π; Γ; ∆ ` e ws and Π; Γ ` {z : b|φ} ws and Π ` Γ ws and Π; Γ ` ∆ ws

Proof. From inversion with the rule check e expr we have that there is a τ such that:

Π; Γ; ∆ ` e⇒ τ

Π; Γ ` τ . {z : b|φ}

From the previous lemma we have that e, Γ and ∆ are well-scoped and using inversion on subtype subtype
we have that {z : b|φ} is well-scoped.

Lemma 10 (Regularity lemma for statements). If Π; Γ; ∆ ` s ⇐ {z : b|φ} then Π; Γ; ∆ ` s ws
and Π; Γ ` {z : b|φ} ws and Π; Γ ` ∆ and Π ` Γ ws

Proof. Proof is by cases on the structure of s

Case s ≡ v
Using inversion with rule check s val we have that Π; Γ ` v ⇐ {z : b|φ} and that ∆ is well-scoped
and so from Lemma 7 we have that v and {z : b|φ} are well-scoped.

Case s ≡ if v then s1 else s2
Using inversion with check s if, we have that there is a φ′ such that

Π; Γ ` v ⇒ {z : bool|φ′}
Π; Γ; ∆ ` s1 ⇐ {z1 : b|v = T ∧ φ′[v/x] =⇒ φ[z1/z]}
Π; Γ; ∆ ` s2 ⇐ {z2 : b|v = F ∧ φ′[v/x] =⇒ φ[z2/z]}

From Lemma 6 and the induction hypothesis, we have that Γ, ∆, v, s1 and s2 are all well-scoped
and so s is using rule s ws if.

Using the second of the above with the induction hypothesis we have:

Π; Γ ` {z1 : b|v = T =⇒ φ[z1/z]} ws
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Using inversion of type ws type we have

Π; Γ, z1 : b[>] ` (v = T =⇒ φ[z1/z]) ws

and with inversion of cons ws imp we have:

Π; Γ, z1 : b[>] ` φ[z1/z] ws

We know that z doesn’t appear in Γ 1 so we have:

Π; Γ, z : b[>] ` φ ws

and so using type ws type we have

Π; Γ ` {z : b|φ} ws

Case s ≡ let z = e in s′

From the inversion lemma, we have that there is a b′ and φ′ such that

Π; Γ; ∆ ` e⇒ {z : b′|φ′}
Π; Γ, x : b[φ′[x/z]]; ∆ ` s′ ⇐ {z : b|φ}

From the first we have that: Γ ` e ws and from the second using the induction hypothesis we
have that:

Π; Γ, x : b[φ′[x/z]]; ∆ ` s′ ws

Π; Γ ` {z : b|φ} ws

and using the rule wf let we have that s is well formed in this case.

Case s ≡ let z : τ = s1 in s2
From the inversion lemma we have that there are b′ and φ′ with τ = {z : b′|φ′} such that:

Π; Γ; ∆ ` s1 ⇐ {z : b′|φ′}
Π; Γ, x : b[φ[x/z]]; ∆ ` s2 ⇐ {z : b|φ}

From the induction hypothesis, we have that τ , s1 and s2 are well-scoped and so s is. Furthermore,
the induction hypothesis tells us that Π; Γ ` {z : b|φ} ws

Case s ≡match v { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn}
From inversion with check s case we have that there exists a tid and φ such that:

union id = {C1 : {z1 : b′′1|φ′′1}...Cn : {zn : b′′n|φ′′n}} ∈ Π

Π; Γ ` v ⇒ {z : tid|φ}
Π; Γ, xi : b′′i [φ′′i [xi/zi] ∧ v = C ixi ∧ φ[v/z]]; ∆ ` si ⇐ {z : b|φ} i = 1..n

Case s ≡ while (s1) do {s2}
Using inversion of check s while we have:

Π; Γ; ∆ ` s1 ⇐ {z : bool|>}
Π; Γ; ∆ ` s2 ⇐ {z : unit|>}

and using the induction hypothesis on both s1 and s2 we have:

Π; Γ; ∆ ` s1 ⇐ {z : bool|>} ws

Π; Γ; ∆ ` s2 ⇐ {z : unit|>} ws

Π; Γ; ∆ ` {z : unit|>} ws

The third of these is the second part of the conclusion. Using the first two of these with wf s while
we have the first part of the conclusion.

1Following the convention, if z had appeared in Γ then we could rename z in {z : bφ}

24



Case s ≡ var u : τ = v in s1
Using inversion of rule check s var we have

Π; Γ ` v ⇐ τ

Π; Γ; ∆, (u, τ) ` s⇐ {z : b|φ}

By Lemma 6 on the first of these and the induction hypothesis on the second we have:

Π; Γ ` v ws

Π; Γ; ∆, (u, τ) ` s ws

Π; Γ ` {z : b|φ} ws

using s ws var the conclusion follows.

Case s ≡ u := v
Using inversion of check s assign we have that there is a τ such that:

Π; Γx : b1[φ1],Γ
′ ` v ⇐ τ

(u, τ) ∈ ∆

{z : b|φ} = {z : unit |>}

From the first of these we have

Π; Γx : b1[φ1],Γ
′ ` v ⇐ τ

and so can apply wf s assign and observe that {z : unit |>} is well-scoped to obtain the required
conclusion.

Case s ≡ s1; s2
By inversion of check s seq, we have

Π; Γ; ∆ ` s1 ⇐ {z : unit |>}
Π; Γ; ∆ ` s1 ⇐ {z : b|φ}

From the induction hypothesis we have:

Π; Γ; ∆ ` s1 ws

Π; Γ; ∆ ` s1 ws

Π; Γ; ∆ ` {z : b|φ} ws

From the first two using wf s seq we have the first part the conclusion and the the third is the
second part of the conclusion.

9.3 Soundness

The following lemma is a form of soundness property: it tells us that constraints in the type of
a value are valid when that value is substituted into the constraint. This follows from how the
inferences rule for values specify exactly the form the constraints in the type of the value can take.

Lemma 11 (Soundness for values).
If Π; Γ ` v ⇒ {z : b|φ} then Γ |= φ[v/z]

Proof. For all forms of v, φ is z = v and substituting v for z we get a tautology.
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9.4 Statement checking subtyping

We will need the following lemma during the preservation proof.

Lemma 12 (Subtyping typing for statements).
If

Π; Γ; ∆ ` s⇐ τ1

Π; Γ ` τ1 . τ2

then

Π; Γ; ∆ ` s⇐ τ2

Proof. Proof is by induction on the structure of s. When required we use the following: τ1 = {z :
b|φ1} and τ2 = {z : b|φ2}
Case s ≡ v
From the first premise and inversion of check s val we have,

Π; Γ ` v ⇐ τ1

and using inversion of check v val we have that there is a τ ′ such that

Π; Γ ` v ⇒ τ ′

Π; Γ ` τ ′ . τ1

From transitivity of subtyping we have

Π; Γ ` τ ′ . τ2

and so using check v val and check s val we have the required conclusion.

Case s ≡ if v then s1 else s2

From the first premise and inversion with rule check anf if we have that there is a φ3 such
that:

Π; Γ ` v ⇒ {z3 : bool |φ3} (1)

Π; Γ; ∆ ` s1 ⇐ {z : b|v = T ∧ (φ3[v/z3]) =⇒ φ1} (2)

Π; Γ; ∆ ` s2 ⇐ {z : b|v = F ∧ (φ3[v/z3]) =⇒ φ1} (3)

We have the following subtyping relations:

Π; Γ ` {z : b|v = T ∧ (φ3[v/z3]) =⇒ φ1} . {z : b|v = T ∧ (φ3[v/z3]) =⇒ φ2}
Π; Γ ` {z : b|v = F ∧ (φ3[v/z3]) =⇒ φ1} . {z : b|v = F ∧ (φ3[v/z3]) =⇒ φ2}

and so from the induction hypothesis we have

Π; Γ; ∆ ` s1 ⇐ {z : b|v = T ∧ (φ3[v/z3]) =⇒ φ2}
Π; Γ; ∆ ` s2 ⇐ {z : b|v = F ∧ (φ3[v/z3]) =⇒ φ2}

and using check anf if with these and (1) we obtain the required conclusion.
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Case s ≡ let x = e in s1
From the first premise and inversion with rule check anf let we have that there is a b3 and φ3
such that:

Π; Γ; ∆ ` e⇒ {z3 : b3|φ3}
Π; Γ, x : b3[φ3[x/z3]]; ∆ ` s1 ⇐ {z : b|φ1}

Using the induction hypothesis on the last of these we get

Π; Γ, x : b3[φ3[x/z3]]; ∆ ` s1 ⇐ {z : b|φ2}

and so we can use check anf let to obtain the required conclusion.

Case s ≡ let x : τ = s1 in s2
From the first premise and inversion with rule check anf let2 we have that, given τ = {z3 : b3|φ3}

Π; Γ; ∆ ` s1 ⇐ {z3 : b3|φ3}
Π; Γ, x : b3[φ3[x/z3]]; ∆ ` s2 ⇐ {z : b|φ1}

Applying the induction hypothesis to the second of these and then check anf let2 with the first
we obtain the required conclusion.

Case s ≡match v { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn}
From the premises and inversion of the check s case rule we have that there is a tid such that:

union tid = {C 1 : {z1 : b′′1|φ′′1} .. C n : {zn : b′′n|φ′′n}} ∈ Π (1)

Π; Γ ` v ⇒ {z : tid|φ} (2)

Π; Γ, xi : b′′i [φ′′i [xi/zi] ∧ v = Ci xi ∧ φ[v/z]]; ∆ ` si ⇐ {z : b|φ1} i = 1..n (3)

Apply the induction hypothesis to the last of these we have:

Π; Γ, xi : b′′i [φ′′i [xi/zi] ∧ v = Ci xi ∧ φ[v/z]]; ∆ ` si ⇐ {z : b|φ2} i = 1..n (4)

And so we can use check s case to obtain the required conclusion.

Case s ≡ while (s1) do {s2}
From the premises and inversion of check s while we that b = unit and φ1 = >. From the
second premise of this lemma we can only have that φ2 = > and so τ1 = τ2 and the conclusion
follows.

Case s ≡ var u : τ = v in s1
From inversion of check s var , we have:

Π; Γ ` v ⇐ τ (1)

Π; Γ; ∆, (u, τ) ` s⇐ {z : b|φ1} (2)

Applying the induction hypothesis to the second of these we get:

Π; Γ, ; ∆, (u, τ) ` s⇐ {z : b|φ2} (3)

and so applying check s var to (1) and (3) we get the required conclusion.

Case s ≡ u := v
From inversion of check s assign, we have that b = unit and φ1 = >. From the second premise
of the lemma we can only have φ2 = > and so τ1 = τ2 and the required conclusion follows.
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Case s ≡ s1; s2
By inversion of check s seq, we have

Π; Γ; ∆ ` s1 ⇐ {z : unit |>} (1)

Π; Γ; ∆ ` s2 ⇐ {z : b|φ1} (2)

Applying the induction hypothesis to the second we get:

Π; Γ; ∆ ` s2 ⇐ {z : b|φ2} (3)

and applything check s seq to this and (1) we get the required conclusion

9.5 Context Subtyping

The lemmas in this section give us subtyping properties for the Γ-context. What this means is that
if we have a judgement making use of a Γ-context that contains a variable x of type τ then we can
replace τ with a subtype of τ and the judgement remains valid. We will make use of the context
subtyping lemma for statements when we prove the substitution lemma for let statements as it will
allow us to have a subtype of the bound x of the let statement in the context. We split the proofs
into two goups: One group for the well-scoping judgements and one for the typing judgements.

9.5.1 Context Subtyping for Well-Scoped Judgements

Lemma 13 (Context subtyping for well-scoped Γ, values, constraint expressions and constraints).

If

Π ` Γ ws

Π ` b ws

Π ` Γ,Γ′ ws

Π; Γ ` {z : b|φ′} . {z : b|φ}
x /∈ dom(Γ,Γ′)

then

1. If Π ` Γ, x : b[φ[x/z]],Γ′ ws then Π ` Γ, x : b[φ′[x/z]],Γ′ ws

2. If Π; Γ, x : b[φ[x/z]],Γ′ ` v ws then Π; Γ, x : b[φ′[x/z]],Γ′ ` v ws

3. If Π; Γ, x : b[φ[x/z]],Γ′ `φ e ws then Π; Γ, x : b[φ′[x/z]],Γ′ `φ e ws

4. If Π; Γ, x : b[φ[x/z]],Γ′ ` φ′′ ws then Π; Γ, x : b[φ[x/z]],Γ′ ` φ′′ ws

Proof. We prove this by induction on Γ′. Assume that Γ′ is empty.

1. Using inversion of subtype subtype with the fourth premise we have:

Π; Γ ` {z : b|φ′} ws

and from this using inversion of type ws we have

Π; Γ, z : b[>] ` φ′ ws

Since x does not occur in Γ we can rename z to x and obtain:

Π; Γ, x : b[>] ` φ′[x/z] ws

and using g ws cons with the premises we have the required conclusions.
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2. We prove this by induction on v.

If v is a variable y then from the premise of this case and using inversion of v ws var we
have Π ` Γ, x : b[φ[x/z]] ws and y ∈ dom(Γ, x : b[φ[x/z]]). Using the previous case on the
first of these we have Π ` Γ, x : b[φ′[x/z]] ws . Furthermore we have dom(Γ, x : b[φ[x/z]]) =
dom(Γ, x : b[φ′[x/z]]). Hence the premises of v ws var hold and the conclusion follows.

If v is a literal then using inversion on the approppriate rule we have Π ` Γ, x : b[φ[x/z]] ws
and from the previous case we have Π ` Γ, x : b[φ′[x/z]] ws. Hence we can apply the
appropriate rule and obtain the required conclusion.

If v is a pair (v1, v2) then from inversion of v ws pair we have

Π; Γ, x : b[φ[x/z]] ` v1 ws

Π; Γ, x : b[φ[x/z]] ` v2 ws

and by the induction hypothesis we have

Π; Γ, x : b[φ′[x/z]] ` v1 ws

Π; Γ, x : b[φ′[x/z]] ` v2 ws

and then using v ws pair we have the required conclusion.

If v is the application of a data construction v = C v′ then from inversion of v ws cons we
have

union tid = {C1 : τ1, ..,C : τ, ...Cn : τn} ∈ Π

Π; Γ, x : b[φ[x/z]] ` v′′ ws

applying the induction hypothesis to the second of these and then v ws cons we obtain the
required conclusion.

3. We prove this by cases on e. For each rule for `φ, we apply inversion and obtain a well-scoping
judgement for one or more variables of the form Π; Γ, x : b[φ[x/z]] ` v ws . We can then use
the previous case to obtain Π; Γ, x : b[φ′[x/z]] ` v ws and then apply the rule in the forward
direction to obtain the required case.

4. We prove this by induction on φ. For each rule for well-scoping of φ, we apply inversion and
obtain well-scoping judgements for one or more expressions or φ′ that are simpler than φ.
For the first of these we can appeal to the previous case and for the second make use of the
induction hypothesis. We then apply the rule in th forward direction.

Assume that Γ′ is Γ′′, x1 : b1[φ1].

1. From the induction premises we have Π ` Γ, x : b[φ[x/z]],Γ′′, x1 : b1[φ1] ws. Using inversion
of g ws cons we have Π ` Γ, x : b[φ[x/z]],Γ′′ ws . Applying the induction hypothesis we
have Π ` Γ, x : b[φ′[x/z]],Γ′′ ws

Furthermore from the inversion g ws cons we also have Π; Γ, x : b[φ[x/z]],Γ′′, x1 : b1[>] `
φ1ws and from the induction hypthesis (recalling that this is mutually induction across all 4
conclusions) we have Π; Γ, x : b[φ′[x/z]],Γ′′, x1 : b1[>] ` φ1ws. We can thus apply g ws cons
to obtain the required conclusion.

2. We prove this by induction on v similar to the Γ′ = q induction case.

If v is a variable y then from inversion of v ws var we have Π ` Γ, x : b[φ[x/z]],Γ′ and
y ∈ dom(Γ, x : b[φ[x/z]],Γ′). Using the previous case on the first of these we have Π ` Γ, x :
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b[φ′[x/z]],Γ′ ws . Furthermore we have dom(Γ, x : b[φ[x/z]],Γ′) = dom(Γ, x : b[φ′[x/z]],Γ′).
Hence the premises of v ws var hold and the conclusion follows.

If v is a literal then using inversion on the approppriate rule we have Π ` Γ, x : b[φ[x/z]],Γ′ ws
and from the previous case we have Π ` Γ, x : b[φ′[x/z]],Γ′ ws . Hence we can apply the
approprate rule and obtain the required conclusion.

If v is a pair or the application of a data constructor then we make use of the induction
hypothesis.

3. For e the same argument as for the base case can be used.

4. For φ the same argument as for the base case can be used.

Lemma 14 (Context subtyping for well-scoped types). If

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` τ ws

Π; Γ ` {z1 : b1|φ′1} . {z1 : b1|φ1}

then

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` τ ws

Proof. Let τ = {z : b|φ} where z /∈ dom(Γ, x : b1[φ1[x/z1]],Γ
′). From the first premise and

inversion of type ws type we have Π; Γ, x : b1[φ1[x/z1]],Γ
′, z : b[>] ` φ ws . Applying Lemma 13

we have Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′, z : b[>] ` φ ws . Finally using type ws type we have Π; Γ, x :
b1[φ

′
1[x/z1]],Γ

′ ` {z : b|φ} ws

Lemma 15 (Context subtyping for well-scoped ∆-context). If

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` ∆ ws

Π; Γ ` {z1 : b1|φ′1} . {z1 : b1|φ1}

then

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` ∆ ws

Proof. Induction on ∆. Assume that ∆ is empty. The conclusion for this case follows from the rule
delta ws empty

Assume that ∆ = ∆′, (u, τ) From inversion of delta ws cons we have the following:

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` ∆ ws

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` τ ws

using the induction hypothesis on the first and Lemma 14 on the second we have

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` ∆ ws

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` τ ws

and then using delta ws cons we obtain the required conclusion.

