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Machine CodeBasic idea

Example: Given some hard-to-read (ARM) machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

The decompiler produces a readable HOL4 function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

Machine code is what the CPU executes.

Ultimately all program verification ought to reach real machine code.



Machine codeMachine code is neat

Machine code,

E1510002 B0422001 C0411002 01AFFFFFB

is impossible to read, write or maintain manually.

However, for theorem-prover-based formal verification:

machine code is clean and tractable!

Reason:

I all types are concrete: word32, word8, bool.

I state consists of a few simple components: a few registers, a
memory and some status bits.

I each instruction performs only small well-defined updates.



Some C problems avoidedC problems avoided

Machine code verification avoids some challenges in C verification:

I C has annoyingly weak type system, e.g.
union and cast to/from void type

I multiple ambiguities in both syntax and semantics, e.g.
C syntax preprocessing cpp, evaluation orders

I richer set of features compared to plain machine instructions,
mdContext->in[mdi++] = *inBuf++

in-line assembly in C: asm ( ... ), semantics?

Also, verified C code must be compiled, while verified machine
code can be executed ‘as is’.



Verification of Machine Code

ARM/x86/PowerPC model 
(1000...10,000 lines each)

machine code correctness

{P} code {Q}

Contribution: tools/methods which 
•  expose as little as possible of the big models to the user 
•  makes non-automatic proofs independent of the models

Challenges:

code



HOL: fully-expansive LCF-style prover

Proofs are performed in HOL4 — a fully expansive theorem prover

HOL4 theorem prover

HOL4 kernel

All proofs expand at runtime 
into primitive inferences in 
the HOL4 kernel.

The kernel implements the 
axioms and inference rules 
of higher-order logic.

The aim is to prove deep functional properties of machine code.

Short demo



Talk outline

Part I:   Tools and infrastructure

Part 2:  Case studies

proof-producing decompiler: 

proof-producing compiler: 

translates machine code into equivalent functions in logic

translates functions in logic into correct-by-cons. machine code

simple verified Lisp interpreter

verified just-in-time compiler for Lisp

verified read-eval-print-loop for a subset of Standard ML



InfrastructureInfrastructure in HOL4

During my PhD, I developed the following infrastructure:

decompiler

ARM x86 PowerPC

compilerfunc

code

(code,thm)

(func,thm)

machine-code Hoare triple

. . . each part will be explained in the next slides.



Models of machine codeModels of machine languages

Machine models borrowed from work by others:

ARM model, by Fox [TPHOLs’03]

I covers practically all ARM instructions, for old and new ARMs

I still actively being developed

x86 model, by Sarkar et al. [POPL’09]

I covers all addressing modes in 32-bit mode x86

I includes approximately 30 instructions

PowerPC model, originally from Leroy [POPL’06]

I manual translation (Coq ! HOL4) of Leroy’s PowerPC model

I instruction decoder added



Hoare triplesHoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state =

0xE0800000w) ^ ¬state.undefined )
(NEXT ARM MMU cp state =

ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE REG 0w

(ARM READ REG 0w state + ARM READ REG 0w state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM MODEL Informal syntax for this talk:
(aR 0w x * aPC p) {R0 x ⇤ PC p }
{(p,0xE0800000w)} p : E0800000
(aR 0w (x+x) * aPC (p+4w)) {R0 (x+x) ⇤ PC (p+4) }

Short demo



Definition of Hoare triple

{p} c {q} () 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)

frame code separate

total correctness machine code sem.



Decompiler
Decompilation

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)



Decompilation, correct?Decompilation, correct?

Decompiler automatically proves a certificate theorem:

f
pre

(r0, r1,m) )

{ (R0, R1, M) is (r0, r1,m) ⇤ PC p ⇤ S }
p : E3A00000 E3510000 12800001 15911000 1AFFFFFB

{ (R0, R1, M) is f (r0, r1,m) ⇤ PC (p + 20) ⇤ S }

which informally reads:

for any initially value (r0, r1,m) in reg 0, reg 1 and memory,
the code terminates with f (r0, r1,m) in reg 0, reg 1 and memory.



Decompilation verification exampleDecompilation, verification example

To verify code: prove properties of function f ,

8x l a m. list(l , a,m) ) f (x , a,m) = (length(l), 0,m)

8x l a m. list(l , a,m) ) f
pre

(x , a,m)

since properties of f carry over to machine code via the certificate.

Proof reuse: Given similar x86 and PowerPC code:

31C085F67405408B36EBF7

38A000002C140000408200107E80A02E38A500014BFFFFF0

which decompiles into f 0 and f 00, respectively. Manual proofs
above can be reused if f = f 0 = f 00.



