Functional Big-step Semantics

FM talk, I | Mar 2015
Magnus Myreéen

#%) CHALMERS

Tobias Nipkow, Gerwin Klein

Concrete Semantics

with Isabelle/HOL

Books

-

Big-step semantics are
defined as inductively
defined relation.

~

J

(Functions are better! l

me

Context: CakeML verified compiler

Old compiler:

n-9-0-0-023- 0

[huge step J[huge step J

Bytecode simplified proofs of
read-eval-print loop, but made
optimisation impossible.

Context: CakeML verified compiler

Refactored compiler: split into more conventional compiler phases

-5 -0 -
> module compllatlon \

closure compilation
\

[pattern-match compllatlon

[removal of memory abstraction) -
IL-N

[register allocation

.. as separate phases. -

[Anthony Fox joins project and helps with final phases(

x86-64

... a different example.

Pretty-Big—Step Semantics
ESOP’12

Arthur Charguéraud

INRIA

arthur. chargueraud@ jnria.fr

all-step semantics, big-step
r, big-step seman-
oon as

of sm

Abstract. In spite of the popularity
hers. Howeve
1. which appears as S

semantics remain used by many researc
tics suffer from a gerious duplication problen

the semant
many prem Examp\e lan

This dupli€
o full-blov
ger than nece
oofs. In this paper
eantics. Pl‘Ctty

guage with C-like For and Break

actory redundancy n
m by intr oducing pr etty-big-
rve the spirit of big-step
lated to their results,

2%

b)

gsary. Moreovel,
we address the proble

-big-step semantics prese
. Awwectlv Te

it leads to unsatisf

pr

How should | define a language?

Syntax:

datatype e =

Var of string

Num of int

Add of e * e

Assign of string * e

datatype t =

Dec of string * t
Exp of e

Break

Seq of t * t

If of e * t * t
For of e ¥ e * ¢t

Datatype for results:

datatype r = Rval of int | Rbreak | Rfail

How should | define a language?

Semantics as an interpreter in SML.:

fun lookup y [] = NONE
| lookup vy ((x,v)::xs) = if y = x then SOME v else lookup y xs

fun run_e s (Var x) =
(case lookup x s of
NONE => (Rfail,s)
| SOME v => (Rval v,s))
| run_e s (Num i) = (Rval i,s)
| run_e s (Add (e1, e2)) =
(case run_e s el of
(Rval n1, s1) =»>
(case run_e sl e2 of
(Rval n2, s2) => (Rval (nl+n2), s2)
| r =>r)
| r =>r)
| run_e s (Assign (x, e)) =
(case run_e s e of
(Rval nl1, s1) => (Rval nl1, (x,nl)::s1)
| r =>r)

continues ...

How should | define a language?

Semantics as an interpreter in SML (continued):

fun run_t s (EXp €) = run_e s e
| run_t s (Dec (x, t)) = run_t ((x,0)::s) t
| run_t s Break = (Rbreak, s)
| run_t s (Seq (t1, t2)) =

(case run_t s t1 of
(Rval _, s1) => run_t sl t2
| r =>r)
| run_t s (If (e. t1 =+~
case run_e .
((Rval ni, Isthisag
| r =>r)
| run_t s (For
(case run_e s el of
(Rval ni1, s1) =»>
if nl = @ then (For HOL proofs, unfortunately not.

(case run_t s1
WENNIEY This function can’t be defined in HOL.
(case run_
(Rval _,
| r =>r)
| (Rbreak, s2) => (Rval 9, s2)
| r =>r)
r=>r)

ood definition?

Define big-step semantics

(conventional approach)

(t1,s) |+ (Rval ni,s1) (t1,8) It (r,s1)
(t2,s1) ¢ 1 —is_Rval r
(Seq t1 t2,8) ¢ 1 (Seq t1 t2,8) It (r,81)

(Break,s) |: (Rbreak,s)

C Problem of duplication...

Define big-step semantics

(conventional approach)

Ce1,8) Ve (r,s1)
(e1,s) e (Rval 0,s1) —is_Rval r

(For e1 e2 t,s) |+ (Rval 0,s1) (For e ex t,s) ¢ (r,s1)

(e1,8) e (Rval n;, s1)

ni 75 0
(t,s1) |+ (Rval mng,s2) (e1,s) e (Rval ng,s1)
(e2,82) e (Rval ns,s3) n1 # 0
(For e; ez t,s3) ¢t r (t,s1) {+ (Rbreak,s2)
(For e; ez t,s) ¢ 1 (For e; ez t,s) |+ (Rval 0O,s2)
(e1,8) e (Rval ng,s1) (e1,8) e (Rval ng,si)
ni 7é 0 ni 75 0
(t,s1) I+ (Rval ng2,s2) (t,s1) Yr (r,82)
(ez,s2) U’e (r,s3) —is_Rval r
—is_Rval r r # Rbreak
(For e; ex t,s) {+ (r, s3) (For e; ex t,s) |t (r,s2)

f divergence preservation.