30



9.5.2 Context Subtyping for Typing Judgements

Lemma 16 (Context subtyping for validity).
If

Π; Γ, x : b1[φ1[x/z1]],Γ
′ |= φ

Π; Γ ` {z1 : b1|φ′1} . {z1 : b1|φ1}

then

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ |= φ

Proof. Using inversion of subtype subtype on the second premise we have:

Π; Γ, z1 : b1[φ
′] |= φ1 (1)

Assume that for a particular interpretation that |Γ, x : b1[φ
′
1[x/z1]],Γ

′| is true. Hence each of |Γ|,
|x : b1[φ

′
1[x/z1]]| and |Γ′| are true. Hence |Γ, x : b1[φ

′
1[x/z1]]| is true and using (1) we have that

φ1[x/z1] is true. Recombining these parts, we then have that |Γ, x : b1[φ1[x/z1]],Γ
′| is true and so,

using the first premise, φ is true.

Lemma 17 (Context subtyping for subtyping).
If

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` {z2 : b2|φ′2} . {z2 : b2|φ2}

Π; Γ ` {z1 : b1|φ′1} . {z1 : b1|φ1}

then

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` {z2 : b2|φ′2} . {z2 : b2|φ2}

Proof. Using inversion of subtype subtype on the first premise we have:

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` {z2 : b2|φ′2} ws

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` {z2 : b2|φ2} ws

Π; Γ, x : b1[φ1[x/z1]],Γ
′, z2 : b2[φ

′
2] |= φ2

Using Lemma 14 on the first two and Lemma 16 on the third we have :

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` {z2 : b2|φ′2} ws

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` {z2 : b2|φ2} ws

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′, z2 : b2[φ
′
2] |= φ2[x/z2]

and using subtype subtype the conclusion follows.

Lemma 18 (Context subtyping for ⇒-values).
If

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` v ⇒ {z2 : b2|φ2}

Π; Γ ` {z1 : b1|φ′1} . {z1 : b1|φ1}

then there is a φ′2 such that:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v ⇒ {z2 : b2|φ′2}
Π; Γ, x : b1[φ

′
1[x/z1]],Γ

′ ` {z2 : b2|φ′2} . {z2 : b2|φ2}
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Proof. If v is a literal or a variable then from inversion of the relevant typing rule we have that
φ2 ≡ (z = v) and that Γ, x : b1[φ1[x/z1]],Γ

′ and Π are well-scoped. From the second premise, we
have that φ′1 only has variables from Γ and so Γ, x : b1[φ

′
1[x/z1]],Γ

′ is well-scoped. Thus the literal
or variable typing rules can be used and we have the first conclusion:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v ⇒ {z2 : b2|z = v}

and the second conclusion holds due to reflexivity of subtyping.
If v is a pair (v1, v2) then we have φ2 = (z = (v1, v2)) and

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v1 ⇒ {z21 : b21|φ′21}
Π; Γ, x : b1[φ

′
1[x/z1]],Γ

′ ` v2 ⇒ {z22 : b22|φ′22}

Let φ′2 = (z = (v1, v2))) and the conclusions follow.
If v is x then, from the first premise, the variable typing rule and inversion, we have that

φ2 = φ1. We pick φ′2 to be φ′1. The first part of the conclusion holds, using the variable typing
rule, and the second part holds from the second premise.

If v is the application of a data constructor C v′, then from inversion of infer v data cons
we have that there is a tid and k such that Ck = C, φ2 = (z = C v′) and

union tid = {C1 : {z′′1 : b′′1|φ′′1}..Cn : {z′′n : b′′n|φ′′n}} ∈ Π

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` C v′ ⇒ {z2 : tid|z2 = C v′}

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` v′ ⇐ {z′′k : b′′k|φ′′k}

From the last of these and inversion of check v val we have that there is a τ ′ that is a subtype
of {z′′k : b′′k|φ′′k}. Applying the induction hypothesis, we have that there is a type for v′ under the
context Γ, x : b1[φ

′
1[x/z1]],Γ

′ that is a subtype of τ ′ and hence also a subtype of {z′′k : b′′k|φ′′k} by
transitivity of subtyping. Thus the premises of infer v cons hold and we have the first part of
the conclusion

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` C v′ ⇒ {z2 : tid|z2 = C v′}

The second part holds from reflexity of subtyping.

Lemma 19 (Context subtyping for ⇐-values).
If

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` v ⇐ {z2 : b2|φ2}

Π; Γ ` {z1 : b1|φ′1} . {z1 : b1|φ1}

then

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v ⇐ {z2 : b2|φ2}

Proof. From inversion of check v val, we have that there is a φ′2 such that:

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` v ⇒ {z2 : b2|φ′2} (1)

Γ, x : b1[φ1[x/z1]],Γ
′ ` {z2 : b2|φ′2} . {z2 : b2|φ2} (2)

and so we can apply Lemma 18 to get that there is a φ′′2 such that

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v ⇒ {z : b2|φ′′2} (3)

Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` {z2 : b2|φ′′2} . {{z2 : b2|φ′2}} (4)
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From Lemma 17 with (2) we have:

Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` {z2 : b2|φ′2} . {z2 : b2|φ2} (5)

and so from transivity of subtyping, we have

Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` {z2 : b2|φ′′2} . {z2 : b2|φ2} (6)

With this and (3) using check v val we have the required conclusion.

Lemma 20 (Context subtyping for ⇒-expressions).
If

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` e⇒ {z2 : b2|φ2}

Π; Γ ` {z1 : b1|φ′1} . {z1 : b1|φ1}

then there is a φ′2 such that:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′; ∆ ` e⇒ {z2 : b2|φ′2}
Π; Γ ` {z2 : b2|φ′2} . {z2 : b2|φ2}

Proof. Proof is by cases on the structure of e

Case e ≡ v1 + v2
The first premise is

Π; Γ, x : b1[φ1[z1/x]],Γ′; ∆ ` e⇒ {z : int|z = v1 + v2}

From the inversion of infer e plus, we have

Π; Γ, x : b1[φ1[z1/x]],Γ′ ` v1 ⇒ {z : int|φ3}
Π; Γ, x : b1[φ1[z1/x]],Γ′ ` v2 ⇒ {z : int|φ4}

Using these and the previous lemma, there are φ′3 and φ′4 such that:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v1 ⇒ {z : int|φ′3}
Π; Γ, x : b1[φ

′
1[x/z1]],Γ

′ ` v2 ⇒ {z : int|φ′4}

With these and the rule infer anf plus the first part of the conclusion holds:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′; ∆ ` e⇒ {z : int|z = v1 + v2}

and so does the second part as φ′2 ≡ φ2
Case e ≡ v1 ≤ v2
Similar to the previous case.

Case e ≡ f v
Instantiating the first premise we have:

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` fv ⇒ {z2 : b2|φ2}

Using the inversion of infer e app, we have that there is a b3 and φ3 such that:

val f : (x : b3[φ
′
3[x/z3]]) → {z2 : b2|φ2} ∈ Π (1)

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` v ⇒ {z3 : b3|φ3} (2)

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` {z3 : b3|φ3} . {z3 : b3|φ′3} (3)
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Applying the previous lemma with the second of these, there is φ′′3 such that

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v ⇒ {z : b2|φ′′3}
Γ, x : b1[φ

′
1[x/z1]],Γ

′ ` {z3 : b3|φ′′3} . {z3 : b3|φ3}

Applying Lemma 17 to (3) above we have:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` {z3 : b3|φ3} . {z3 : b3|φ′3}

and with subtyping transitivity we have:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` {z3 : b3|φ′′3} . {z3 : b3|φ′3}

and so we can apply infer e app to get the first part of the conclusion:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′; ∆ ` f v ⇒ {z2 : b2|φ2}

The second holds through reflexivity of subtyping.

Case e ≡ fst v
Using inversion of infer e fst on the first premise we have that there is a φ′ and b′2

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` v ⇒ {z2 : b2 ∗ b′2|φ′}

and that φ2 is of the form z = fst v. Then applying Lemma 18, we get that there is φ′′ such that

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v ⇒ {z : b2 ∗ b′2|φ′′}
Γ, x : b1[φ

′
1[x/z1]],Γ

′ ` {z3 : b2 ∗ b′2|φ′′} . {z3 : b2 ∗ b′2|φ′}

Applying infer e fst to the first of these gives the first part of the conclusion:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′; ∆ ` fst v ⇒ {z : b2|z = fst v}

The second part holds through reflexivity of subtyping.

Case e ≡ snd v
Similar to the case for fst.

Case e ≡ u
From inversion on infer e mvar we have:

Γ, x : b1[φ1[x/z1]],Γ
′ ws

Γ, x : b1[φ1[x/z1]],Γ
′ ` ∆ ws

Π ws

(u, {z2 : b2|φ2}) ∈ Π

Use subtyping of context for well-scoping we have:

Γ, x : b1[φ
′
1[x/z1]],Γ

′ ws

Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` ∆ ws

and so can use infer e mvar to get the first part of the conclusion:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′; ∆ ` u⇒ {z2 : b2|φ2}

Again, the second part holds through reflexivity of subtyping.
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Lemma 21 (Context subtyping for ⇐-expressions).
If

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` e⇐ {z2 : b2|φ2}

Π; Γ ` {z1 : b1|φ′1} . {z1 : b1|φ1}

then

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′; ∆ ` e⇐ {z2 : b2|φ2}

Proof. From inversion of check e e, we have that there is a φ′2 such that:

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` e⇒ {z2 : b2|φ′2} (1)

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` {z2 : b2|φ′2} . {z2 : b2|φ2} (2)

and so we can apply Lemma 21 to get that there is a φ′′2 such that

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′; ∆ ` e⇒ {z : b2|φ′′2} (3)

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` {z2 : b2|φ′′2} . {{z2 : b2|φ′2}} (4)

From Lemma 17 with (2) we have:

Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` {z2 : b2|φ′2} . {z2 : b2|φ2} (5)

and so from transitivity of subtyping, we have

Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` {z2 : b2|φ′′2} . {z2 : b2|φ2} (6)

With this and (3) using check e e we have the required conclusion.

Lemma 22 (Context subtyping for statements).
If

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` s⇐ {z2 : b2|φ2}

Γ ` {z1 : b1|φ′1} . {z1 : b1|φ1}

then

Π; Γ;x : b1[φ
′
1[x/z1]],Γ

′; ∆ ` s⇐ {z2 : b2|φ2}

Proof. Proceed by induction on the structure of s. Note the cases for let statements when we add
an additional variable to the context require the use of a generalised induction hypothesis.

Case s ≡ v
From the first premise and inversion of check s val we have,

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` v ⇐ {z2 : b2|φ2}

Using Lemma 19 with this and the second premise, we get

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v ⇐ {z2 : b2|φ2}

and using check s val we get the required conclusion.
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Case s ≡ if v then s1 else s2
From the first premise and inversion with rule check anf if we have that there is a φ3 such that:

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` v ⇒ {z3 : bool |φ3} (1)

Π; Γ, x : b1[φ1[z/z1]],Γ
′; ∆ ` s1 ⇐ {z2 : b2|v = T ∧ (φ3[v/z3]) =⇒ φ2} (2)

Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` s2 ⇐ {z2 : b2|v = F ∧ (φ3[v/z3]) =⇒ φ2} (3)

Using Lemma 18, the second premise and (1) we have that there is a φ′3 such that

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v ⇒ {z : bool |φ′3} (4)

Π; Γ ` {z : bool |φ′3} . {z : bool |φ3} (5)

With (2) and (3) and the induction hypothesis we have:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′; ∆ ` s1 ⇐ {z2 : b2|v = T ∧ (φ3[v/z3]) =⇒ φ2}
Π; Γ, x : b1[φ

′
1[x/z1]],Γ

′; ∆ ` s2 ⇐ {z2 : b2|v = F ∧ (φ3[v/z3]) =⇒ φ2}
From (5) we have since implication is contravariant on subtyping that:

Π; Γ ` {z2 : b2|v = T ∧ (φ3[v/z3]) =⇒ φ2} . {z2 : b2|v = T ∧ (φ′3[v/z3]) =⇒ φ2} (6)

Π; Γ ` {z2 : b2|v = T ∧ (φ3[v/z3]) =⇒ φ2} . {z2 : b2|v = F ∧ (φ′3[v/z3]) =⇒ φ2} (7)

And so using Lemma 12 we have

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` s1 ⇐ {z2 : b2|v = T ∧ (φ′3[v/z3]) =⇒ φ2}

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` s2 ⇐ {z2 : b2|v = F ∧ (φ′3[v/z3]) =⇒ φ2}

With these and (4) using the rule check anf if we have the required conclusion.

Case s ≡ let w = e in s1
From the first premise and inversion with rule check anf let we have that there is a b3 and φ3
such that:

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` e⇒ {z3 : b3|φ3} (1)

Π; Γ, x : b1[φ1[x/z1]],Γ
′, w : b3[φ3[w/z3]]; ∆ ` s1 ⇐ {z2 : b2|φ2} (2)

Using Lemma 21, the second premise and (1) we have that there is a φ′3 such that

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′; ∆ ` e⇒ {z3 : b3|φ′3} (3)

Γ, x : b1[φ
′
1],Γ

′ ` {z3 : b3|φ′3} . {z3 : b3|φ3} (4)

Using the induction hypothesis with (2) and the second premise, we have that:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′, w : b2[φ3[w/z3]]; ∆ ` s1 ⇐ {z2 : b2|φ2}
Applying the induction hypothesis again, with this and (4), we have that:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′, w : b2[φ
′
3[w/z3]]; ∆ ` s1 ⇐ {z2 : b2|φ2}

And so with this and (3) we have the conclusion using rule check anf let.

Case s ≡ let w : τ = s1 in s2
From the first premise and inversion with rule check anf let2 we have that, given τ = {z3 : b3|φ3}

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` s1 ⇐ {z3 : b3|φ3}

Π; Γ, x : b1[φ1[x/z1]],Γ
′, w : b3[φ3[w/z3]] ` s2 ⇐ {z2 : b2|φ2}

Applying the induction hypothesis on both of these we get:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` s1 ⇐ {z3 : b3|φ3}
Π; Γ, x : b1[φ

′
1[x/z1]],Γ

′, w : b3[φ3[w/z3]] ` s2 ⇐ {z2 : b2|φ2}
And using rule check anf let2 we get the conclusion for this case.
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Case s ≡match v { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn}
From the premises and inversion of the check s case rule we have that there is a tid such that:

union tid = {C 1 : {z1 : b′′1|φ′′1} .. C n : {zn : b′′n|φ′′n}} ∈ Π (1)

Π; Γ, x : b1[φ1],Γ
′ ` v ⇒ {z : tid|φ} (2)

Π; Γ, x : b1[φ1],Γ
′, xi : b′′i [φ′′i [xi/zi] ∧ v = Ci xi ∧ φ[v/z]]; ∆ ` si ⇐ {z2 : b2|φ2} i = 1..n (3)

Applying Lemma 19 to (2) and the second premise: we have that there is a φ′ such that:

Π; Γ, x : b1[φ
′
1],Γ

′ ` v ⇒ {z : tid|φ′} (4)

Π; Γ ` {z : tid|φ′} . {z : tid|φ} (5)

We have

Π; Γ, x : b1[φ
′
1],Γ

′ ` {xi : b′′i |φ′′i [xi/zi] ∧ v = Ci xi ∧ φ′[v/z]} . (6)

{xi : b′′i |φ′′i [xi/zi] ∧ v = Ci xi ∧ φ[v/z]} i = 1..n (7)

and so applying the induction hypothesis twice to (3) with this subtyping and the second premise
we have:

Π; Γ, x : b1[φ
′
1],Γ

′, xi : b′′i [φ′′i [xi/zi] ∧ v = Ci xi ∧ φ′[v/z]]; ∆ ` si ⇐ {z2 : b2|φ2} i = 1..n (8)

Finally, applying the rule check s case with (1), (4) and (6) we have the required conclusion:

Π; Γ, x : b1[φ
′
1],Γ

′; ∆ `match v { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn} ⇐ {z2 : b2|φ2} i = 1..n

Case s ≡ while (s1) do {s2}
From the premises and inversion of check s while we have:

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` s1 ⇐ {z : bool|>}

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` s2 ⇐ {z : unit|>}

Applying the induction hypothesis to both and then check s while we get the required conclusion.

Case s ≡ var u : τ = v in s1
From inversion of check s var , we have:

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` v ⇐ τ

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆, (u, τ) ` s⇐ {z2 : b2|φ2}

Applying Lemma 19 to the first and the generalised induction hypothesis to the second we have:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v ⇐ τ

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′; ∆, (u, τ) ` s⇐ {z2 : b2|φ2}
We can then use check s var to obtain the required conclusion.

Case s ≡ u := v
From inversion of check s assign, we have that there is a τ such that:

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` v ⇐ τ

(u, τ) ∈ ∆

{z2 : b2|φ2} = {z2 : unit |>}
Using Lemma 19 on the first of these we have that:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v ⇐ τ

(u, τ) ∈ ∆

and using check s assign we get the required conclusion.
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Case s ≡ s1; s2
By inversion of check s seq, we have

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` s1 ⇐ {z : unit |>}

Π; Γ, x : b1[φ1[x/z1]],Γ
′; ∆ ` s2 ⇐ {z2 : b2|φ2}

Applying the induction hypothesis to both, we get:

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′; ∆ ` s1 ⇐ {z : unit |>}
Π; Γ, x : b1[φ

′
1[x/z1]],Γ

′; ∆ ` s2 ⇐ {z2 : b2|φ2}
Using check s seq we get the required conclusion

9.6 Weakening Lemmas

In the typing rules and the operational semantics we sometimes extend a Γ-context or ∆-context
with additional elements. This is termed weakening and we need to ensure that certain properties
hold in these weakened contexts. We first define precisely what an extension is and prove regularity
lemmas.

