Turning proof assistants
Into programming assistants

ST Winter Meeting, 3 Feb 2015
Magnus Myreéen

#%) CHALMERS

Why?

Why combine proof- and programming assistants?

Why proofs? Testing cannot show absence of bugs.
Some care very much about bugs.
(Applicable to specialist code only...)

What is the specification of Microsoft Word?

But what about bugs in compilers,
library routines, OS!?

Why?

Why combine proof- and programming assistants?

If proof assistants were convenient programming
environments, then proofs might become more
commonplace.

Unit proofs, instead of unit tests!?

Proving some key properties of algorithm
implementations!?

Not necessarily full functional correctness...

Trusting your toolchain

“ Every compiler we tested was found to
crash and also to silently generate
wrong code when presented with valid input.”

/

PLDI'11

Finding and Understanding Bugs in C Compilers

John Regehr

Xuejun Yang Yang Chen Eric Eide |

“ [The verified part of] CompCert is the only compiler
we have tested for which Csmith cannot find wrong-code

errors. This is not for lack of trying: we have devoted
about six CPU-years to the task.”

o hunti . Our first contributio O dUVARE=T ily patched; the base VEISIOITUTS
of our bug—hun?n%;t::di{er testing. Unlike previous tools,' Csmlth was heavily p
state of the art 1m thaIt) cover a large subset of C while avoiding the

: Bt . . - nerator that sup-
generates programs that BUE= = <= T o would destroy its ability W crontod Csmith, a randomized test-case g€l

e emith ocen-

Programming assistants

Visual Studio, Xcode, Eclipse

» a helpful program editor

» helps test and refactor code

» debugger

» some can even do complex static analysis

Programming assistants

Visual Studio, Xcode, Eclipse

mantic guarantees

gned for strong s€

e

High-assurance code development?

» can be used: 1. write code in programming assistant
2. verify code using other tools

what about development life cycle?

Producing high-assurance code

Approaches:

Source code verification (traditional)
e.g. annotate code with assertions and (automatically)
prove that program respects the assertions, i.e. never fails
Verification of compiler output (bottom up)
e.g. translation of low-level code (e.g. machine code) into
higher-level representation (functions in logic).
Correct-by-constriction (top down)

synthesis of implementations from high-level
specifications (e.g. functions in logic)

Trustworthy code

But is the source code good enough for
expressing the specification and
implementation strategy in the same text?

C\/ but that’s what compilers do!)

Correct-by-constriction (top down)

synthesis of implementations from high-level
specifications (e.g. functions in logic)

Proof assistants

General-purpose proof assistants: HOL4, Isabelle/HOL, Coq,ACL2...
What are they? CEmE & 6¢ X00 A@ CDED B¥ & @

- = \ o

Seq.thy (SISABELLE_MOME/src/MOL/ex/) : “ 1sabelle

. . ~ |header {* Finite sequences *} = » ©
» proof scripts editors . :
eory Seq v Seq g
if“ports Main v ‘-~2:-:..:f" ;I;x'.- seguences *) §
begin . ‘a

> |datatype 'a seq = Empty | Seq 'a "'a seq"

1
dat
b

fun
lem
lem
len
len

(clear name spaces

« |fun conc :: “'a seq = 'a seq = 'a seq"}
where end

- s s m= B
- = 8 -
S0WYL AMNPPIS uoTL

“"conc Empty ys = ys"
| “conc (Egj»x xs) ys = Seq x (conc xs ys)"

(type definitions :

~, |fun revers¢ constant "Seq.seq.5eq”

where -) $6q $6q

“reverse Empty = Empty"™
. . . | "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"
function definitions
« |lemma conc_empty: “conc xs Empty = xs
by {induct xs) simp_all

constants
conc :: "'a seq = 'a seq = 'a seq"
Found termination order: "(Ap. size (fst p)) <*mlex*'> {}"

(proof statements

0 <= Console Output Query Sledgehammer

13,39 (203/791) (sabelle,sidekick, UTF-S-Isabelle) UCERIN: S 3v8 11:05

(goal-oriented proofs

» important feature: proof assistants are programmable (not shown)

Trustworthy?

Proof assistants are designed to be trustworthy.

HOL4 is a fully expansive theorem prover:

All proofs expand at runtime

into primitive inferences in
the HOL4 kernel.

HOL4 theorem prover

The kernel implements the
HOL4 kernel axioms and inference rules

of higher-order logic.

Thus all HOL4 proofs —

—

Landmarks

Modern provers are scale well:

Major maths proofs
» Odd Order Theorem, Gonthier et al.

» Kepler Conjecture, Hales et al.

» Four-Colour Theorem, Gonthier

Major code verification proofs

p Correctness of OS microkernel, Klein et al. (NICTA)
» CompCert optimising C compiler, Leroy et al. (INRIA)

These proofs are 100,000+ lines of proof script.

i ’
compositional development.

Proof assistants

A closer look:

» Correctness of OS microkernel, Klein et al. (NICTA)
Verified a deep embedding of 10,000 C code

bottom up-ish | w.r.t.a very detailed semantics of C
and a high-level functional specification.
Proofs also extended down to machine code (| helped).

» CompCert optimising C compiler

Compiler written as function in logic (not a deep embedding)

top down ; Correctness theorems proved about this function.
Function exported to Ocaml using an unverified code generator.

Proof assistants

Used as generators of code

inside the prover:
no proof

functions in logic ~ --§----------- » Ocaml code
l no formal semantics

theorem about functions

» CompCert optimising C compiler

Compiler written as function in logic (not a deep embedding)

top down ! Correctness theorems proved about this function.
Function exported to Ocaml using an unverified code generator.