Not suitable for proofs ©

Define big-step semantics

(conventional approach)

IndUCtion theorem: - é\\jj ; :.T.(e,s) Je 7 = P (Exp e,s) 1) A

P (t,s with store := s.store |+ (z,0)) r =
P (Dec z t,s) r) N (Vs. P (Break,s) (Rbreak,s)) A
(Vs 81 t1 to n1 r.
P (t1,s) (Rval ni,s1) AN P (t2,81) r =
P (Seq t1 t2,8) r) A
(\VIS S1 tl t2 T.
P (t1,8) (r,s1) A —is_Rval r = P (Seq t1 t2,8) (r,s1)) A
(Vs s1 e t1 to 7.
(e,s) e (Rval 0,51) A P (t2,81) » = P (If e t; t2,8) 1) A
(Vs s1 ety o nr.
(e,s) e (Rval n,s1) An # 0 A P (t1,81) r =
P (If e t1 t2,8)) A
(Vs s1 ety to 7.
(e,s) Je (r,s1) AN —is_Rval r = P (If e¢ t1 t2,8) (r,s1)) A
(Vs s1 e1 ex t.
(e1,8) e (Rval 0,s51) = P (For e; ex t,s) (Rval 0,s1)) A
(Vs s1 e1 e2 t 1.
(e1,8) e (r,s1) A —is_Rval r = P (For e; ex t,s) (r,s1)) A
(Vs 81 82 83 €1 e2 t m1 ng n3 r.
(e1,8) e (Rval mi,s1) A n1 # 0 A P (t,s1) (Rval n2,s2) A
(e2,s52) e (Rval ns,s3) A P (For e; ex t,s3) r =
P (For e1 ex t,8) r) A
(\VIS S1 S2 €1 €2 t ni.
(e1,8) e (Rval mi,s1) A ni # 0 A P (t,s1) (Rbreak,s2) =
P (For e; es t,s) (Rval 0,s2)) A
(Vs 81 82 83 €1 e2 t n1 no 1.
(e1,8) e (Rval m1,s1) A ng # 0 A P (t,s1) (Rval m2,s2) A
(e2,s82) e (r,s3) A —is_Rval r =
P (For e; es t,s) (r,s3)) A
(Vs s1 s2 €1 e2 t ny r.
(e1,8) e (Rval mi,s1) A ni # 0 A P (t,s1) (r,s2) A —is_Rval r A
r # Rbreak =
P (For e e t,s) (r,s2)) =
Vt s r. (t,s) ¢t » = P (t,s) r

Define big-step semantics

(conventional approach)

Induction theorem:

(VS S1 €1 €2 t.
(e1,s) e (Rval 0,s1) = P (For e; es t,s) (Rval 0,s1))
(Vs s1 e1 es

t r.

(e1,8) e (r,s1) N —is_Rval r = P (For e e t,s) (r,s1)) A
(Vs s1 89 83 e1 ea t n1 mo n3

(e1,8) Je (Rval ni,s1) A n1 # 0 A P (t,s1) (Rval ng,s2) A
\ P (For e; es t,s3) r =

P (For e1 e t,s) r) A

P (t,s1) (Rbreak.s~) —
P (For e ex t,s) (Rval 0,s2)) * o '
' A lot of duplication in proofs:

(e1,8) e (Rval ni,s1) A ni #

P (For e; ex t,s) (r,s3)) A

(e1,8) e (Rval ni1,51) A n1 # 0 A P (t,s1) (r,s3) A —is_Rval r A

P (For e ey t,s) (r,s9)) =

v : |

b b

Hrmm...

| prefer the SML code...

Why can’t it be used as the definition of the semantics?

It doesn’t terminate for all inputs...

Making the interpreter terminate

fun run_t s (EXp €) = run_e s e
| run_t s (Dec (x, t)) = run_t ((x,0)::s) t
| run_t s Break = (Rbreak, s)
| run_t s (Seq (t1, t2)) =

(case run_t s t1 of
(Rval , s1) => run_t sl t2
| r =>r)
| run_t s (If (e, t1, t2)) =
(case run_e s e of
(Rval nl1, sl1) => run_t s1 (if nl = @ then t2 else t1)
| r =>r)
| run_t s (For (el, e2, t)) =
(case run_e s el of

(Rval n1, s1) =»> . .
if n1 = @ then (Rval 0, sl1) else mlght not terminate

(case run_t s1 t of \V/
(Rval _, s2) =>
(case run_e s2 e2ff6¥F
(Rval , s3) = run_t s3 (For (el, e2, t))

| r =>r)
| (Rbreak, s2) => (Rval 0, s2)
| r =>r)

r=>r)

Making the interpreter terminate

fun run_t s (Exp e€) = run_e s e
| run_t s (Dec (x, t)) = run_t ((x,0)::s) t
| run_t s Break = (Rbreak, s)
| run_t s (Seq (t1, t2)) =