An extension of a Γ-context or a ∆-context are defined by the following rules:

Π ` Γ v Γ′ Γ′ is an extension of Γ

Π ` Γws

Π ` Γ v Γ
extend g refl

Π ` Γ′′ v Γ,Γ′

x /∈ dom(Γ,Γ′)
Π ` Γ, x : b[φ]ws

Π ` Γ′′ v Γ, x : b[φ],Γ′
extend g insert

Π; Γ ` ∆ v ∆′ ∆′ is an extension of ∆

Π; Γ ` ∆ws

Π; Γ ` ∆ v ∆
extend d refl

Π; Γ ` ∆′′ v ∆,∆′

u /∈ dom(∆,∆′)
Π; Γ ` τ ws

Π; Γ ` ∆′′ v ∆, u : τ,∆′
extend d insert

Lemma 23 (Extension of Γ-context prefix). If Π ` Γ v Γ′ and Π ` Γ, x : b[φ] ws and x /∈ dom(Γ′)
then Π ` Γ, x : b[φ] v Γ′, x : b[φ]

Proof. We prove this by induction on the derivation of Π ` Γ v Γ′.
Assume that the last step in the derivation is the use of extend g refl so from inversion we

have Γ′ = Γ. From the premises we have Π ` Γ, x : b[φ] ws . and so we can apply extend g refl
and obtain Π ` Γ, x : b[φ] v Γ, x : b[φ]

Assume that the last step in the derivation is the use of extend g insert. So by inversion of
this rule we have the folllowing:

Γ′ = Γ1, x1 : b1[φ1],Γ2

Π ` Γ v Γ1,Γ2

x1 /∈ dom(Γ1,Γ2)

Π ` Γ1, x1 : b1[φ1] ws
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We need to show the following

Π ` Γ, x : b[φ] v Γ1,Γ2, x : b[φ]

x1 /∈ dom(Γ1,Γ2, x : b[φ])

Π ` Γ1, x1 : b1[φ1] ws

and then we can apply extend g insert to obtain the required conclusion. The first we get using
the induction hypothesis; An additional induction premises is that x /∈ dom(Γ1, x1 : b1[φ1],Γ2) from
this we have x is not x1 and so we can conclude the second. The third follows directly.

Lemma 24 (Extension of ∆-context prefix). If Π; Γ ` ∆ v ∆′ and Π; Γ ` ∆, u : τ ws and
u /∈ dom(∆′) then Π; Γ ` ∆, u : τ v ∆′, u : τ

Proof. We prove this by induction on the derivation of Π; Γ ` ∆ v ∆′ Assume that the last
step in the derivation is the use of extend d refl so from inversion we have ∆′ = ∆. From
the premises we have Π; Γ ` ∆, (u, τ) ws . and so we can apply extend d refl and obtain
ΠΓ ` ∆, (u, τ) v ∆, (u, τ)

Assume that the last step in the derivation is the use of extend d insert. So by inversion of
this rule we have the folllowing:

∆′ = ∆1, (u1, τ1),∆2

Π; Γ ` ∆ v ∆1,∆2

u1 /∈ dom(∆1,∆2)

Π; Γ; ∆1 ` τ ws

We need to show the following

Π; Γ ` ∆, (u, τ) v ∆1,∆2, (u, τ)

u1 /∈ dom(∆1,∆2, (u, τ))

Π; Γ; ∆1 ` τ1 ws

and then we can apply extend d insert to obtain the required conclusion. The first we get using
the induction hypothesis; An additional induction premises is that u /∈ dom(Γ1, (u, τ),Γ2) from
this we have u is not u1 and so we can conclude the second. The third follows directly.

9.6.1 Weakening for Well-scoping

The following shows that weakening of a Γ-context preserves the well-scoped property. We show
this for a single new entry added into a context. This can then be extended to the addition of
multiple entries. As can be seen from the graph in Appendix 3, the well-scoping judgements for Γ,
v, φ and e (restricted for constraints) form a closed connected cluster. This indicates we will need
to prove weakening for these using mutual recursion.

Lemma 25 (Single Weakening Γ-context for Γ, values, constraint expressions and constraints). If
the following hold:

Π ` b ws

Π ` Γ ws

Π ` Γ,Γ′ ws

Π; Γ, x : b[>] ` φ ws

x /∈ dom(Γ,Γ′)

then we have the following:
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1. Π ` Γ, x : b[φ],Γ′ ws

2. If Π; Γ,Γ′ ` v ws then Π; Γ, x : b[φ],Γ′ ` v ws

3. If Π; Γ,Γ′ `φ e ws then Π; Γ, x : b[φ],Γ′ `φ e ws

4. If Π; Γ,Γ′ ` φ′ ws then Π; Γ, x : b[φ],Γ′ ` φ′ ws

Proof. We prove this by induction on Γ′ and mutually across all four parts of the conclusion.
If Γ′ is empty then we prove the parts as follows:

1. The main premises of the lemma include the premises for the application of the rule g ws cons
and using this we get the required conclusion Π ` Γ, x : b[φ] ws

2. This part is proved by induction on v. The base case is when v is a variable or a literal. If
it is a variable y, then using the premise of this part of the conclusion we have Π; Γ ` y ws
and from inversion of infer v wf we have y ∈ dom(Γ) and so y ∈ dom(Γ, x : b[φ]]). From
the previous conclusion part we have that Π ` Γ, x : b[φ] ws. We thus have the premises
required for all of the well-scoping rules for the variable and literal case and so we have
Π; Γ, x : b[φ] ` v ws. For the pair and data constructor case, we apply the induction-on-v
induction hypothesis.

3. Assume Π; Γ `φ e ws. For each of the rules, applying inversion will give us Π; Γ ` v ws for
one or more v. From the previous case we have Π; Γ, x : b[φ] ` v ws for each v and so we
can apply the rule in the forward direction to obtain the required conclusion for the case.

4. This part is proved by induction on φ′. Assume Π; Γ ` φ′ ws. From inversion of the well-
scoping rules for φ we see that we only need to show that Π; Γ, x : b[φ] `φ e ws for various e
and Π; Γ, x : b[φ] ` φ′′ ws for various φ′′ that are simpler than φ′. The first we can use the
previous case and the second the induction hypothesis.

Assume that Γ′ = Γ′′, x1 : b1[φ1]. We prove the parts as follows:

1. The premises of the inductive step are:

x /∈ dom(Γ,Γ′′, x1 : b1[φ1])

Π ` Γ, x : b[φ],Γ′′ ws

Π ` Γ,Γ′′, x1 : b1[φ1] ws

Applying inversion of g ws cons to the last of these we have:

x1 /∈ Γ,Γ′′

Π ` b1 ws

Π ` Γ,Γ′′ ws

Π; Γ,Γ′′ ` φ1 ws

We thus have:

x1 /∈ Γ, x : b[φ1],Γ
′′

Π ` b1 ws

Π ` Γ, x : b[φ],Γ′′ ws

Π; Γ, x : b[φ],Γ′′ ` φ1 ws

and so can apply g ws cons to get the required conclusion which is

Π ` Γ, x : b[φ],Γ′′, x1 : b1[φ1] ws
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2. The premises of the inductive step are:

Π; Γ,Γ′′, x1 : b1[φ1] ` v ws

We prove this by induction on v. If v is a variable y, then from the above and inversion of
infer v var we have y ∈ dom(Γ,Γ′′, x1 : b1[φ1]) and so y ∈ dom(Γ, x : b[φ],Γ′′, x1 : b1[φ1]).
Furthermore we also have Π; Γ; Π′′, x1 : b1[φ1]) and so from the previous case we have Π; Γ;x :
b[c],Π′′, x1 : b1[φ1]). The conclusion hence follows for variables and literals. For pairs and
data constructors we make use of the induction hypothesis.

3. Assume Φ; Γ,Γ′ `φ e ws. For each of the rules, applying inversion will give us Π; Γ,Γ′ ` v ws
for one ore move v. From the previous case we will then have Π; Γ, x : b[φ],Γ′ ` v ws and so
we can apply the rule in the forward direction to obtain the required conclusion for the case.

4. This part is proved by induction on φ′. Assume Π; Γ,Γ′ ` φ′ ws. From inversion of the
well-scoping rules for φ we see that we only need to show that Π; Γ, x : b[φ],Γ′ `φ e ws for
various e and Π; Γ, x : b[φ],Γ′ ` φ′′ ws for various φ′′ that are simpler than φ′. The first we
can use the previous case and the second use the induction hypothesis.

Lemma 26 (Weakening Γ-context for Γ). If Π ` Γ v Γ′ and Π ` Γ ws then Π ` Γ′ ws

Proof. Proof is by induction on the derivation of Π ` Γ v Γ′. If the last step in the derivation is
the rule extend g refl then we have Γ′ = Γ and from inversion we have that Π ` Γ ws and so
the required conclusion follows.

If the step in the derivation is the rule extend g refl then we have from inversion that

Γ′ = Γ1, x : b[φ],Γ2 (1)

Π ` Γ v Γ1,Γ2 (2)

x /∈ dom(Γ1,Γ2) (3)

Π ` Γ1, x : b[φ] ws (4)

From the last of these we have using inversion of g ws cons

Π ` Γ1 ws (5)

Π; Γ1 ` b ws (6)

Π; Γ1, x : b[>] ` φ ws (7)

We thus have the required premises for the first part of Lemma 25 and get:

Π ` Γ1, x : b[φ],Γ2 ws

which is the required conclusion for this case

Lemma 27 (Weakening Γ-context for v).
If Π ` Γ v Γ′ and Π; Γ ` v ws then Π; Γ′ ` v ws

Proof. As above the proof is by induction on the derivation of Π ` Γ v Γ′ If the last step in the
derivation is the rule extend g refl then we have Γ′ = Γ and from the premise for this case the
required conclusion follows.

If the step in the derivation is the rule extend g refl then we have from inversion that

Γ′ = Γ1, x : b[φ],Γ2 (1)

Π ` Γ v Γ1,Γ2 (2)

x /∈ dom(Γ1,Γ2) (3)

Π ` Γ1, x : b[φ] ws (4)
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From the last of these we have using inversion of g ws cons

Π ` Γ1 ws (5)

Π; Γ1 ` b ws (6)

Π; Γ1, x : b[>] ` φ ws (7)

Furthermore, from (2) we can apply the induction hypothesis and get Π; Γ1,Γ2 ` v ws We thus
have the required premises for the second part of Lemma 25 and get:

ΠΓ1, x : b[φ],Γ2 ` v ws

which is the required conclusion for this case

Lemma 28 (Weakening Γ-context for φ).
If Π ` Γ v Γ′ and Π; Γ ` φ ws then Π; Γ′ ` φ ws

Proof. As above the proof is by induction on the derivation of Π ` Γ v Γ′ If the last step in the
derivation is the rule extend g refl then we have Γ′ = Γ and from the premise for this case the
required conclusion follows.

If the step in the derivation is the rule extend g refl then we have from inversion that

Γ′ = Γ1, x : b[φ′],Γ2 (1)

Π ` Γ v Γ1,Γ2 (2)

x /∈ dom(Γ1,Γ2) (3)

Π ` Γ1, x : b[φ′] ws (4)

From the last of these we have using inversion of g ws cons

Π ` Γ1 ws (5)

Π; Γ1 ` b ws (6)

Π; Γ1, x : b[>] ` φ′ ws (7)

Furthermore, from (2) we can apply the induction hypothesis and get Π; Γ1,Γ2 ` φ ws We thus
have the required premises for the fourth part of Lemma 25 and get:

ΠΓ1, x : b[φ],Γ2 ` φ ws

which is the required conclusion for this case

Lemma 29 (Weakening Γ-context for well-scoped types ).
If Π; Γ ` τ ws and Π ` Γ v Γ′ then Π; Γ′ ` τ ws

Proof. Let τ = {z : b|phi} From the first premise and inversion of type wf type we have Π; Γ, x :
b[>]vdashφ ws. From Lemma 23 we have Π ` Γ, x : b[>] v Γ′, x : b[>] and so using Lemma 28 we
have Π; Γ′, x : b[>] ` φ ws. Finally, using type wf type we have the required conclusion.

Lemma 30 (Weakening Γ-context for well-scoped ∆-context). If Π; Γ ` ∆ ws and Π ` Γ v Γ′

then Π; Γ′ ` ∆ ws

Proof. We prove this by induction on ∆. Assume that ∆ is empty. We have Π ` Γ′ ws from
Lemma 26 and so the conclusion follows from the rule delta ws empty.

Assume that ∆ = ∆′, (u, τ). From the premise we have Π; Γ ` ∆′, (u, τ) wf and from inversion
of delta ws cons we have:

Π; Γ ` τ ws

Π; Γ ` ∆ ws
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Using Lemma 29 on the first of these and the induction hypothesis on the second we have:

Π; Γ′ ` τ ws

Π; Γ′ ` ∆ ws

and so can apply delta ws cons to obtain the required conclusion.

9.6.2 Weakening for Typing Judgements

It is useful to an understanding of the proofs for the weakening lemmas to divide the inductive typing
rules for values, expressions and statements into how they make use of or manipulate contexts: The
typing rules for values use lookup for Γ and Π contexts; the typing rules for expressions use lookup
for ∆ and Π contexts and finally the typing rules for statements use lookup for ∆ (in the rule for
mutable variable assignments), manipulate the Γ context (in the rules for let and case statements)
and manipulate the ∆ context (in the rule for mutable variable introduction).

Lemma 31 (Weakening Γ-context for validity). If Π; Γ |= φ and Π ` Γ v Γ′ then Π; Γ′ |= φ

Proof. An interpretation that satisfies |Γ′, z1 : [φ1]| will also satisfy |Γ, z1 : [φ1]|| and will satisfy
|φ2[z1/z2]| from the above. Hence we have

Π; Γ′, z1 : b[φ1] |= φ2[z1/z2]

Lemma 32 (Weakening Γ-context for subtyping). If Π; Γ ` τ1 . τ2 and Π ` Γ v Γ′ then Π; Γ′ `
τ1 . τ2
Proof. Consider τ1 = {z1 : b|φ1} and τ2 = {z2 : b|φ2}. From inversion of the subtype subtype
rule we have

Π; Γ ` {z1 : b|φ1} ws

Π; Γ ` {z2 : b|φ2} ws

Π; Γ, z1 : b[φ1] |= φ2[z1/z2]

Using weakening of type well-scoping on the first two and weakening of validity we have:

Π; Γ′ ` τ1 ws

Π; Γ′ ` τ2 ws

Π; Γ′, z1 : b[φ1] |= φ2[z1/z2]

and so we can apply subtype subtype to obtain the required conclusion.

Lemma 33 (Weakening Γ-context for ⇒ values). If Π; Γ ` v ⇒ τ and Π ` Γ v Γ′ then Π; Γ′ `
v ⇒ τ .

Proof. If v is a variable, then from inversion of infer v var we have that there is a φ such that
x : b[φ] ∈ Γ. By definition of Γ v Γ′ we are assured that x : b[φ] ∈ Γ′ and so the conclusion follows
using infer v var.

If v is a literal, then the typing of v is independent of any particular Γ and so the conclusion
holds.

If v is a pair (v1, v2), then from inversion we obtain typing judgements for v1 and v2 in terms
of Γ. Applying the induction hypothesis to both of these, we get typing judgements for v1 and v2
in terms of Γ′. We can then apply infer v pair to get the conclusion.

If v is the application of a data constructor i.e.v = C v′, then from inversion we obtain a typing
judgement for v′ in terms of Γ plus conditions on C. Applying the induction hypothesis to the
judgement for v′, we get a typing judgement in terms of Γ′. We can then apply infer v data cons
to get the conclusion.
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Lemma 34 (Weakening Γ context for ⇐ values). If Π; Γ ` v ⇐ τ and Γ v Γ′ then Π; Γ′ ` v ⇐ τ .

Proof. Using inversion of check v val followed by weakening for subtyping and weakening for
value type inference and then applying check v val, we obtain the required conclusion.

Lemma 35 (Weakening Γ context and ∆-context for ⇒ expressions). If Π; Γ; ∆ ` e ⇒ τ and
∆ v ∆′ and Γ v Γ′ then Π; ∆′; Γ′ ` v ⇒ τ .

Proof. As noted above, the rules for type inference for expressions do not directly manipulate or
use the Γ context. For the ∆ context, only lookup is used, and by definition of context extension,
we know that the lookup in the extension will return the same result.

Lemma 36 (Weakening Γ context and ∆-context for ⇐ expressions). If Π; Γ; ∆ ` e ⇐ τ then
Π; ∆′; Γ′ ` v ⇐ τ for any Γ′ and ∆′ such that Π ` Γ v Γ′ and Π; Γ′ ` ∆ v ∆′

Proof. The proof is similar to the proof for value type checking.

Lemma 37 (Weakening Γ context and ∆-context for ⇐ statements). If Π; Γ; ∆ ` s ⇐ {z : b|φ}
and Π ` Γ v Γ′ and Π; Γ′ ` ∆ v ∆′ then Π; ∆′; Γ′ ` s⇐ {z : b|φ}.

Proof. In the proof cases below we use a generalised induction hypothesis that permits us to extend
any Γ or ∆ and not just those mentioned in the statement of the lemma. We only give the cases
where the corresponding rule uses, or manipulates, a context; other cases follow directly from
induction hypothesis or making use of the weakening rules for values or expressions.