Algorithm

Decompilation algorithm:

Step 1:   evaluate underlying ISA model 
            (prove Hoare triples for each instruction)

Step 2:   construct CFG and find ‘decompilation rounds’
            (usually one round per loop)

Step 3:   for each round, compose a Hoare triple theorem:

             if the code contains a loop, apply a loop rule  

ARM machine code instr. time/cost of old time/cost of new reduction model eval.
sum of array (Sec. I-A) 4 2.5 s (73,039 i) 0.3 s (4,019 i) 86 % (94 %) 7.8 s (1.5 Mi)
copying garbage collector [10] 89 50 s (1,526,281 i) 6.0 s (53,301 i) 88 % (97 %) 173 s (40 Mi)
1024-bit multiword addition 224 70 s (1,029,685 i) 1.2 s (10,802 i) 98 % (99 %) 37 s (8.9 Mi)
256-bit Skein hash function 1,352 5,366 s (21,432,926 i) 56 s (1,842,642 i) 99 % (91 %) 500 s (105 Mi)

Fig. 1. Benchmarks comparing the new approach (new) with our previous approach (old). The cost is given in seconds (s) and number of primitive higher-order
logic inferences (i) in HOL4 [16]. The cost of evaluating the ISA model is separated as this cost is independent of decompilation approach.

Split the CFG into separate decompilation rounds, i.e. separate
inner loops from enclosing outer loops where possible. For
complicated CFGs, insert an extra final decompilation
round which ties up the disjoint pieces if necessary (as
illustrated by the example in Section II-A).

Phase 3: For each decompilation round: compose the Hoare
triples following the CFG in a way which directly constructs
the extracted function in the postcondition of the theorem
(Section III-B). This function in the postcondition also
collects accumulated side conditions as if they were updates
to a state component (cond in Section III-A). If the code has
a loop, a loop rule is applied which wraps the result up using a
tailrec-combinator and combines the resulting side condition
on termination with the other side conditions.

A. Simple Machine-Code Hoare Logic
The machine-code Hoare triples, { pre } code { post }, that

were used above will be explained next. More formally, these
are parametrised by two functions: next, a the next-state
function for the ISA model of interest; and assert , a state
assertion which inspects the state (explained below).

(assert ,next) ` { pre } code { post } (1)

This machine-code Hoare triple is defined to be true: if for
all states that satisfy pre and including code, then another
state can be reached (by some n applications of next) such
that post is true for this state and code is included in it. The
total-correctness Hoare triple (1) is formally defined to mean,

8state c. assert (code [ c, pre) state =)
9n. assert (code [ c, post) (nextn(state))

where the set union [ with arbitrary code extension c is present
to facilitate extension of the code (explain in the next section).

We instantiate next and assert for each supported archi-
tecture, e.g. ARM, x86 or PowerPC. We instantiate assert

to check that each state component is consistent with code

and pre/post. Here code is represented as a set of (ad-
dress,instruction) pairs, and pre and post are, for efficiency
reasons, simply a large tuple listing the value of state com-
ponents, e.g. (pc, r0, r1, . . .) asserts that the value of PC is
pc and register 0 is r0 etc. By representing pre/post as
tuples, composition and matching becomes fast and simple.
We always include a special cond element in assert . This
cond is a condition for the entire assertion to make sense, e.g.
for ARM we instantiate assert with:

arm assert (code, pc, r0, r1, . . . , cond) state =
(cond =) code is in memory of state and

the PC of state is pc and . . . )

{ARM registers r1-r3 are (r1, r2, r3) and
m is a model of part of memory and PC is L0}

E7921003 E0800001 E2533004 1AFFFFFB

{ARM registers r1-r3 are (m(r2 + r3), r2, r3) and
m is a model of part of memory and PC is L1 and
valid address(r2 + r3) m is added to cond}

{ ARM assert (c, r0, r1, r2, r3,m) and PC is L1 }
E7921003 E0800001 E2533004 1AFFFFFB

{ let (pc0, c0, r00, r
0
1, r

0
2, r

0
3,m

0) =
(let r0 = r0 + r1 in

let r3 = r3 � 4 in

if r3 = 0 then (L4, c, r0, r1, r2, r3,m)
else (L0, c, r0, r1, r2, r3,m)) in

ARM assert (c0, r00, r01, r02, r03,m0) and PC is pc

0 }

Fig. 2. Two machine-code Hoare triples for: (a) the load instruction from
Section I-A, and (b) the last three ARM instructions from Section I-A. Both
contain other code too, explained in Section III-B.

B. Composing Hoare triples
Our machine-code Hoare triple supports composition:

{pre} code {m} ^ {m} code {post} =) {pre} code {post}

For this rule to be applicable, the Hoare triples must have
identical code sets code. Note that each code set is a set of
(address,instruction) pairs which is a sufficient assumption for
getting execution from pre to post. To make the code sets
identical, we apply the following theorem which can be used
to extend the code sets. This theorem is applied as a pre-
processing step in Phase 1 to speed up composition in Phase 3.
Here ✓ is the ordinary subset relation.