(case run_t s t1 of
(Rval _, s1) => run_t s1 t2
| r =>r)
| run_t s (If (e, t1, t2)) =
(case run_e s e of
(Rval n1, sl1) => run_t s1 (if nl = @ then t2 else t1)
| r =>r)
| run_t s (For (el, e2, t)) =
(case run_e s el of
(Rval nl1, s1) =>
if n1 = @ then (Rval 9, sl1) else
(case run_t s1 t of
(Rval _, s2) =>
(case run_e s2 e2 of
(Rval , s3) => run_t s3 (For (el, e2, t))

| r => r)
| (Rbreak, s2) => (Rval 0, s2)
| r =>r)

r=>r)

Making the interpreter terminate

fun run_t s (EXp €) = run_e s e
| run_t s (Dec (x, t)) = run_t ((x,0)::s) t
| run_t s Break = (Rbreak, s)
| run_t s (Seq (t1, t2)) =

(case run_t s t1 of
(Rval _, s1) => run_t s1 t2
| r =>r)
| run_t s (If (e, t1, t2)) =
(case run_e s e of
(Rval nl1, sl1) => run_t s1 (if n1l = @ then t2 else t1)
| r =>r)
| run_t s (For (el, e2, t)) =
(case run_e s el of
(Rval ni1, s1) =»>
if n1 = @ then (Rval 9, sl1) else
(case run_t s1 t of
(Rval _, s2) =>
(case run_e s2 e2 of
(Rval _, s3) =>
if lclock <= @ then
raise TimeOutException

else
(clock := !clock - 1;
run_t s3 (For (el, e2, t)))
| r =>r)

| (Rbreak, s2) => (Rval 0, s2)

I 7Y . Iﬁ\

As a logic function

sem_ t s (For e; ex t) =

(Rval ni,s3) =
if s3.clock # 0 then
sem_t (dec_clock s3) (For e; ey t)
else (Rtimeout, s3)

As a logic function

sem_t s (Exp e) = sem_e s e
sem_t s (Dec z t) = sem_t (store_var =z 0 s) t
sem_t s Break = (Rbreak,s)
sem_t s (Seq t; t2) =
case sem_t s t; of
(Rval v5,51) = sem_t S1 to
| r = r)
sem_t s (If e t1 t2) =
case sem_e s e of
(Rval ni1,s1) = sem_t s1 (if n; = 0 then ¢ else t)
| r = 1)
sem_t s (For e; ey t) =
case sem_e s e; of

(Rval 0,s1) = (Rval 0,s1)) .
| (Rval ni,s1) = No dUP’lCGt’On!

(case sem_t s; t of
(Rval ni,$2) =
(case sem_e sy e of
(Rval ni,s3) =
if s3.clock # 0 then
sem_t (dec_clock s3) (For e; ex t)
else (Rtimeout, s3)
| r = 1)
| (Rbreak,ss) = (Rval 0,s3)
| r = r)
| r = 1)

The auto-generated induction theorem

- (Vs e. Ps (Exp e)) A
(Ws x t. P (store_var 0 s) t = P s (Dec z t)) A
(Vs. P s Break) A
(VS t1 tQ.
(Vs1 vs. (sem_t s t;1 = (Rval v5,51)) = P s1 t2) N P s t1 =
P s (Seq t1 t2)) A
(Vs e t1 ta.
(\V/Sl ni.
(sem_e s e = (Rval ni,s1)) =
P s1 (if n1 = 0 then t; else 1)) =
P s (If e t1 t2)) A

(Vs e1 ex t.
(V51 1. (No duplication!)

(sem_e s e; = (Rval n1,81)) A n1 # 0 =

P S1 t N

Vsa no S3 n3.
(sem_t s; t = (Rval n2,$2)) A
(sem_e s2 e2 = (Rval n3,s3)) A ss.clock # 0 =
P (dec_clock s3) (For e; ex t)) =

P s (For e; e2 t)) =
Vs t. P st

|_ogical clock for divergence pres.

Big-step semantics:
* has an optional clock component
* clock ‘ticks” decrements every time a function is applied
* once clock hits zero, execution stops with a TimeOut

Why do this!?

* because now big-step semantics describes both
terminating and non-terminating evaluations

either: Result
(for every exp env clock) g/ there is some result) or TimeOut

\

Vexp env clock. dres. (exp, env,Some clock) ey 1€S
A

(produced by the semantics)

Divergence

Evaluation diverges if

Vclock. (exp, env, Some clock) ey TimeOut

C for all clock values) (TimeOut happens)

Compiler correctness proved in conventional forward direction:

(exp, env) ey val =
“the code for exp is installed in bs etc.” —
bs’. bs —* bs’ A “bs’ contains val”

A A

(Bytecode has clock) (... that stays in sync with CakeML cIock)

Theorem: bytecode diverges if and only if CakeML eval diverges

Non-determinism

How to handle it?

Partial solution: use oracle to factor out non-determinism

Summary

Big-step semantics are
“’“'"”“ defined as inductively
b - defined relation.
(Functions are better! l
me

Easier to read / understand

Avoid duplication

Better induction theorem

Proofs by rewriting (not covered here)
Naturally useful in proofs about divergence pres.

Down sides: must have clock,

. . ions?
non-deter requires special care. Questions