Case s ≡ let w = e in s
Using inversion with check anf let there is a b3 and φ3 such that:

Π; Γ; ∆ ` e⇒ {z3 : b3|φ3}
Π; Γ, w : b3[φ3[w/z3]]; ∆ ` s⇐ {z : b|φ}

Given a Γ′ such that Π ` Γ v Γ′ then from Lemma 23 we have Π ` Γ, w : b3[φ3] v Γ′, w : b3[φ3]
and so from weakening for expressions and using the generalised induction hypothesis we have:

Π; Γ′; ∆′ ` e⇒ {z3 : b3|φ3}
Π; Γ′, w : b3[φ3[w/z3]]; ∆′ ` s⇐ {z : b|φ}

and the conclusion follows using check anf let

Case s ≡ let w : τ = s1 in s2
Using inversion with check anf let2 we obtain the following:

Π; Γ, ; ∆ ` s1 ⇐ {z3 : b3|φ3}
Π; Γ, w : b3[φ3[w/z3]]; ∆ ` s⇐ {z : b|φ}

Given a Γ′ such that Π ` Γ v Γ′ then from Lemma 23 we have Γ, w : b3[φ3] v Γ′, w : b3[φ3] and so
from the generalised induction hypothesis we have:

Π; Γ′, ; ∆′ ` s1 ⇐ {z3 : b3|φ3}
Π; Γ′, w : b3[φ3[w/z3]]; ∆′ ` s⇐ {z : b|φ}

and the conclusion follows using check anf let2
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Case s ≡match v′ { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn}
From inversion of check s match we have that there is an id such that

union id = {C 1 : {z1 : b′′1|φ′′1} .. C n : {zn : b′′n|φ′′n}} ∈ Π

Π; Γ ` v′ ⇒ {z : id|φ}
Π; Γ, xi : b′′i [φ′′i [xi/zi] ∧ v′ = C xi ∧ φ[v/z]]; ∆ ` si ⇐ {z1 : b1|φ1} i = 1..n

Given a Γ′ such that Π ` Γ v Γ′ then for every i = 1..n we have using Lemma 23 that

Π ` Γ, xi : b′′i [φ′′i ∧ v′ = C xi ∧ φ[v/z]] v Γ′, xi : b′′i [φ′′i ∧ v′ = C x∧φ[v/z]]

Hence we can apply the weakening rule for values and the induction hypothesis to get that there
is an id such that

union id = {cons1 : {z1 : b′′1|φ′′1} .. consn : {zn : b′′n|φ′′n}} ∈ Π

Π; Γ′ ` v′ ⇒ {z : id|>}
Π; Γ′, xi : b′′i [φ′′i [xi/zi] ∧ v′ = C xi ∧ φ[v/z]]; ∆′ ` si ⇐ {z1 : b1|φ1} i = 1..n

and using check s case the conclusion follows.

Case s ≡ var u : τ = v′ in s1
From the premises and inversion of check s var we have:

Π; Γ ` v′ ⇐ τ

Π; Γ; ∆, (u, τ) ` s1 ⇐ {z : b|φ}

Given a ∆′ such that Π; Γ′ ` ∆ v ∆′ from Lemma 24 we have Π; Γ′ ` ∆, (u, τ) v ∆′, (u, τ). Hence
we can apply the weakening rule for values and the induction hypothesis to obtain:

Π; Γ′ ` v′ ⇐ τ

Π; Γ′; ∆′, (u, τ) ` s1 ⇐ {z : b|φ}

and using check s var the conclusion follows.

Case s ≡ u := v′

From the premises and inversion of check s assign we have that there is a τ such that:

(u, τ) ∈ ∆ (1)

Π; Γ ` v′ ⇐ τ (2)

{z : b|φ} = {z : unit |>} (3)

Given a ∆′ such that Π; Γ′ ` ∆ v ∆′ then if (u, τ) ∈ ∆ we have (u, τ) ∈ ∆′. Hence we can apply
the weakening rules for values to obtain:

(u, τ) ∈ ∆′ (4)

Π; Γ′ ` v′ ⇐ τ (5)

and use the rule check s assign to get the required conclusion.

9.7 Substitution Lemmas

9.7.1 Substitution for Well-scoping Judgements

The following assures us that the well-scoping property is preserved under substitution in contexts.
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Lemma 38 (Substitution for well-scoped Γ, values, constraint expressions and constraints).
If

Π ` Γ ws

Π ` b ws

Π ` Γ,Γ′ ws

Π; Γ ` {z : b|φ′} . {z : b|φ}
x /∈ dom(Γ,Γ′)

Π; Γ ` v ⇒ {z : b|φ}

then

1. If Π ` Γ, x : b[φ[x/z]],Γ′ ws then Π ` Γ,Γ′[v/x] ws

2. If Π; Γ, x : b[φ[x/z]],Γ′ ` v′ ws then Π; Γ,Γ′[v/x] ` v′[v/x] ws

3. If Π; Γ, x : b[φ[x/z]],Γ′ `φ e ws then Π; Γ,Γ′[v/x] `φ e[v/x] ws

4. If Π; Γ, x : b[φ[x/z]],Γ′ ` φ′′ ws then Π; Γ,Γ′[v/x] ` φ′′[v/x] ws

Proof. We prove this by induction on Γ′. Assume that Γ′ is empty.

1. Using inversion of g ws cons with Π ` Γ, x : b[φ[x/z]] ws we get Π ` Γ which is the required
conclusion.

2. We prove this by induction on v′.

If v′ is a variable y that is not equal to x then we must have y ∈ dom(Γ) also from above we
have Π ` Γ ws and so using v ws var we have Π; Γ ` v′ ws and but since v′[v/x] = v′ we
have the required conclusion.

If v′ is equal to x then we have v′[v/x] = v and by the regularity lemma we already know
Π; Γ ` v ws which is the required conclusion.

If v′ is a literal then since Π ` Γ ws we can use the appropriate rule to get Π ` Γv′ ws and
v′[v/x] = v′ we the required conclusion.

If v′ is a pair (v1, v2) then from inversion of v ws pair we have

Π; Γ, x : b[φ[x/z]] ` v1 ws

Π; Γ, x : b[φ[x/z]] ` v2 ws

and by the induction hypothesis we have

Π; Γ ` v1[v/x] ws

Π; Γ ` v2[v/x] ws

and so using v ws pair we have the required conclusion since (v1, v2)[v/x] = (v1[v/x], v2[v/x])

If v′ is the application of a data construction v′ = C v′′ then from inversion of v ws cons
we have

union tid = {C1 : τ1, ..,C : τ, ...Cn : τn} ∈ Π

Π; Γ, x : b[φ[x/z]] ` v′′ ws

applying the induction hypothesis to the second of these and then v ws cons we obtain the
required conclusion as (C v′′)[v/x] = C (v′′[v/x]).
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3. We prove this by cases on e. From inspection of the rules for `φ we see that they all make
us of well-scoping of one or more values. So for each case, we can apply inversion, apply the
part of this lemma for values and then apply the rule that we inverted to obtain the required
conclusion.

4. We prove this by induction on φ. From inspection of the rules for well-scoping of φ we see
that make use well-scoping for smaller φ or well-scoping of constraint expressions. So for each
form of φ, we can use inversion, apply the part of this lemma for constraint expressions, or
the induction hypothesis, and then apply the rule that we inverted to obtain the required
conclusion.

Assue that Γ′ is Γ′′, x1 : b1[φ1]. Note that Γ, (Γ′′, x1 : b1[φ1])[v/x] = Γ,Γ′′[v/x], x1 : b1[φ1[v/x]]
from the definition of substitution over Γ-context.

1. From the induction premises we have Π ` Γ, x : b[φ[x/z]],Γ′′, x1 : b1[φ1] ws. Using inversion
of g ws cons we have Π ` Γ, x : b[φ[x/z]],Γ′′ ws . Applying the induction hypothesis we
have Π ` Γ,Γ′′[x/v] ws

Furthermore from the inversion g ws cons we also have Π; Γ, x : b[φ[x/z]],Γ′′, x1 : b1[>] `
φ1ws and from the induction hypthesis (recalling that this is mutually induction across all 4
conclusions) we have Π; Γ, (Γ′′, x1 : b1[>])[v/x] ` φ1[v/x]ws. We can thus apply g ws cons
to get Π ` Γ, (Γ′′, x1 : b1[φ])[v/x]

2. We prove this by induction on v similar to the Γ′ = q induction case.

If v′ is a variable y that is not equal to x then we must have y ∈ dom(Γ,Γ′[v/x]) also from
above we have Π ` Γ,Γ′[v/x] ws and so using v ws var we have Π; Γ,Γ′[v/x] ` v′ ws and
but since v′[v/x] = v′ we have the required conclusion.

If v′ is equal to x then we have v′[v/x] = v and by the regularity lemma we already know Π; Γ `
v ws and from weakening we have Π; Γ,Γ[v/x] ` v ws which is the required conclusion.

If v′ is a literal then since Π ` Γ,Γ′[v/x] ws we can use the appropriate rule to get
Π; Γ,Γ[v/x] ` v′ ws and v′[v/x] = v′ we get the required conclusion.

If v′ is a pair (v1, v2) then from inversion of v ws pair we have

Π; Γ, x : b[φ[x/z]],Γ′ ` v1 ws

Π; Γ, x : b[φ[x/z]],Γ′ ` v2 ws

and by the induction hypothesis we have

Π; Γ,Γ′[v/x] ` v1[v/x] ws

Π; ΓΓ′[v/x] ` v2[v/x] ws

and so using v ws pair we have the required conclusion since (v1, v2)[v/x] = (v1[v/x], v2[v/x])

If v′ is the application of a data construction v′ = C v′′ then from inversion of v ws cons
we have

union tid = {C1 : τ1, ..,C : τ, ...Cn : τn} ∈ Π

Π; Γ, x : b[φ[x/z]],Γ′ ` v′′ ws

applying the induction hypothesis to the second of these and then v ws cons we obtain the
required conclusion as (C v′′)[v/x] = C (v′′[v/x]).

3. For e the argument for the base case applies here as well.

4. For φ the argument for the base case applies here as well.
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Lemma 39 (Substitution for well-scoped types).
If Π; Γ ` v ⇒ {z : b|φ} and Π; Γ, x : b[φ′],Γ′ ` τ ws then Π; Γ,Γ′[v/x] ` τ [v/x] ws

Proof. Let τ = {z : b|φ} where z /∈ dom(Γ, x : b[φ′],Γ′). From the second premise and inversion
of type ws type we have Π; Γ, x : b[φ′],Γ′, z : b[>] ` φ ws . Applying Lemma 38 we have
Π; Γ,Γ′[v/x], z : b[>] ` φ[v/x] ws From type ws type we have Π; Γ,Γ′[v/x] ` {z : b|φ[v/x]} ws
and the conclusion follows from the definition of substitution on types.

Lemma 40 (Substitution for well-scoped ∆-contexts).
If

Π; Γ ` v ⇒ {z1 : b1|φ1}
Π; Γ, x : b1[φ

′
1],Γ

′ ` ∆ ws

then

Π; Γ,Γ′[v/x] ` ∆[v/x] ws

Proof. Induction on ∆. If ∆ is empty, then the conclusion holds as the empty ∆-context is well-
scoped under any Π-context and Γ-context by rule d ws empty. If ∆ = ∆′, u : τ , then from
inversion of d ws cons we have

Π; Γ, x : b1[φ
′
1],Γ

′ ` ∆′ ws

Π; Γ, x : b1[φ
′
1],Γ

′ ` τ ws

From the induction hypothesis and the previous lemma we have:

Π; Γ,Γ′[v/x] ` ∆′[v/x] ws

Π; Γ,Γ′[v/x] ` τ [v/x] ws

Hence from rule d ws cons and distributivity of substitution for ∆-context we have the required
conclusion.

9.7.2 Substitution for Typing Judgements

We prove a set of lemmas that guarantee that typing is stable under substitution. In particular, if
we have a term that has a variable x and we substitute in a value that has a type that is a subtype
of x’s type then the type of the new term is a subtype of the original term. This is key to ensuring
that type preservation occurs when reducing let expressions. These lemmas are more complex than
the equivalent lemmas for simply typed languages as the substitution is also applied to types as
these can include the variable we are substituting for.

Lemma 41 (Substitution for validity). If

Γ ` v ⇒ {z1 : b1|φ1}
Π; Γ, x : b1[φ

′
1],Γ

′ |= φ

Π; Γ ` {z1 : b1|φ1} . {x : b1|φ′1}

then

Π; Γ,Γ′[v/x] |= φ[v/x]
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Proof. From Lemma 16 and the last two premises, we have

Π; Γ, x : b1[φ1],Γ
′ |= φ

Assume that there is an interpretation that makes |Γ,Γ′[v/x]| true. Extend this to an in-
terpretation that also maps the variable x to v. From Lemma 11 we have Γ |= φ1[v/z1] and so
|Γ, x : b1[φ1]| is true and hence φ′1 is true from the third premise. Hence φ is true under the extended
interpretation from the second premise. Hence φ[v/x] is true under the original interpretation.

Lemma 42 (Substitution for subtyping). If

Γ ` v ⇒ {z1 : b1|φ1}
Π; Γ, x : b1[φ

′
1],Γ

′ ` {z2 : b2|φ2} . {z2 : b2|φ′2}
Π; Γ ` {z1 : b1|φ1} . {x : b1|φ′1}

then

Π; Γ,Γ′[v/x] ` {z2 : b2|φ2}[v/x] . {z2 : b2|φ′2}[v/x])

Proof. From the second premise using inversion of subtype subtype we have the following

Π; Γ, x : b1[φ
′
1],Γ

′ ` {z2 : b2|φ2} ws

Π; Γ, x : b1[φ
′
1],Γ

′ ` {z2 : b2|φ′2} ws

Π; Γ, x : b1[φ
′
1],Γ

′, z2 : b2[φ2] |= φ′2

Applying Lemma 39 to the first two and the previous lemma to the third we get:

Π; Γ,Γ′[v/x] ` {z2 : b2|φ2}[v/x] ws

Π; Γ,Γ′[v/x] ` {z2 : b2|φ′2}[v/x] ws

Π; Γ,Γ′[v/x], z2 : b2[φ2[v/x]] |= φ′2[v/x]

Finally using subtype subtype we get the required conclusion making use of the definition of the
substitution function for types.

Lemma 43 (Substitution for ⇒ values). If

Γ ` v ⇒ {z1 : b1|φ1}
Π; Γ, x : b1[φ

′
1],Γ

′ ` v′ ⇒ {z2 : b2|φ′2}
Π; Γ ` {z1 : b1|φ1} . {x : b1|φ′1}

then there is a φ2 such that the following hold:

Π; Γ,Γ′[v/x] ` v′[v/x]⇒ {z2 : b2|φ2}
Π; Γ,Γ′[v/x] ` {z2 : b2|φ2} . {z2 : b2|φ′2}[v/x])

Proof. Proof is by cases on the structure of v′. For all cases φ1 ≡ (z1 = v′) and φ2 ≡ (z2 = v′[v/x])

Case v′ = ()
Let φ2 ≡ (z2 = ())
From inversion of infer v unit with the second premise we have φ′2 = (z2 = ()) and b2 = unit.
From the substitution function we have ()[v/x] = (). Furthermore, for any Γ′′ we have from
infer v unit that:

Π; Γ′′ ` ()⇒ {z : unit |z = ()}
and in particular we can pick Γ′′ = Γ,Γ′[v/x] and the first part of the conclusion holds:

Π; Γ,Γ′[v/x] ` ()[v/x]⇒ {z : b2|φ2}
The second part of the conclusion holds as for this case φ2 and φ′2 are identical.
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Case v′ = x
Let φ2 ≡ (z2 = v)
From the substitution function we have that:

x[v/x] = v

and with the first premise, and using weakening to add Γ′[v/x], we get the first part of the conclu-
sion:

Π; Γ,Γ′[v/x] ` x[v/x]⇒ {z2 : b2|z2 = v}

The second part of the conclusion is:

Π; Γ,Γ′[v/x] ` {z2 : b2|z2 = v} . ({z2 : b2|z2 = x}[v/x])

The constraints in both sides become z2 = v and so the conclusion follows.