Proof assistants

Are they programming assistants?

Comparison

proof scripts contain
functional programs

... that can be exported
to programming languages
(Ocaml, SML, Haskell, Scala)

But here: code and spec
not necessarily the same.

‘Code’ can be abstract,
non-executable.

(Isabelle/HOL has

- XaXs) Seq.thy
20 & ¢ A 00 @ CWEE 1Y & 0O e«»
Seq.thy (SISABELLE_MOME/src/HOL/ex/) * bell S
~ |header {* Finite sequences *} Filter v °
Seq.thy -
* |theory Seq v Se %
imports Main ’ ‘”::’ Y :..q : E
begin da ' g
fun conc 8 é
fun reve a
~ |datatype 'a seq = Empty | Seq 'a "'a seq" N u;. ' a s
» lems onc §
" ' ' " ’]‘... o o
* |fun conc :: a seq = 'a seq = 'a seq l > lems o
where end g
"conc Empty ys = ys" 2

| “conc (X xs) ys = Seq x (conc xs ys)"
29

constant “Seq.seq.5eqQ"

* |fun revers¢
where -] 3 S6q 5 y $6Q
“reverse Empty = Empty™

* |Lemma conc_empty: “conc xs Empty = xs*
by (induct xs) simp_all

™ Auto update Update | Search v 100%

constants
conc :: "'a seq =» 'a seq = 'a seq"
Found termination order: "(\p. size (fst p))

0 <= Console Output Query Sledgehammer

13,39 (203/791)

| "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"

<*mlex*> {}"

Osabelle,sidekick UTF-S-Isabelle)

UCERIN: S 38 11:05

nice automation for finding counter examples.)

Trustworthy?

Not to the high standards of fully expansive provers...

inside the prover:

| _ | no proof
functions in logic ~ --§----------- > FP code

l no formal semantics

theorem about functions

A better solution:

inside the prover: _ very simple
. . . with proof translation
functions in logic » FP code |-------------

>
l with formal semantics ASCII for
FP code

theorem about functions

Code generation as a trustworthy step

At ICFP’12 (and a JFP’14 paper):

Showed that we can automate proof-producing code
generation for FP programs written in HOLA4.

The target is CakeML, a (large) subset of Standard ML.

... but do we trust Poly/ML to implement CakeML
according to our semantics?

A better solution:

inside the prover: _ very simple
. . . with proof translation
functions in logic » FP code |-------------

>
l with formal semantics ASCII for
FP code

theorem about functions

Going to machine code

Code generation from functions in logic
directly to concrete machine code.

From my PhD thesis: Given function f.
f(rn) = if n <10then rpelselet n =r —10in f(r;)

our compiler generates ARM machine code:

E351000A L: cmp r1,#10
2241100A subcs rl1,rl1,#10
2AFFFFFC bcs L

and automatically proves a certificate HOL theorem:

F {R1n*xPCpxs}
p : E351000A 2241100A 2AFFFFFC
{R1f(r1)*PC(p+12) s}

Going to machine code

Code generation from functions in logic
directly to concrete machine code.

Has been used to build non-trivial applications:

e.g. a fully verified machine-code implementation of
a Lisp read-eval-print loop (with dynamic compilation)

Disadvantage of the approach:

The source functions in logic must be stated in a
very constrained format (only tail-rec, only specific types etc.).

Better: going via ML and compilation

We can be less restrictive using our verified compiler (POPL'14)

inside the prover:

functions in logic

'

with proof

» FP code

with formal semantics

(

I.e. we can use
the compiler’s

~N

J

. correctness
theorem about functions heorem
applying a verified _
compilation function very simple
. translation
ARM, x86, MIPS machine code -§------------ >

with formal semantics

Interest

We are getting closer to a reality of using proof
assistants as program development platforms...

Rockwell Collins

» large avionics/defence contractor in the US
» keen to use this technology
) two concrete projects in mind

NICTA

» developers of the selL4 verified OS microkernel

» keen to build verified user code

» connect everything up to produce complete system
with formal guarantees

/0O needed

Problem: real applications need I/O

CakeML has only very basic putc and getc char |/O...

Solution (my current work):

» the next version of the compiler will have I/O
through a simple foreign function interface (FFl)

works through mutable byte arrays
that are shared with C

formally: in the semantics, I/O is modelled by
an oracle function (oracle state = rest of the world)

» the new version will also include optimisations
(proper register allocation, better closure
conversion, multi-argument function opt)

Going via ML and compilation (revisited)

using I/O monad) stateful)

inside the prover: _
with proof

functions in logic » FP code
l with formal semantics

theorem about functions

interactive)

applying a verified
compilation function v

ARM, x86, MIPS machine code -

with formal semantics

very simple
translation

... but still not good enough

CakeML has automatic memory management...

The correctness theorem allows it to always exit
with “not enough memory”.

Execution time unpredictable...

In the long run: need language without a GC. Go?

A\
(or sublanguage of CakeML)

Summary

State-of-the-art: Collaborators:

Proof scripts contain functional programs.
Proof automation for data refinement, testing etc.
Can generate (without proofs) FP code.

I've showed that this can be done with proofs.

. T . Ramana Kumar
Verified compilation from FP to machine code. (Uni. Cambridge)

Future vision:

Proof assistants should be able to automatically
produce verified binaries from FP-style definitions.

Usable in real high-assurance applications. Scott Owens
(Uni. Kent)

Questions?