Case v′ = w and x 6= w
Let φ2 ≡ (z2 = w)
From the second premise we have that:

Π; Γ, x : b1[φ
′
1],Γ

′ ` w ⇒ {z2 : b2|φ′2}

Since v′ is well-scoped, w is in the domain of Γ or Γ′ and so from the rule infer v var we have

Π; Γ,Γ′[v/x] ` w ⇒ {z2 : b2|z2 = w}

Then since w[v/x] = w we have the first part of the conclusion

Π; Γ,Γ′[v/x] ` w[v/x]⇒ {z2 : b2|z2 = w}

Furthermore, we have φ′2 = (z2 = w) and so the second part of the conclusion holds as well:

Π; Γ,Γ′[v/x] ` {z2 : b2|z2 = w} . ({z2 : b2|z2 = w}[v/x])

Case v′ is an int or bool literal
We just give the proof for when v′ = n; the proof for bool is similar.
Let φ2 ≡ (z2 = n)
From the second premise and inversion of infer v num we have:

Π; Γ, x : b1[φ
′
1],Γ

′ ` n⇒ {z2 : int |z2 = n}

From infer n num we have

Π; Γ,Γ′[v/x] ` n⇒ {z2 : int |z2 = n}

Since n[v/x] = n we have the first part of the conclusion

Π; Γ,Γ′[v/x] ` n[v/x]⇒ {z2 : int |z2 = n}

Furthermore, we have φ′2[v/x] = (z2 = n) and so the second part of the conclusion holds as well:

Π; Γ,Γ′[v/x] ` {z2 : int |z2 = n} . ({z2 : int |z2 = n}[v/x])
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Case v′ is (v1, v2)
Let φ2 ≡ z2 = (v1[v/x], v2[v/x])
From inversion of infer v pair on the second premise we have that there are b2i and φ′2i such
that:

Π; Γ, x : b1[φ
′
1],Γ

′ ` vi ⇒ {z2i : b2i|φ′2i}, i = 1, 2

and that φ′2 ≡ (z2 = (v1, v2)) and b2 = b21 ∗ b22. From the induction hypothesis, there are φ21 and
φ22 such that:

Π; Γ,Γ′[v/x] ` vi[v/x]⇒ {z2i : b2i|φ2i}
Π; Γ,Γ′[v/x] ` {z2i : b2i|φ2i} . {z2i : b2i|φ′2i}[v/x]), i = 1, 2

And using infer v pair the first part of the conclusion holds:

Π; Γ,Γ′[v/x] ` (v1, v2)[v/x]⇒ {z2 : b21 ∗ b22 | z2 = (v1[v/x], v2[v/x]) }

as well as the second:

Π; Γ,Γ′[v/x] ` {z2 : b2|z2 = (v1[v/x], v2[v/x])} . ({z2 : b2|z2 = (v1, v2)}[v/x])

Case v′ is C v′′

Let φ2 ≡ (z2 = C (v′′[v/x]))
From the second premise and inversion of infer v data cons we have that there is a tid and k
such that Ck = C and

union tid = {C1 : {z′′1 : b′′1|φ′′1}..Cn : {z′′n : b′′n|φ′′n}} ∈ Π

Π; Γ, x : b1[φ
′
1],Γ

′ ` C v′′ ⇒ {z2 : tid|z2 = C v′′}
Π; Γ, x : b1[φ

′
1],Γ

′ ` v′′ ⇐ {z′′k : b′′k|φ′′k}

From the last of these we have that there is a φ′′ such that:

Π; Γ, x : b1[φ
′
1],Γ

′ ` v′′ ⇒ {z : b′′k|φ′′} (1)

Π; Γ, x : b1[φ
′
1],Γ

′ ` {z : b′′k|φ′′} . {z′′k : b′′k|φ′′k} (2)

Applying the induction hypothesis to the first of these we have that there is φ′′′ such that:

Π; Γ,Γ′[v/x] ` v′′[v/x]⇒ {z : b′′k|φ′′′} (3)

Π; Γ,Γ′[v/x] ` {z : b′′k|φ′′′} . {z : b′′k|φ′′}[v/x] (4)

Using Lemma 17 on (2) we have:

Π; Γ,Γ′[v/x] ` {z : b′′k|φ′′}[v/x] . {z′′k : b′′k|φ′′k}[v/x] (5)

and so by transitivity of subtyping we have

Π; Γ,Γ′[v/x] ` {z : b′′k|φ′′′}[v/x] . {z′′k : b′′k|φ′′k}[v/x] (6)

and thus

Π; Γ,Γ′[v/x] ` v′′[v/x]⇐ {z′′k : b′′k|φ′′k}[v/x]

From well-scoping of the union definitions, we know that x will not appear in φ′′k and so we have:

Π; Γ,Γ′[v/x] ` v′′[v/x]⇐ {z : b′′k|φ′′k}
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We can now apply infer v data cons to get:

Π; Γ,Γ′[v/x] ` C v′′ ⇒ {z : tid|z = C (v′′[v/x])}

which is the first part of the required conclusion. The second part has the form:

Π; Γ,Γ′[v/x] ` {z : tid|z = C (v′′[v/x])} . {z : tid|z = C v′′)[v/x]}

which holds as both types in the subtype expression are equal.

Lemma 44 (Substitution for ⇐ values). If

Γ ` v ⇒ {z1 : b1|φ1}
Π; Γ, x : b1[φ

′
1[x/z2]],Γ

′ ` v′ ⇐ {z2 : b2|φ′2}
Π; Γ ` {z1 : b1|φ1} . {z1 : b1|φ′1}

then

Π; Γ,Γ′[v/x] ` v′[v/x]⇐ {z2 : b2|φ′2}[v/x]

Proof. From the second premise and inversion of check v we have that there is a φ′′2 such that

Π; Γ, x : b1[φ
′
1[x/z1]],Γ

′ ` v′ ⇒ {z2 : b2|φ′′2}
Π; Γ, x : b1[φ

′
1[x/z1]],Γ

′ ` {z2 : b2|φ′′2} . {z2 : b2|φ′2}

Applying the previous lemma to the first of these we have that there is a φ′′′2 such that the following
hold:

Π; Γ,Γ′[v/x] ` v′[v/x]⇒ {z2 : b2|φ′′′2 }
Π; Γ,Γ′[v/x] ` {z2 : b2|φ′′′2 } . {z2 : b2|φ′′2}[v/x]

We also have:

Π; Γ,Γ′[v/x] ` {z2 : b2|φ′′2}[v/x] . {z2 : b2|φ′2}[v/x]

and so from transitivity we have

Π; Γ,Γ′[v/x] ` {z2 : b2|φ′′′2 }[v/x] . {z2 : b2|φ′2}[v/x]

and applying check v we have the required conclusion.

Lemma 45 (Substitution for ⇒ expression).
If

Π; Γ ` v ⇒ {z1 : b1|φ1}
Π; Γ, x : b1[φ

′
1],Γ

′; ∆ ` e⇒ {z2 : b2|φ′2}
Π; Γ ` {z1 : b1|φ1} . {x : b1|φ′1}

then there is a φ2 such that the following hold:

Π; Γ,Γ′[v/x]; ∆[v/x] ` e[v/x]⇒ {z2 : b2|φ2}
Π; Γ[v/x] ` {z2 : b2|φ2} . {z1 : b2|φ′2}[v/x]

Proof. The proof is by cases on the structure of e. For all cases we have φ1 ≡ z = v.
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Case e = v1 + v2
Let φ2 ≡ (z = (v1 + v2)[v/x]) ≡ φ′2[v/x]
We need to show:

Π; Γ,Γ′[v/x]; ∆[v/x] ` (v1 + v2)[v/x]⇒ {z : int|z = (v1 + v2)[v/x]}
Π; Γ,Γ′[v/x] ` {z2 : int|(z = v1 + v2)[v/x]} . {z2|φ′2}[v/x]

From the second premise and inversion on infer e plus we have that there exist φ′21 and φ′22 such
that b2 = int and φ′2 ≡ (z = v1 + v2) and the following holds:

Γ, x : b1[φ
′
1],Γ

′ ` ∆ ws

Π; Γ, x : b1[φ
′
1],Γ

′ ` v1 ⇒ {w1 : int|φ′21}
Π; Γ, x : b1[φ

′
1],Γ

′ ` v2 ⇒ {w2 : int|φ′22}

Using Lemma 43 on the last two we have there are φ21 and φ22 such that:

Π; Γ,Γ′[v/x] ` v1[v/x]⇒ {w1 : int|φ21}
Π; Γ,Γ′[v/x] ` v2[v/x]⇒ {w2 : int|φ22}

and from Lemma 40 on the first we have

Γ,Γ′[v/x] ` ∆[v/x] ws

and so using infer e plus we have:

Π; Γ,Γ′[v/x]; ∆[v/x] ` (v1[v/x]) + (v2[v/x])⇒ {z : int|(z = v1[v/x] + v2[v/x])}

and pulling out the substitutions from the type and expression, we have the first part of the
conclusion:

Π; Γ,Γ′[v/x]; ∆[v/x] ` (v1 + v2)[v/x]⇒ {z : int|z = (v1 + v2)[v/x]}

The second part of the conclusion has the form:

Π; Γ,Γ′[v/x] ` {z2 : int|((z = v1 + v2)[v/x]} . {z2 : int|z = v1 + v2}[v/x]

which holds and so the required conclusion follows.

Case e = v1 ≤ v2
Similar to the previous case with φ2 ≡ (z = v1 ≤ v2)[v/x]

Case e = f v′

We pick as the φ2 the constraint in the return type of the function f , so assume that f has type:

y : b[φ]→ {z2 : b2|φ2}

Taking the second lemma premise and using rule inversion with infer anf app, we have

Π; Γ, x : b1[φ
′
1],Γ

′ ` v′ ⇐ {z : b|φ[z/y]} (7)

Π; Γ, x : b1[φ
′
1],Γ

′ ` ∆ ws (8)

φ2 = φ′2 (9)

Apply the substitution lemma for values to the first of these, we get:

Π; Γ,Γ′[v/x] ` v′[v/x]⇐ {z : b|φ′[z/y]}[v/x] (10)
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From the well-scoping of function definitions def ws valspec we have that x cannot occur in
φ′ and so we have {z : b|φ′[z/y]}[v/x] = {z : b|φ′[z/y]}. Hence with Lemma 40 we can apply
infer e app to get:

Π; Γ,Γ′[v/x],∆[v/x] ` f(v′[v/x])⇒ {z2 : b2|φ2} (11)

Again from def ws valspec, x doesnot appear in the return type of the function and so using
substitution for function application, we have the first part of the conclusion

Π; Γ,Γ′[v/x],∆[v/x] ` (fv′)[v/x])⇒ {z2 : b2|φ2}[v/x] (12)

The second part of the conclusion also holds through reflexivity of subtyping.

Case e = u
Let φ2 = φ′2[v/x]
From the second premise using inversion of infer e mvar we have:

Γ, x : b1[φ1],Γ
′ ` ∆ ws (1)

(u, {z2 : b2|φ′2}) ∈ ∆ (2)

From Lemma 40 we have

Γ,Γ′[x/v] ` ∆[v/x] ws (3)

Furthermore, from the definition of substitution for ∆ we have

(u, {z2 : b2|φ′2[v/x]}) ∈ ∆[v/x] (4)

So using (3) and (4) with infer e mvar we have:

Π; Γ,Γ′[v/x]; ∆[v/x] ` u⇒ {z2 : b2|φ′2[v/x]}

From the definition of substitution for mutable variables we have that u[v/x] = u and so the first
part of the conclusion holds. The second part holds since φ2 = φ′2[v/x]

Case e = fst v′

Using inversion of infer e fst on the first premise we have that there is a φ′ and b′2

Π; Γ, x : b1[φ1[x/z1]],Γ
′ ` v′ ⇒ {z2 : b2 ∗ b′2|φ′}

{z2 : b2|φ′2} = {z2 : b2|z = fst v′}

Applying Lemma 44 we have that there is a φ′′ such that

Π; Γ,Γ′[v/x] ` v′[v/x]⇒ {z2 : b2 ∗ b′2|φ′′}

and applying infer e fst to this we have:

Π; Γ,Γ′[v/x] ` fst v′[v/x]⇒ {z2 : b2|z = fst v′[v/x]}

Hence the first part of the conclusion holds after moving the substitution out of the type. The
second part holds since since φ2 = φ′2[v/x] .

Case e = snd v′

Similar to the case for fst above.
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Lemma 46 (Substitution for ⇐ expressions). If

Π; Γ ` v ⇒ {z1 : b1|φ1}
Π; Γ, x : b1[φ

′
1],Γ

′; ∆ ` e⇐ {z : b2|φ′2}
Π; Γ ` {z1 : b1φ1} . {z1 : b1φ

′
1}

then the following holds:

Π; Γ,Γ′[v/x]; ∆[v/x] ` e[v/x]⇐ {z : b2|φ′2}[v/x]

Proof. From the second premise and inversion of check e we have that there is a φ′′2 such that

Π; Γ, x : b1[φ
′
1],Γ

′; ∆ ` e⇒ {z : b2|φ′′2} (1)

Π; Γ, x : b1[φ
′
1],Γ

′ ` {z : b2|φ′′2} . {z : b2|φ′2} (2)

Applying the previous lemma to the first of these we have that there is a φ′′′2 such that the following
hold:

Π; Γ,Γ′[v/x]; ∆[v/x] ` e[v/x]⇒ {z : b2|φ′′′2 } (3)

Π; Γ,Γ′[v/x] ` {z : b2|φ′′′2 } . {z : b2|φ′′2}[v/x] (4)

Applying Lemma 42 to (2) we have:

Π; Γ,Γ′[v/x] ` {z : b2|φ′′2}[v/x] . {z : b2|φ′2}[v/x]

and so from transitivity we have

Π; Γ,Γ′[v/x] ` {z : b2|φ′′′2 } . {z : b2|φ′2}[v/x]

and applying check e we have the required conclusion.

Note that in the following lemma there is no implication statement in the conclusion as the
type of s is already overspecified.

Lemma 47 (Substitution for ⇐ statements). If

Π; Γ ` v ⇒ {z1 : b1|φ1}
Π; Γ, x : b1[φ

′
1],Γ

′; ∆] ` s⇐ {z : b2|φ′2}
Π; Γ ` {z1 : b1φ1} . {z1 : b1φ

′
1}

then

Π; Γ,Γ′[v/x]; ∆[v/x] ` s[v/x]⇐ {z : b2|φ′2}[v/x]

Proof. Proceed by induction on the structure of s:

• Case s ≡ v′
From the second premise, we have using inversion with check anf val that

Π; Γ, x : b1[φ
′
1],Γ

′ ` ∆ ws (1)

Π; Γ, x : b1[φ
′
1],Γ

′ ` v′ ⇐ {z : b2|φ′2} (2)

Applying the substitution lemma for checking the type of values to the second of these we
have

Π; Γ,Γ′[v/x] ` v′ ⇐ {z : b2|φ′2}[v/x] (3)

Applying Lemma ?? to (1) and the rule check anf val to (3) we get the required conclusion:

Π; Γ,Γ′[v/x]; ∆[v/x] ` v′ ⇐ {z2 : b2|φ′2}[v/x]
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• Case s ≡ if v′ then s1 else s2
From the second premise, we have using inversion with check anf if that there is a φ3 such
that:

Π; Γ, x : b1[φ
′
1],Γ

′ ` v′ ⇒ {z3 : bool|φ3}
Π; Γ, x : b1[φ

′
1],Γ

′; ∆ ` s1 ⇐ {z2 : b2|v′ = T ∧ φ3[v′/z3] =⇒ φ′2}
Π; Γ, x : b1[φ

′
1],Γ

′; ∆ ` s2 ⇐ {z2 : b2|v′ = F ∧ φ3[v′/z3] =⇒ φ′2}

We apply the substitution lemma for values to the first of these and the induction hypothesis
to the next two to obtain that there is φ′3 such that:

Π; Γ,Γ′[v/x] ` v′[v/x]⇒ {z : bool|φ′3} (1)

Π; Γ,Γ′[v/x]; ∆[v/x] ` s1[v/x]⇐ {z2 : b2|v′ = T ∧ φ3[v′/z3] =⇒ φ′2}[v/x] (2)

Π; Γ,Γ′[v/x]; ∆[v/x] ` s2[v/x]⇐ {z2 : b2|v′ = F ∧ φ3[v′/z3] =⇒ φ′2}[v/x] (3)

Π; Γ,Γ′[v/x] ` {z : bool|φ′3} . {z : bool|φ3}[v/x] (4)

From (4) we have since implication is contravariant on subtyping that:

Π; Γ ` {z2 : b2|v′ = T ∧ (φ3[v
′/z3]) =⇒ φ′2}[v/x] . {z2 : b2|v = T ∧ (φ′3[v

′/z3]) =⇒ φ′2[v/x]} (5)

Π; Γ ` {z2 : b2|v′ = T ∧ (φ3[v
′/z3]) =⇒ φ2}[v/x] . {z2 : b2|v = F ∧ (φ′3[v

′/z3]) =⇒ φ′2[v/x]} (6)

Note that we have applied some rewriting of the substitutions making use of the fact that x
does not occur in φ′3 or v. Using (5) and (6) with Lemma 12 to (2) and (3) we get:

Π; Γ,Γ′[v/x]; ∆[v/x] ` s1[v/x]⇐ {z2 : b2|v′ = T ∧ φ′3[v′/z3] =⇒ φ′2[v/x]} (7)

Π; Γ,Γ′[v/x]; ∆[v/x] ` s2[v/x]⇐ {z2 : b2|v′ = F ∧ φ′3[v′/z3] =⇒ φ′2[v/x]} (8)

Using check anf if with (1), (7) and (8) we get the required conclusion:

Π; Γ,Γ′[v/x]; ∆[v/x] ` if v′[v/x] then s1[v/x] else s2[v/x]⇐ {z2 : b2|φ′2}[v/x]

• Case s ≡ let w = e in s
If w = x then the substitution is the identity and we are done. Assume we have x 6= w and
w is not free in v. Using inversion with check anf let there is a b3 and φ3 such that:

Π; Γ, x : b1[φ
′
1],Γ

′; ∆ ` e⇒ {z : b3|φ3}
Π; Γ, x : b1[φ

′
1],Γ

′, w : b3[φ3[w/z]]; ∆ ` s⇐ {z : b2|φ′2}

Applying the substitution lemma for expressions to the first and the induction hypothesis to
the second we obtain a φ′3 such that:

Π; Γ,Γ′[v/x]; ∆[v/x] ` e⇒ {z : b3|φ′3} (1)

Π; Γ,Γ′[v/x] ` {z : b3|φ′3} . {z : b3|φ3}[v/x] (2)

Π; Γ,Γ′[v/x], w : b3[φ3[w/z][v/x]]; ∆[v/x] ` s[v/x]⇐ {z : b2|φ′2}[v/x] (3)

With Lemma 22 and (2) and (3) we have:

Π; Γ,Γ′[v/x], w : b3[φ
′
3[w/z]]; ∆[v/x] ` s[v/x]⇐ {z : b2|φ′2}[v/x]

and this with (1) and the rule check s let gives the required conclusion.
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• Case s ≡ let w : τ = s1 in s2
As above, we just need to consider the case where x 6= w and w is not free in v. Let
τ = {z : b3|φ3}. Using inversion with check anf let2 we obtain the following:

Π; Γ, x : b1[φ
′
1],Γ

′; ∆ ` s1 ⇐ {z3 : b3|φ3}
Π; Γ, x : b1[φ

′
1],Γ

′, w : b3[φ3[w/z3]]; ∆ ` s2 ⇐ {z2 : b2|φ′2}

Applying the induction hypothesis to these we get:

Π; Γ,Γ′[v/x]; ∆[v/x] ` s1[v/x]⇐ {z3 : b3|φ3}[v/x]

Π; Γ,Γ′[v/x], w : b3[φ3[w/z3][v/x]]; ∆[v/x] ` s2[v/x]⇐ {z2 : b2|φ′2}[v/x]

We then use check anf let2 to obtain the conclusion:

Π; Γ,Γ′[v/x]; ∆[v/x] ` let z : τ [v/x] = s1[v/x] in s2[v/x]⇐ {z2 : b2|φ′2}

• Case s ≡match v′ { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn}
From the second premise and rule inversion of check s match we have that there is an id such
that:

union id = {cons1 : {z1 : b′′1|φ′′1} .. consn : {zn : b′′n|φ′′n}} ∈ Π

Π; Γ, x : b1[φ
′
1],Γ

′ ` v′ ⇐ {z : id|>}
Π; Γ, x : b1[φ

′
1],Γ

′, xi : b′′i [φ′′i [xi/zi]]; ∆ ` si ⇐ {z2 : b2|φ′2} i = 1..n

Applying the induction hypothesis to the second of these and the n instances of the third, we
get:

Π; Γ,Γ′[v/x] ` v′[v/x]⇐ {z : id|>}
Π; Γ,Γ′[v/x], xi : b′′i [φ′′i [xi/zi][v/x]]; ∆[v/x] ` si[v/x]⇐ {z2 : b2|φ′2}[v/x] i = 1..n

The well-scoping conditions on type definitions tells us that the {zi|b′′i |φ′′i } contain no free
variables, hence the last judgement of the above is equivalent to:

Π; Γ,Γ′[v/x], xi : b′′i [φ′′i [xi/zi]]; ∆[v/x] ` si[v/x]⇐ {z2 : b2|φ′2} i = 1..n

Hence we can use check s match to get:

Π; Γ,Γ′[v/x],∆ `match v′[v/x] { C1 x1 ⇒ s1[v/x] , .. , Cn xn ⇒ sn[v/x]}
⇐ {z2 : b2|φ′2}[v/x]

and since

match v′[v/x] { C1 x1 ⇒ s1[v/x] , .. , Cn xn ⇒ sn[v/x]} = (match v′ { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn})[v/x]

we get the required conclusion:

Π; Γ,Γ′[v/x],∆ `match v′ { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn}[v/x]

⇐ {z2 : b2|φ′2}[v/x]

• Case s ≡ while (s1) do {s2}
From the premises and inversion of check s while we have:

Π; Γ, x : b1[φ
′
1],Γ

′; ∆ ` s1 ⇐ {z : bool|>}
Π; Γ, x : b1[φ

′
1],Γ

′; ∆ ` s2 ⇐ {z : unit|>}
{z : unit|>} = {z2 : b2|φ2}
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Applying the induction hypothesis to both of these we have:

Π; Γ,Γ′[v/x]; ∆[v/x] ` s1[v/x]⇐ {z : bool|>}[v/x]

Π; Γ,Γ′[v/x]; ∆[v/x] ` s2[v/x]⇐ {z : unit|>}[v/x]

The substitution on the types is the identity and so from check s while we have:

Π; Γ,Γ′[v/x]; ∆ ` while (s1[v/x]) do {s2[v/x]} ⇐ {z : unit|>}

and since

while (s1) do {s2}[v/x] = while (s1[v/x]) do {s2[v/x]}

the required conclusion follows.

• Case s ≡ var u : τ = v′ in s1
From the premises and inversion of check s var we have:

Π; Γ, x : b1[φ
′
1],Γ

′ ` v′ ⇐ τ

Π; Γ, x : b1[φ
′
1],Γ

′; ∆, (u, τ) ` s1 ⇐ {z2 : b2|φ′2}

Applying the substitution lemma for checking values to the first of these and the induction
hypothesis to the second, we get:

Π; Γ,Γ′[v/x]; ∆[v/x] ` v′[v/x]⇐ τ [v/x]

Π; Γ,Γ′[v/x]; ∆[v/x], (u, τ [v/x]) ` s1[v/x]⇐ {z2 : b2|φ′2}[v/x]

after pushing the substitution into the type of the second of these we get when applying
check s var:

Π; Γ,Γ′[v/x]; ∆ ` var u : τ [v/x] = v′[v/x] in s1[v/x]⇐ {z2 : b2|φ′2[v/x]}

since

var u : τ [v/x] = v′[v/x] in s1[v/x] = (var u : τ = v′ in s1)[v/x]

the conclusion holds after pulling the substitution out of the type.

• Case s ≡ u := v′

From the premises and inversion of check s assign we have that there is a τ such that:

(u, τ) ∈ ∆ (1)

Π; Γ, x : b1[φ
′
1],Γ

′ ` v′ ⇐ τ (2)

{z2 : b2|φ2} = {z2 : unit|z2 = ()} (3)

Applying the induction hypothesis to the second of these gives:

Π; Γ,Γ′[v/x] ` v′[v/x]⇐ τ [v/x] (4)

From the definition of substitution into ∆ we have (u, τ [v/x]) ∈ ∆[v/x] and so can use (4) to
get:

Π; Γ,Γ′[v/x]; ∆[v/x] ` u := v′[v/x]⇐ {z2 : unit|z = ()}

and thus the required conclusion:

Π; Γ,Γ′[v/x]; ∆[v/x] ` (u := v′)[v/x]⇐ {z2 : unit|z = ()}[v/x]

since substitution into the type is the identity.
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• Case s ≡ s1; s2
From the premises and inversion of check s seq we have:

Γ, x : b1[φ
′
1],Γ

′; ∆ ` s1 ⇐ {z : unit|z = ()}
Γ, x : b1[φ

′
1],Γ

′; ∆ ` s2 ⇐ {z : b2|φ′2}

Applying the induction hypothesis to both of these we have:

Γ,Γ′[v/x]; ∆[v/x] ` s1[v/x]⇐ {z : unit|>}
Γ,Γ′[v/x]; ∆[v/x] ` s2[v/x]⇐ {z : b2|φ′2[v/x]}

From check s seq we have:

Γ,Γ′[v/x]; ∆ ` s1[v/x]; s2[v/x]⇐ {z : b2|φ′2[v/x]}

Since

(s1; s2)[v/x] = s1[v/x]; s2[v/x]

the required conclusion follows after pulling the substitution out of the type.

10 Safety

The operational semantics of MiniSail is stated in terms of the reduction of a pair 〈δ, s〉 where δ is
the mutable variable store and s is a statement. In the preservation lemma that follows not only do
we need to ensure that the type of the statement is preserved under reduction but that the types
of the values in the mutable variable store do not diverge from what is specified in the current
∆ context. We therefore formulate a program-state typing judgement and give the progress and
preservation lemmas in terms of this judgement. We also formulate a judgement to specify that
the types of the values associated to variables in the mutable variable store is compatible with the
types for the variables given in ∆. This judgement and the mutable variable store check are defined
as follows:

Π; ∆ ` (δ, s)⇐ τ Program state typing judgement

Π ` ∆ ∼ δ
Π; ·; ∆ ` s ⇐ τ

Π; ∆ ` (δ, s)⇐ τ
check redex stmt

Π ` ∆ ∼ δ

δ = u1 → v1, .. , un → vn
∆ = u1 : τ1, .. , un : τn
Π; · ` v1 ⇐ τ1 .. Π; · ` vn ⇐ τn

Π ` ∆ ∼ δ dsim dsim

Lemma 48. If Π; ∆ ` 〈δ, s〉 ⇐ {z : b|φ} then Π; q ` ∆ v ∆

Proof. Using g ws empty we have that the empty Γ-context is well-scoped and using extend d empty
the conclusion follows.
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Lemma 49. If Π; q ` τ ws and Π; q ` ∆ ws and u /∈ dom(∆) then Π; q ` ∆ ⊆ ∆, (u, τ)

Proof. The conclusons follows using extend d cons with the ∆′ of the rule being empty.

Lemma 50 is a key lemma for showing soundness of the MiniSail type system with respect
to the defined operational semantics. A number of reduction steps in the semantics make use of
substitution and the substitution lemmas proved above play an important role in the proof.

Lemma 50 (Single Step Preservation). If Π; ∆ ` 〈δ, s〉 ⇐ {z : b|φ} and Π ` 〈δ, s〉 → 〈δ′, s′〉 then
there is a ∆′ such that Π; q ` ∆ v ∆′ and Π; ∆′ ` 〈δ′, s′〉 ⇐ {z : b|φ}.
Proof. Induction on the reduction step 〈δ, s〉 → 〈δ′, s′〉. In all but one of the cases below, we will
let ∆ be the ∆′ that we need to exhibit and make use of Lemma 48.

• Case ‘Π ` 〈δ, if T then s1 else s2〉 → 〈δ, s1〉’
Using inversion of check redex stmt on the lemma premises, we have:

Π ` ∆ ∼ δ
Π; q; ∆ ` if T then s1 else s2 ⇐ {z : b|φ}

Using inversion of check anf if on the second of these we have:

Π; q; ∆ ` s1 ⇐ {z1 : b|T = T ∧T = T =⇒ φ[z1/z]}
Π; q; ∆ ` s2 ⇐ {z2 : b|T = F ∧T = T =⇒ φ[z2/z]}

We have

Π; q ` {z1 : b|T = T ∧T = T =⇒ φ[z1/z]} . {z : b|φ}

and so using Lemma 17 we have

Π; q; ∆ ` s1 ⇐ {z : b|φ}

If we pick ∆′ to be ∆ then the premises of check redex stmt hold and the conclusions
follows.

• Case ‘Π ` 〈δ, if F then s1 else s2〉 → 〈δ, s2〉’
Similar to the previous case.

• Case ‘Π ` 〈δ, let x = v in s〉 → 〈δ, s[v/x]〉
Using inversion of check redex stmt on the lemma premises, we have:

Π ` ∆ ∼ δ
Π; q; ∆ ` let x = v in s⇐ {z : b|φ}

From inversion of the rule check anf let, there is a type {z1 : b1|φ1} such that the following
hold:

Π; q ` v ⇒ {z1 : b1|φ1}
Π;x : b1[φ1[x/z]]; ∆ ` s⇐ {z : b|φ}

Since q ` {z1 : b1|φ1} . {z1 : b1|φ1}

we have the premises of the substitution lemma for statements with Γ and Γ′ being empty
and using this lemma we get

Π; q; ∆ ` s[v/x]⇐ {z : b|φ}[v/x]
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However, x is fresh in φ and so the substitution is the identity and we have:

Π; q; ∆ ` s[v/x]⇐ {z : b|φ}

If we pick ∆′ to be ∆ then the premises of check redex stmt hold and the conclusion
follows.

• Case ‘Π ` 〈δ, let x = n1 + n2 in s〉 → 〈δ, let x = n in s〉’ where n = n1 + n2
Using inversion of check redex stmt on the lemma premises, we have:

Π ` ∆ ∼ δ
Π; q; ∆ ` let x = n1 + n2 in s⇐ {z : b|φ}

Using inversion with the rule check anf let, we have that there are b′ and φ′ such that:

Π; q; ∆ ` n1 + n2 ⇒ {z′ : b′|φ′}
Π; Γ, x : b[φ′[x/z′]]; ∆ ` s⇐ {z : b|φ}

Using inversion with the rule infer anf plus on the first of these, we can infer b′ ≡ int and
φ′ ≡ (z′ = n1 + n2). Since

Π; q ` {z′ : int |z′ = n} . {z′ : int |z′ = n1 + n2}

we can use Lemma 22 to get:

Π;x : b[x = n]; ∆ ` s⇐ {z : b|φ}

and since

Π; q ` n⇒ {z′ : int |z′ = n}

using the rule infer v num we can use check anf let we get the first part of the conclusion

Π; q; ∆ ` let x = n in s⇐ {z : b|φ}

If we pick ∆′ to be ∆ then the premises of check redex stmt hold and the conclusion
follows.

• Case ‘Π ` 〈δ, let x = n1 ≤ n2 in s〉 → 〈δ, let x = b in s〉’ where b = n1 ≤ n2
Similar to previous case.

• Case ‘Π ` 〈δ, let x = f v in s〉 → 〈δ, let x : τ = s′[v/z] in s〉
Using inversion of check redex stmt on the premises for this case, we have:

Π ` ∆ ∼ δ
Π; q; ∆ ` let x = fv in s⇐ {z : b|φ}

From this and inversion of check anf let we have:

Π; q; ∆ ` f v ⇒ {z2 : b2|φ2} (1)

Π;x : b2[φ2[x/z2]]; ∆ ` s⇐ {z : b|φ} (2)

From (1) and inversion of infer anf app we have that:

val f : (w : b1[φ1]) → τ ∈ Π (3)

function f(w) = s′ ∈ Π (4)

Π; q; ∆ ` v ⇐ {z1 : b1|φ1[z1/w]} (5)

{z2 : b2|φ2} = τ [v/w] (6)
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From (5) and inversion of check v val we have that there is a φ3 such that

Π; q; ∆ ` v ⇒ {z3 : b1|φ3} (7)

Π; q ` {z3 : b1|φ3} . {z1 : b1|φ1[z1/x]} (8)

From (4) and that we know that the function f is correctly typed and using inversion of
check defs fundef we have that:

Π;w : b1[φ1]; ∆ ` s′ ⇐ τ (9)

Using (6), (7), (8), (9) and the substitution lemma for statements we have:

Π; q; ∆ ` s′[v/w]⇐ {z2 : b2|φ2} (10)

Using (2), (10) and the rule check anf let2 we have:

Π; q; ∆ ` let x : {z2 : b2|φ2} = s′[v/w] in s⇐ {z : b|φ}

If we pick ∆′ to be ∆ then the premises of check redex stmt hold and the conclusion
follows.

• Case ‘Π ` 〈δ, let x : τ = v in s2〉 → 〈δ, s2[v/x]〉’
This is the similar to the proof for the case Π ` 〈δ, let x = v in s〉 → 〈δ, s[v/x]〉

• Case ‘p ` 〈δ, let x : τ = s1 in s2〉 → 〈δ′, let x : τ = s′1 in s2〉’ where 〈δ, s1〉 → 〈δ′, s′1〉
Using inversion of check redex stmt on the premises for this case, we have:

Π ` ∆ ∼ δ
Π; q; ∆ ` let x : τ = s1 in s2 ⇐ {z : b|φ}

Using inversion of check anf let2, we have that there is a b′ and φ′ such that τ = {z′ : b′|φ′}
and

Π; q; ∆ ` s1 ⇐ {z′ : b′|φ′} (1)

Π;x : b′[φ′[x/z]]; ∆ ` s2 ⇐ {z : b|φ} (2)

Since s1 reduces to s′1, we have by the induction hypothesis that there is a ∆′ such that
∆ v ∆′ and

Π; q; ∆′ ` s′1 ⇐ {z′ : b′|φ′}

and from (2) by weakening, we have:

Π;x : b′[φ′[x/z]]; ∆′ ` s2 ⇐ {z : b|φ}

Applying check anf let2 in the forward direction we have:

Π; q; ∆′ ` let x : τ = s′1 in s2 ⇐ {z : b|φ}

If we pick ∆′ to be the ∆′ we got from the reduction of s1 then the premises of check redex stmt
hold and the conclusion follows.

• Case Π ` 〈δ,match C v { C1 x1 ⇒ s1 , ..,C x⇒ s , Cn xn ⇒ sn }〉 → 〈δ, s[v/x]〉
Using inversion of check redex stmt on premises for this case, we have:

Π ` ∆ ∼ δ
Π; q; ∆ ` match C v { C1 x1 ⇒ s1 , ..,C x⇒ s , Cn xn ⇒ sn } ⇐ {z : b|φ}
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From inversion of check s match, we have:

Π; q ` C v ⇒ {z′ : tid|φ′} (1)

union tid = {C1 : {z1 : b′′1|φ′′1}, .. ,Cn : {zn : b′′n|φ′′n}} ∈ Π (2)

Π;xi : b′′i [φ′′i [xi/zi]] ∧ C v = Ci xi ∧ φ′[C v/z′]; ∆ ` si[v/x]⇐ {z : b|φ} i = 1..n (3)

From (1) and inversion of infer v data cons we have that there is a k such that C v = Ck v
and sk = s and:

Π; q ` v ⇐ {z′′k |b′′k|φ′′k]} (4)

Using inversion of check v val we have that there is a φ′′ such that:

Π; q ` v ⇒ {z′′|b′′k|φ′′]} (5)

Π; q ` {z′′ : b′′k|φ′′} . {z′′ : b′′k|φ′′k} (6)

From the kth judgement in (3) we have:

Π;xk : b′′k[φ′′k[v/x]]; ∆ ` sk[v/xk]⇐ {z : b|φ} (7)

Using (7), (5) and (6) with the substitution lemma for statements we have:

Π; q ` sk[v/xk]⇐ {z : b|φ}. (8)

If we pick ∆′ to be ∆ then the premises of check redex stmt hold and the conclusion
follows.

• Case Π ` 〈δ,while (e) do {s}〉 → 〈δ, let x = e in (if x then (s;while (e) do {s}) else ())〉
Using inversion of check redex stmt on premises for this case, we have:

Π ` ∆ ∼ δ (1)

Π; q; ∆ ` while (e) do {s} ⇐ {z : unit |z = ()} (2)

Using inversion of check s while we have:

Π; q; ∆ ` e⇐ {z1 : bool |>} (3)

Π; q; ∆ ` s⇐ {z : unit |z = ()} (4)

We now show a type derivation for the unrolled while statement.

Using inversion of check e with (3) we have that there is a φ2 such that:

Π; q; ∆ ` e⇒ {z2 : bool |φ2} (5)

Π; q; ∆ ` {z2 : bool |φ2} . {z1 : bool |>} (6)

From the rule infer v var we have:

Π;x : bool [φ2] ` x⇒ {z2 : bool |φ2} (7)

Using the rule check s seq with (2) and (4) we have:

Π; q; ∆ ` s;while (e) do {s} ⇐ {z : unit |z = ()} (8)

Using weaking of Γ on this, (4) and (5) we have:

Π;x : bool [φ2]; ∆ ` e⇒ {z2 : bool |φ2} (9)

Π;x : bool [φ2]; ∆ ` s; while (e) do {s} ⇐ {z : unit |z = ()} (10)

Π;x : bool [φ2]; ∆ ` s⇐ {z : unit |z = ()} (11)
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and using check s if on (7), (10) and (11) we have:

Π;x : bool [φ2]; ∆ ` if x then s;while (e) do {s} else ()⇐ {z : unit |z = ()} (12)

Using rule check s let with (9) and (12) we have:

Π; q; ∆ ` let x = e in if x then s;while (e) do {s} else ()⇐ {z : unit |z = ()} (13)

If we pick ∆′ to be ∆ then from (1) and (13) the premises of check redex stmt hold and
the conclusion follows.

• Case Π ` 〈δ,var u : τ = v in s〉 → 〈δ[u 7→ v], s〉
From the premises and inversion for the program state typing judgement, we have

Π ` ∆ ∼ δ
Π; q; ∆ ` var u : τ = v in s⇐ {z : b|φ}

From inversion of check s var we have that:

u /∈ dom(∆) (1)

Π; q ` v ⇐ τ (2)

Π; q : ∆, (u, τ) ` s⇐ {z : b|φ} (3)

Let ∆′ = ∆, (u, τ). From the inversion of the reduction rule, we have that u is an addition to
δ and from above it is also an addition to ∆ and so

Π ` ∆, (u, τ) ∼ δ[u 7→ v]

with this and (3) the premises of check redex stmt hold and so we have Π ` 〈δ[u 7→
v], s〉 ⇐ τ . Furthermore, we have Π; q ` ∆ v ∆, (u, τ) from Lemma 49 and so we have the
required conclusion.

• Case Π ` 〈δ, u := v〉 → 〈δ[u 7→ v], ()〉
Using inversion of check redex stmt on premises for this case, we have:

Π ` ∆ ∼ δ
Π; q; ∆ ` u := v ⇐ {z : b|φ}

From inversion of check s assign we have that:

Π; q ` ∆ ws

{z : b|φ} = {z : unit|>}
(u, τ) ∈ ∆

Π; q ` v ⇐ τ

We have Π; q; ∆ ` ()⇐ {z : unit|>} and so if we pick ∆′ to be ∆ then all of the premises of
check redex stmt hold and the conclusion follows.

• Case Π ` 〈δ, (); s2〉 → 〈δ, s2〉
Using inversion of check redex stmt on premises for this case, we have:

Π ` ∆ ∼ δ
Π; q; ∆ ` (); s2 ⇐ {z : b|φ}
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With this and inversion of check s seq we have:

Π; q; ∆ ` ()⇐ {z : unit|>}
Π; q; ∆ ` s2 ⇐ {z : b|φ}

If we pick ∆′ to be ∆ then the premises of check redex stmt hold and and the conclusion
follows.

• Case Π ` 〈δ, s1; s2〉 → 〈δ′, s′1; s2〉
Using inversion of check redex stmt on premises for this case, we have:

Π ` ∆ ∼ δ
Π; q; ∆ ` s1; s2 ⇐ {z : b|φ}

With the second of these and inversion of check s seq we have:

Π; q; ∆ ` s1 ⇐ {z : unit|>}
Π; q; ∆ ` s2 ⇐ {z : b|φ}

s′1 is the result of a one step reduction of s1 and so by the induction hypothesis we have that
there is a ∆′′ such that

Π; ∆′ ` 〈δ′, s′1〉 ⇐ {z : unit|>}

and ∆ v ∆′. Using inversion of check redex stmt, we then have:

Π ` ∆′ ∼ δ′
Π; q; ∆′ ` s′2 ⇐ {z : unit|>}

Using check s seq the type of s′1; s2 is {z : b|φ}. Hence we have the required premises for
check redex stmt and the conclusion follows.

Lemma 51 (Multistep Preservation). If Π; ∆ ` 〈δ, s〉 ⇐ τ and 〈δ, s〉 ∗−→ {δ′, s′} then there is a ∆′

such Π; ∆′ ` 〈δ′, s′〉 ⇐ τ and ∆ v ∆′

Proof. We prove this by induction on the length, l, of the reduction 〈δ, s〉 ∗−→ 〈δ′, s′〉.
If l = 0 then s′ = s and δ′ = δ and the conclusion holds.
Assume that the lemma holds for l = n and that we have an n step reduction 〈δ, s〉 ∗−→ 〈δ′′, s′′〉
and a single step reduction 〈δ′′, s′′〉 ∗−→ {δ′, s′}. By the induction hypothesis, we have that there
is a ∆′′ such that Π; ∆′′ ` 〈δ′′, s′′〉 ⇐ τ and ∆ v ∆′′ With the single step reduction we apply the
preservation lemma and so there is a ∆′ such that Π; ∆′ ` 〈δ′, s′〉 ⇐ τ and ∆′′ v ∆′. From the
transitivity of v we have that ∆ v ∆′ and the required conclusion follows.

The following lemma assures us that we have set up the reduction rules correctly and that any
well typed statement that isn’t a value will have a reduction step.

Lemma 52 (Progress). If Π; ∆ ` 〈δ, s〉 ⇐ τ then either s is a value or there is an s′ and δ′ such
that 〈δ, s〉 → 〈δ′, s′〉.

Proof. Proof is by induction on s.

• Case s is a value.
Lemma conclusion holds.
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• Case ‘if v then s1 else s2’
Instantiating the premise and using inversion of check redex stmt, we have:

Π; q; ∆ ` if v then s1 else s2 ⇐ τ

Using inversion with the rule check s if we have that there is a φ′ such that:

Π; q ` v ⇒ {z′ : bool|φ′}
Since the Γ-context is empty and the base type is bool, v can only be a boolean literal - T
or F. If v ≡ T then the reduction rule reduce true is applicable and we have a reduction
to 〈δ, s1〉. Otherwise we have v ≡ F and the reduction rule reduce false is applicable and
we have a reduction to 〈δ, s2〉.

• Case ‘let x = e in s’
Using inversion of check redex stmt we have

Π ` ∆ ∼ δ (1)

Π; q; ∆ ` s⇐ τ (2)

and inversion of check s let on the second of these, we get a judgement:

Π; q; ∆ ` e⇒ {z′ : b′|φ′} (3)

As the typing context is empty e will not contain immutable variables. We consider each
possible form for e.

– Case e ≡ v
Apply the reduction rule reduce let value to obtain a reduction to 〈δ, s[v/x]〉

– Case e ≡ v1 + v2
Using inversion of infer e plus we have that v1 and v2 have base type int. Since
the context is empty, these have to be integer literals and so there is a n such that
n = v1+v2 and we can apply the reduction rule reduce let plus to obtain a reduction
to 〈δ, let x = n in s〉.

– Case e ≡ v1 ≤ v2
Similar to the previous case.

– Case e ≡ f v
Using inversion with the rule infer e app we have

val f : (x : b1[φ1])→ τ ∈ Π (4)

function f(x) = s′ ∈ Π (5)

Π; q ` v ⇒ {z : b|φ2} (6)

Π; q ` {z : b|φ2}[v/z] . {z : b|φ1}[v/x] (7)

(4) and (5) are the preconditions for the reduction rule reduce let app and so we can
apply this to obtain a reduction to 〈δ, let x : τ [v/x] = s′[v/x] in s〉

– Case e ≡ u
From (3) above and inversion of infer e mvar we have that (u, τ) ∈ ∆ and from
this and (1) above we have that u is in the domain of δ. Hence we can apply re-
duce let mvar to obtain a reduction to 〈δ, s[v/x]〉 where v = δ(u).
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– Case e ≡ fst v
Using inversion of infer e fst we have that v is a pair of values (v1, v2). We can apply
the reduction rule reduce let fst to obtain a reduction to 〈δ, s[v1/x]〉

– Case e ≡ snd v
Using inversion of infer e fst we have that v is a pair of values (v1, v2). Apply the
reduction rule reduce let snd to obtain a reduction to 〈δ, s[v2/x]〉

• Case ‘let x : τ ′ = s1 in s2’
If s1 is a value, then the we can apply reduce let2 val . If it isn’t a value then using
inversion of check redex stmt we have

Π ` ∆ ∼ δ (1)

Π; ·; ∆ ` let x : τ ′ = s1 in s2 ⇐ τ (2)

and from the second using inversion of check s let2 we have

Π; q; ∆ ` s1 ⇐ τ ′ (3)

and so using (1) and (3) we can use check redex stmt to get:

Π; ∆ ` 〈δ, s1〉 ⇐ τ ′ (4)

and so can apply the induction hypothesis to obtain δ′ and s′1 such that 〈δ, s1〉 → 〈δ′, s′1〉 and
we can then apply reduce let2 stmt to obtain a reduction to 〈δ′, let x : τ ′ = s′1 in s2

• Case ‘match v′ { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn}’
Using inversion of check redex stmt we have that

Π; q; ∆ `match v′ { C1 x1 ⇒ s1 , .. , Cn xn ⇒ sn} ⇐ τ

and with this and inversion of check s match we have

union tid = {C 1 : {z1 : b′′1|φ′′1} .. C n : {zn : b′′n|φ′′n}} ∈ Π

Π; Γ ` v′ ⇒ {z : tid|φ}
Π; Γ, xi : b′′i [φ′′i [xi/zi] ∧ v′ = C xi ∧ φ[v/z]]; ∆ ` si ⇐ {z1 : b1|φ1} i = 1..n

With the second of these and inversion of infer v cons we have that there is a j and v′′ such
that v′ = Cj v

′′ and further that Cj matches one of the branches of the case statement. Hence
we can apply the reduction rule reduce match and obtain a reduction to 〈δ, sj [v′′/xj ]〉.

• Case ‘while (e) do {s}’
The rule reduce while only has a freshness condition and after picking a fresh variable x,
we can reduce to 〈δ, let x = e in if x then s;while (e) do {x} else ()〉.

• Case ‘u := v’
Using inversion of check redex stmt we have that

Π ` ∆ ∼ δ (1)

Π; ·; ∆ ` u := v ⇐ τ (2)

and from inversion of check s assign on the second of these we have that that there is a
τ ′ such that (u, τ ′) ∈ ∆. From (1) and inversion of check delta we have that u is in the
domain of δ and using rule reduce mvar assign we can obtain a reduction to (δ[u 7→ v], ()).

• Case ‘var u : τ = v in s’
Renaming u to a new variable name if u is in the domain of δ, we reduce to (δ[u 7→ v], s).
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• Case ‘s1; s2’
Using inversion of check redex stmt we have that

Π ` ∆ ∼ δ (1)

Π; ·; ∆ ` s1; s2 ⇐ τ (2)

and using inversion of check s seq on the second of these we get:

Π; ·; ∆ ` s1 ⇐ {z : unit |>} (3)

If s1 is a value then it must be () and so we can apply reduce seq2 to reduce to 〈δ, s2〉. If
s1 is not a value then we can use (1) and (3) with the rule check redex stmt to obtain:

Π; ∆ ` 〈δ, s1〉 ⇐ {z : unit |>}
and then apply the induction hypothesis to obtain a reduction to 〈δ′, s′1〉 and finally use
reduce seq1 to obtain a reduction of the original statement to 〈δ′, s′1; s2〉.

Using the above two lemmas we can prove:

Lemma 53 (Safety). If Π; ∆ ` 〈δ, s〉 ⇐ τ and 〈δ, s〉 ∗−→ 〈δ′, s′〉 then either s′ is a value or there is
an s′′ and δ′′ such that 〈δ′, s′〉 → 〈δ′′, s′′〉.
Proof. From the multi-step Preservation lemma, we have that there is a ∆′ such that Π; ∆′ `
〈δ′, s′〉 ⇐ τ and from the Progress lemma we have that s′ is a value or that we can make a
reduction step from s′.

11 Conclusion

The final lemma, the safety property for MiniSail, tells us that a well typed statement that has a
reduction has reduced to a value or can make further reduction steps. If we consider a MiniSail
program to be a type checked context, Π, and a final statement, s, then we can claim that a
well-typed MiniSail program does not get stuck. We can not say that a well-typed program will
terminate; proving termination is not possible due to the inclusion of while loops and recursive
functions in the language. Non-termination is true of Sail as well.

12 Appendix 1 - Complete Syntax, Type System and Operational
Semantics

n, m, i , j Index variables for meta-lists
num Numeric literals
x , y , z , w , f , â Identifier
u Mutable Variables
tid Type ID
C Data Constructor

b ::= Base Type
| int
| bool
| tid Type ID
| unit
| b1 ∗ b2

τ ::= Refined Type
| {x : b|φ} bind x in φ
| x : b[φ] bind x in φ
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| τ [v/x ] M
| (τ) S

A ::= Dependent Function Type
| τ
| x : b[φ]→ τ2

φ ::= Refinement Constraints - Quantifier free logic of uninterpreted functions and linear arithmetic
| >
| φ1 ∧ φ2
| ¬φ
| e1 = e2
| e1 ⇐ e2
| (φ) S
| φ[e/x ] M
| φ1 =⇒ φ2

v ::= Values
| x Immutable variable
| n Numeric literal
| T True boolean literal
| F False boolean literal
| v1[v2/x ] M Substitution
| (v) S
| (v1, v2) Value pair
| C v Data constructor
| () Unit value

e ::= Expressions
| v Value
| u Mutable Variable
| f v Function Application
| v1 + v2 Addition
| v1 ≤ v2 Less than or equal
| fst v Project first part of pair
| snd v Project second part of pair
| e[v/x ] M Substitution

s ::= Statement
| v
| let x = e in s bind x in s Let binding
| let x : τ = s1 in s2 bind x in s2 Let binding with type annotation
| if v then s1 else s2 If-then-else
| s[v/x ] M Substitution
| match v of C1 x1 ⇒ s1, ... ,Cn xn ⇒ sn Match statement
| var u : τ := v in s bind u in s Declaration and scoping of mutable variable
| u := v Assignment to mutable variable
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| while (e)do {s} While loop
| s1; s2 Statement sequence
| (s) S

def ::= Definitions
| val f : (x : b[φ])→ τ bind x in τ

bind x in φ
| function f (x ) = s bind x in s
| union tid = {C1 : τ1, ... ,Cn : τn}

p ::= Program
| def1; .. ; defn ; s

Γ ::= Variable type context
| · Empty context
| Γ, x : b[φ]
| (Γ) S
| Γ1,Γ2

| Γ[v/x ] M

Π ::= Function and definitions context
| ε
| Π, def

∆ ::= Mutable variables context
| ε
| ∆1,∆2

| (∆) S
| ∆, u : τ

π ::= Reduction Function Body Context
| ε
| π, f : s

δ ::= Reduction Local Store
| δ[u 7→ v ]

terminals ::=
| v
| →
| `
| `φ
| `a
| `
| a
| |=
| ⇒
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| ⇐
| ∨
| ∧
| .
| ]
| ∀
| ∃
| =⇒
| −→
|  
| ∈
| /∈
| 7→

formula ::=
| judgement
| formula1 .. formulan
| Π; Γ |= φ
| x : b[φ] ∈ Γ
| u : τ ∈ ∆
| union tid = {C1 : τ1, .. ,Cn : τn} ∈ Π
| x ∈ dom(Γ)
| val f : (x : b[φ])→ τ /∈ Π
| val f : (x : b[φ])→ τ ∈ Π
| function f (x ) = s /∈ Π
| function f (x ) = s ∈ Π
| f ∈ dom(Π)
| u ∈ dom(∆)
| tid /∈ Π
| C /∈ Π
| f /∈ Π
| u /∈ dom(δ)
| u /∈ dom(∆)
| x /∈ dom(Γ)
| v1 + v2 = v
| v1 ≤ v2 = v
| f x = e
| x1 = x2
| x1 6= x2
| x#e
| x fresh
| v = δ(u)
| δ′ = δ[u 7→ v ]
| δ = u1 → v1, .. , un → vn
| ∆ = u1 : τ1, .. , un : τn
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wellformedness ::=
| Π ` b ws Base b is wellformed in context Π
| Π ` Γws Context Γ is wellformed in context Π
| Π ` def ws Definition def is wellformed in context Π
| Πws Context Π is wellformed
| Π; Γ ` ∆ws Context ∆ is wellformed in contexts Π and Γ
| Π; Γ ` v ws Value v is wellformed in contexts Π and Γ
| Π; Γ `φ e ws Constraint expression e is wellformed in context Π and Γ
| Π; Γ; ∆ ` e ws Expression e is wellformed in context Π and Γ
| Π; Γ; ∆ ` s ws Expression s is wellformed in contexts Π, ∆ and Γ
| Π; Γ ` φws Constraint φ is wellformed in contexts Π and Γ
| Π; Γ ` τ ws Type τ is wellformed in context Π, Γ and D

extension ::=
| Π ` Γ v Γ′ Γ′ is an extension of Γ
| Π; Γ ` ∆ v ∆′ ∆′ is an extension of ∆

subtype ::=
| Π; Γ ` τ1 . τ2

typing ::=
| Π; Γ ` v ⇒ τ Infer that type of v is τ
| Π; Γ ` v ⇐ τ Check that type of v is τ
| Π; Γ; ∆ ` e ⇒ τ Infer that type of e is τ
| Π; Γ; ∆ ` e ⇐ τ Check that type of e is τ
| Π; Γ; ∆ ` s ⇐ τ Check that type of s is τ
| Π; Γ ` def1 .. defn  Π′

| Π; Γ ` p
| Π ` ∆ ∼ δ
| Π; ∆ ` (δ, s)⇐ τ Program state typing judgement

reduction ::=
| Π ` 〈δ, s〉 → 〈δ′, s ′〉 One step reduction

| Π ` 〈δ1, s1〉 ∗−→ 〈δ2, s2〉 Multi-step reduction

judgement ::=
| wellformedness
| extension
| subtype
| typing
| reduction

user syntax ::=
| n
| num
| x
| u
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| tid
| C
| b
| τ
| A
| φ
| v
| e
| s
| def
| p
| Γ
| Π
| ∆
| π
| δ
| terminals
| formula

Π ` b ws Base b is wellformed in context Π

Πws

Π ` boolws
b ws bool

Πws

Π ` intws
b ws int

Πws

Π ` unitws
b ws unit

Π ` b1ws
Π ` b2ws

Π ` b1 ∗ b2ws
b ws pair

Πws
union tid = {C1 : τ1, .. ,Cn : τn} ∈ Π

Π ` tid ws
b ws tid

Π ` Γws Context Γ is wellformed in context Π

Πws

Π ` ·ws
g ws empty

Π ` Γws
Π ` b ws
Π; Γ, x : b[>] ` φws
x /∈ dom(Γ)

Π ` Γ, x : b[φ]ws
g ws cons

Π ` def ws Definition def is wellformed in context Π

Π; · ` τi ws
i

tid /∈ Π

Ci /∈ Π
i

Π ` union tid = {Ci : τi
i }ws

def ws uniondef
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Π; ·, x : b[>] ` φws
Π; ·, x : b[φ] ` τ ws
val f : (x : b[φ])→ τ /∈ Π

Π ` val f : (x : b[φ])→ τ ws
def ws valspec

val f : (x : b[φ])→ τ ∈ Π
Π; ·, x : b[φ]; ∆ ` s ws
function f (x ) = s /∈ Π

Π ` function f (x ) = s ws
def ws fundef

Πws Context Π is wellformed

εws
p ws empty

Π ` def ws

Π, def ws
p ws cons

Π; Γ ` ∆ws Context ∆ is wellformed in contexts Π and Γ

Π ` Γws

Π; Γ ` εws
d ws empty

Π; Γ ` ∆ws
Π; Γ ` τ ws

Π; Γ ` ∆, u : τ ws
d ws cons

Π; Γ ` v ws Value v is wellformed in contexts Π and Γ

Π ` Γws
x ∈ dom(Γ)

Π; Γ ` x ws
v ws var

Π ` Γws

Π; Γ ` n ws
v ws num

Π ` Γws

Π; Γ ` T ws
v ws true

Π ` Γws

Π; Γ ` F ws
v ws false

Π ` Γws

Π; Γ ` () ws
v ws unit

Π; Γ ` v ws

union tid = {Ci : τi
i } ∈ Π

Π; Γ ` Cj v ws
v ws cons

Π; Γ ` v1 ws
Π; Γ ` v2 ws

Π; Γ ` (v1, v2) ws
v ws pair

Π; Γ `φ e ws Constraint expression e is wellformed in context Π and Γ

Π; Γ ` v ws

Π; Γ `φ v ws
ec ws var
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Π; Γ ` v1 ws
Π; Γ ` v2 ws

Π; Γ `φ v1 + v2ws
ec ws plus

Π; Γ ` v1 ws
Π; Γ ` v2 ws

Π; Γ `φ v1 ≤ v2ws
ec ws leq

Π; Γ ` v ws

Π; Γ `φ fst v ws
ec ws fst

Π; Γ ` v ws

Π; Γ `φ snd v ws
ec ws snd

Π; Γ; ∆ ` e ws Expression e is wellformed in context Π and Γ

Π; Γ ` ∆ws
Π; Γ ` v ws
val f : (x : b[φ])→ τ ∈ Π

Π; Γ; ∆ ` f v ws
e ws app

Π; Γ ` ∆ws
Π; Γ ` v1 ws
Π; Γ ` v2 ws

Π; Γ; ∆ ` v1 + v2ws
e ws plus

Π; Γ ` ∆ws
Π; Γ ` v1 ws
Π; Γ ` v2 ws

Π; Γ; ∆ ` v1 ≤ v2ws
e ws leq

Π; Γ ` ∆ws
Π; Γ ` v ws

Π; Γ; ∆ ` fst v ws
e ws fst

Π; Γ ` ∆ws
Π; Γ ` v ws

Π; Γ; ∆ ` snd v ws
e ws snd

Π; Γ ` ∆ws
u ∈ dom(∆)

Π; Γ; ∆ ` u ws
e ws mvar

Π; Γ; ∆ ` s ws Expression s is wellformed in contexts Π, ∆ and Γ

Π; Γ ` ∆ws
Π; Γ ` v ws

Π; Γ; ∆ ` v ws
s ws val

Π; Γ ` v ws
Π; Γ; ∆, u : τ ` s ws
Π; Γ ` τ ws

Π; Γ; ∆ ` var u : τ := v in s ws
s ws var

Π; Γ ` v ws
Π; Γ ` τ ws
Π; Γ; ∆ ` u ws

Π; Γ; ∆ ` u := v ws
s ws assign
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Π; Γ ` v ws
Π; Γ; ∆ ` s1ws
Π; Γ; ∆ ` s2ws

Π; Γ; ∆ ` if v then s1 else s2ws
s ws if

Π; Γ; ∆ ` e ws
Π; Γ, x : b[φ]; ∆ ` s ws

Π; Γ; ∆ ` let x = e in s ws
s ws let

Π; Γ; ∆ ` s1ws
Π; Γ, x : b[φ]; ∆ ` s2ws
Π; Γ ` τ ws

Π; Γ; ∆ ` let x : {x : b|φ} = s1 in s2ws
s ws let2

union tid = {Ci : {zi : bi |φi}
i } ∈ Π

Π; Γ ` v ws

Π; Γ, xi : bi [φi ]; ∆ ` si ws
i

Π; Γ; ∆ `match v of Ci xi ⇒ si
i
ws

s ws match

Π; Γ; ∆ ` e ws
Π; Γ; ∆ ` s ws

Π; Γ; ∆ ` while (e)do {s}ws
s ws while

Π; Γ; ∆ ` s1ws
Π; Γ; ∆ ` s2ws

Π; Γ; ∆ ` s1; s2ws
s ws seq

Π; Γ ` φws Constraint φ is wellformed in contexts Π and Γ

Π; Γ ` >ws
cons ws top

Π; Γ ` φ1ws
Π; Γ ` φ2ws

Π; Γ ` (φ1 ∧ φ2)ws
cons ws conj

Π; Γ ` φws

Π; Γ ` ¬φws
cons ws not

Π; Γ `φ e1ws
Π; Γ `φ e2ws

Π; Γ ` e1 = e2ws
cons ws eq

Π; Γ ` φ1ws
Π; Γ ` φ2ws

Π; Γ ` (φ1 =⇒ φ2)ws
cons ws imp

Π; Γ ` τ ws Type τ is wellformed in context Π, Γ and D

Π; Γ, z : b[>] ` φws

Π; Γ ` {z : b|φ}ws
type ws type

Π ` Γ v Γ′ Γ′ is an extension of Γ

Π ` Γws

Π ` Γ v Γ
extend g refl
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Π ` Γ′′ v Γ,Γ′

x /∈ dom(Γ,Γ′)
Π ` Γ, x : b[φ]ws

Π ` Γ′′ v Γ, x : b[φ],Γ′
extend g insert

Π; Γ ` ∆ v ∆′ ∆′ is an extension of ∆

Π; Γ ` ∆ws

Π; Γ ` ∆ v ∆
extend d refl

Π; Γ ` ∆′′ v ∆,∆′

u /∈ dom(∆,∆′)
Π; Γ ` τ ws

Π; Γ ` ∆′′ v ∆, u : τ,∆′
extend d insert

Π; Γ ` τ1 . τ2

Π; Γ ` {z1 : b|φ1}ws
Π; Γ ` {z2 : b|φ2}ws
Π; Γ, z1 : b[φ1] |= φ2[z1/z1]

Π; Γ ` {z1 : b|φ1} . {z2 : b|φ2}
subtype subtype

Π; Γ ` v ⇒ τ Infer that type of v is τ

Π ` Γws
x : b[φ] ∈ Γ

Π; Γ ` x ⇒ {z : b|z = x} infer v var

Π ` Γws

Π; Γ ` ()⇒ {z : unit|z = ()} infer v unit

Π ` Γws

Π; Γ ` T⇒ {z : bool|z = T} infer v true

Π ` Γws

Π; Γ ` F⇒ {z : bool|z = F} infer v false

Π ` Γws

Π; Γ ` n⇒ {z : int|z = n} infer v num

Π; Γ ` v1 ⇒ {z1 : b1|φ1}
Π; Γ ` v2 ⇒ {z2 : b2|φ2}

Π; Γ ` (v1, v2)⇒ {z : b1 ∗ b2|z = (v1, v2)}
infer v pair

union tid = {Ci : τi
i } ∈ Π

Π; Γ ` v ⇐ τ

Π; Γ ` Cj v ⇒ {z : tid |z = Cj v} infer v data cons

Π; Γ ` v ⇐ τ Check that type of v is τ

Π; Γ ` v ⇒ {z2 : b|φ2}
Π; Γ ` {z2 : b|φ2} . {z1 : b|φ1}

Π; Γ ` v ⇐ {z1 : b|φ1}
check v val

Π; Γ; ∆ ` e ⇒ τ Infer that type of e is τ
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Π; Γ ` ∆ws
Π; Γ ` v1 ⇒ {z1 : int|φ1}
Π; Γ ` v2 ⇒ {z2 : int|φ2}

Π; Γ; ∆ ` v1 + v2 ⇒ {z3 : int|z3 = v1 + v2}
infer e plus

Π; Γ ` ∆ws
Π; Γ ` v1 ⇒ {z1 : int|φ1}
Π; Γ ` v2 ⇒ {z2 : int|φ2}

Π; Γ; ∆ ` v1 ≤ v2 ⇒ {z3 : bool|z3 = v1 ≤ v2}
infer e leq

Π; Γ ` ∆ws
val f : (x : b[φ])→ τ ∈ Π
Π; Γ ` v ⇐ {z : b|φ}

Π; Γ; ∆ ` f v ⇒ τ [v/x ]
infer e app

Π; Γ ` ∆ws
Π; Γ ` v ⇒ {z : b1 ∗ b2|φ}

Π; Γ; ∆ ` fst v ⇒ {z : b1|z = fst v} infer e fst

Π; Γ ` ∆ws
Π; Γ ` v ⇒ {z : b1 ∗ b2|φ}

Π; Γ; ∆ ` snd v ⇒ {z : b2|z = snd v} infer e snd

Π; Γ ` ∆ws
u : τ ∈ ∆

Π; Γ; ∆ ` u ⇒ τ
infer e mvar

Π; Γ; ∆ ` e ⇐ τ Check that type of e is τ

Π; Γ; ∆ ` e ⇒ {z2 : b|φ2}
Π; Γ ` {z2 : b|φ2} . {z1 : b|φ1}

Π; Γ; ∆ ` e ⇐ {z1 : b|φ1}
check e expr

Π; Γ; ∆ ` s ⇐ τ Check that type of s is τ

Π; Γ ` ∆ws
Π; Γ ` v ⇐ τ

Π; Γ; ∆ ` v ⇐ τ
check s val

u /∈ dom(δ)
Π; Γ ` v ⇐ τ
Π; Γ; ∆, u : τ ` s ⇐ τ2

Π; Γ; ∆ ` var u : τ := v in s ⇐ τ2
check s var

Π; Γ ` ∆ws
u : τ ∈ ∆
Π; Γ ` v ⇐ τ

Π; Γ; ∆ ` u := v ⇐ {z : unit|>} check s assign

Π; Γ ` v ⇒ {x : bool|φ1}
Π; Γ; ∆ ` s1 ⇐ {z1 : b|(v = T ∧ (φ1[v/x ])) =⇒ (φ[z1/z ])}
Π; Γ; ∆ ` s2 ⇐ {z2 : b|(v = F ∧ (φ1[v/x ])) =⇒ (φ[z2/z ])}

Π; Γ; ∆ ` if v then s1 else s2 ⇐ {z : b|φ} check s if
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Π; Γ; ∆ ` e ⇒ {z : b|φ}
Π; Γ, x : b[φ[x/z ]]; ∆ ` s ⇐ τ

Π; Γ; ∆ ` let x = e in s ⇐ τ
check s let

Π; Γ; ∆ ` s1 ⇐ {z : b|φ}
Π; Γ, x : b[φ[x/z ]]; ∆ ` s2 ⇐ τ

Π; Γ; ∆ ` let x : {z : b|φ} = s1 in s2 ⇐ τ
check s let2

union tid = {Ci : {zi : bi |φi}
i } ∈ Π

Π; Γ ` v ⇒ {z : tid |φ}
Π; Γ, xi : bi [φi [xi/zi ] ∧ v = Ci xi ∧ (φ[v/z ])]; ∆ ` si ⇐ τ

i

Π; Γ; ∆ `match v of Ci xi ⇒ si
i ⇐ τ

check s match

Π; Γ; ∆ ` e ⇐ {z : bool|>}
Π; Γ; ∆ ` s ⇐ {z : unit|>}

Π; Γ; ∆ ` while (e)do {s} ⇐ {z : unit|>} check s while

Π; Γ; ∆ ` s1 ⇐ {z : unit|>}
Π; Γ; ∆ ` s2 ⇐ τ

Π; Γ; ∆ ` s1; s2 ⇐ τ
check s seq

Π; Γ ` def1 .. defn  Π′

val f : (x : b[φ])→ τ ∈ Π
Π; Γ, x : b[φ]; ε ` s ⇐ τ

Π; Γ ` function f (x ) = s  Π, function f (x ) = s
check defs fundef

Π; Γ ` val f : (x : b[φ])→ τ  Π,val f : (x : b[φ])→ τ
check defs valspec

Π; Γ ` union tid = {Ci : τi
i } Π,union tid = {Ci : τi

i }
check defs uniondef

Π; Γ ` def  Π′

Π′; Γ ` def1 .. defn  Π′′

Π; Γ ` def def1 .. defn  Π′′
check defs defs

Π; Γ ` p

Π; Γ ` def1 .. defn  Π′

Π′; Γ; ε ` s ⇐ {z : int|>}
Π; Γ ` def1; .. ; defn ; s

check program prog

Π ` ∆ ∼ δ

δ = u1 → v1, .. , un → vn
∆ = u1 : τ1, .. , un : τn
Π; · ` v1 ⇐ τ1 .. Π; · ` vn ⇐ τn

Π ` ∆ ∼ δ dsim dsim

Π; ∆ ` (δ, s)⇐ τ Program state typing judgement

Π ` ∆ ∼ δ
Π; ·; ∆ ` s ⇐ τ

Π; ∆ ` (δ, s)⇐ τ
check redex stmt

Π ` 〈δ, s〉 → 〈δ′, s ′〉 One step reduction

79



Π ` 〈δ, if T then s1 else s2〉 → 〈δ, s1〉
reduce if true

Π ` 〈δ, if F then s1 else s2〉 → 〈δ, s2〉
reduce if false

Π ` 〈δ, let x = v in s〉 → 〈δ, s[v/x ]〉 reduce let value

v1 + v2 = v

Π ` 〈δ, let x = v1 + v2 in s〉 → 〈δ, let x = v in s〉 reduce let plus

v1 ≤ v2 = v

Π ` 〈δ, let x = v1 ≤ v2 in s〉 → 〈δ, let x = v in s〉 reduce let leq

val f : (x : b[φ])→ τ ∈ Π
function f (x ) = s1 ∈ Π

Π ` 〈δ, let y = f v in s2〉 → 〈δ, let y : τ [v/x ] = s1[v/x ] in s2〉
reduce let app

Π ` 〈δ, let x = fst (v1, v2) in s〉 → 〈δ, let x = v1 in s〉 reduce let fst

Π ` 〈δ, let x = snd (v1, v2) in s〉 → 〈δ, let x = v2 in s〉 reduce let snd

v = δ(u)

Π ` 〈δ, let x = u in s〉 → 〈δ, let x = v in s〉 reduce let mvar

u /∈ dom(δ)

Π ` 〈δ,var u : τ := v in s〉 → 〈δ[u 7→ v ], s〉 reduce mvar decl

δ′ = δ[u 7→ v ]

Π ` 〈δ, u := v〉 → 〈δ′, ()〉 reduce mvar assign

Π ` 〈δ, s1〉 → 〈δ′, s ′1〉
Π ` 〈δ, s1; s〉 → 〈δ′, s ′1; s〉 reduce seq1

Π ` 〈δ, (); s〉 → 〈δ, s〉 reduce seq2

Π ` 〈δ, let x : τ = v in s2〉 → 〈δ, s2[v/x ]〉 reduce let2 val

Π ` 〈δ, s1〉 → 〈δ′, s ′1〉
Π ` 〈δ, let x : τ = s1 in s2〉 → 〈δ′, let x : τ = s ′1 in s2〉

reduce let2 stmt

Π ` 〈δ,match (Cj v)of Ci xi ⇒ si
i〉 → 〈δ, sj [v/xj ]〉

reduce match

x fresh

Π ` 〈δ,while (e)do {s}〉 → 〈δ, let x = e in if x then (s;while (e)do {s}) else ()〉 reduce while

Π ` 〈δ1, s1〉 ∗−→ 〈δ2, s2〉 Multi-step reduction

Π ` 〈δ1, s1〉 → 〈δ2, s2〉
Π ` 〈δ1, s1〉 ∗−→ 〈δ2, s2〉

reduce many single step

Π ` 〈δ1, s1〉 → 〈δ2, s2〉
Π ` 〈δ2, s2〉 ∗−→ 〈δ3, s3〉
Π ` 〈δ1, s1〉 ∗−→ 〈δ3, s3〉

reduce many many step
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14 Appendix 3 - Rule Dependency Graph

Π; Γ ` τ wf

Π ` 〈δ, s〉 → 〈δ′, s ′〉

Π; ∆; Γ ` ewf

Π; Γ ` def1 .. defn  Π′

Π; Γ; ∆ ` s ⇐ τ

Π; Γ ` ∆wf

Π; Γ ` φwf

Πwf

Π; Γ `φ ewf

Π ` Γwf

Π ` 〈δ1, s1〉 ∗−→ 〈δ2, s2〉

Π; Γ; ∆ ` e ⇒ τ

Π ` def wf

Π; ∆; Γ ` swf

Π; Γ ` v ⇒ τ

Π; ∆ ` (δ, s)⇐ τ

Π; Γ ` v wf

Π; Γ ` p

Π; Γ; ∆ ` e ⇐ τ

Π; Γ ` τ1 . τ2

Π; Γ ` v ⇐ τ

Π ` ∆ ∼ δ

Π ` bwf
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