{pre} code1 {post} ^ code1 ✓ code2 =) {pre} code2 {post}

In Phase 3, composition of Hoare triples is performed
bottom-up following the CFG (or the part of it which is rele-
vant for this decompilation round). Each compositions returns
a theorem where the relevant part of the extracted function,
including the side conditions, appears in the postcondition.
Each composition returns a theorem of the form:

{pre[v0 . . . vn]}
code

{let (v00 . . . v
0
n) = f(v0 . . . vn) in post[v00 . . . v

0
n]}

(2)

Figure 2 show the concrete inputs to the final composition for
the sum-of-an-array example (Section I-A). The second input
carries the extracted function in the form of (2).



Decompiler implementationDecompiler, implementation

Implementation:

I ML program which fully-automatically performs forward proof,

I no heuristics and no dangling proof obligations,

I loops are handled by a special loop rule which introduces
tail-recursive functions:

tailrec(x) = if G (x) then tailrec(F (x)) else D(x)

with termination and side-conditions H collected as:

pre(x) = (if G (x) then pre(F (x)) else true) ^ H(x)

Details in Myreen et al. [FMCAD’08].



CompilationCompiler

Synthesis often more practical. Given function f ,

f (r1) = if r1 < 10 then r1 else let r1 = r1 � 10 in f (r1)

our compiler generates ARM machine code:

E351000A L: cmp r1,#10

2241100A subcs r1,r1,#10

2AFFFFFC bcs L

and automatically proves a certificate HOL theorem:

` {R1 r1 ⇤ PC p ⇤ s }
p : E351000A 2241100A 2AFFFFFC

{R1 f (r1) ⇤ PC (p+12) ⇤ s }



Compilation, example cont.Compilation example, cont.

One can prove properties of f since it lives inside HOL:

` 8x . f (x) = x mod 10

Properties proved of f translate to properties of the machine code:

` {R1 r1 ⇤ PC p ⇤ s}
p : E351000A 2241100A 2AFFFFFC

{R1 (r1 mod 10) ⇤ PC (p+12) ⇤ s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let r1 = r1 mod 10 in



User-defined extensions
Additional feature: user-defined extensions

Using our theorem about mod, the compiler accepts:

g(r1, r2, r3) = let r1 = r1 + r2 in
let r1 = r1 + r3 in
let r1 = r1 mod 10 in

(r1, r2, r3)

Previously proved theorems can be used as building blocks for
subsequent compilations.



ImplementationImplementation

To compile function f :

1. generate, without proof, code from input f ;

2. decompile, with proof, a function f 0 from generated code;

3. prove f = f 0.

Features:

I code generation completely separate from proof

I supports many light-weight optimisations without any
additional proof burden: instruction reordering, conditional
execution, dead-code elimination, duplicate-tail elimination, ...

I allows for significant user-defined extensions

Details in Myreen et al. [CC’09]



Talk outline

Part I:   Tools and infrastructure

Part 2:  Case studies

proof-producing decompiler: 

proof-producing compiler: 

translates machine code into equivalent functions in logic

translates functions in logic into correct-by-cons. machine code

simple verified Lisp interpreter

verified just-in-time compiler for Lisp

verified read-eval-print-loop for a subset of Standard ML



A verified Lisp interpreterLISP case study

Idea: create LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compiler
HOL4 functions for 

LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc. 

ARM, x86, PowerPC code 
and certificate theorems

machine-code Hoare triple



Lisp formalisedLISP formalised

LISP s-expressions defined as data-type SExp:

Num : N! SExp

Sym : string! SExp

Dot : SExp! SExp! SExp

LISP primitives were defined, e.g.

cons x y = Dot x y

car (Dot x y) = x

plus (Num m) (Num n) = Num (m + n)

The semantics of LISP evaluation was taken to be Gordon’s
formalisation of ‘LISP 1.5’-like evaluation, next slide. . .



Gordon’s Lisp semantics from ACL2 
workshop 2007Gordon’s LISP semantics, from ACL2 workshop 2007

Defined using three mutually recursive relations !
eval

, !
app

and !
eval list

.

ok name v

(v , ⇢)!
eval

⇢(v) (c, ⇢)!
eval

c ([ ], ⇢)!
eval

nil

(p, ⇢)!
eval

nil ^ ([gl ], ⇢)!
eval

s

([p ! e; gl ], ⇢)!
eval

s

(p, ⇢)!
eval

x ^ x 6= nil ^ (e, ⇢)!
eval

s

([p ! e; gl ], ⇢)!
eval

s

can apply k args

(k, args, ⇢)!
app

k args

(⇢(f ), args, ⇢)!
app

s ^ ok name f

(f , args, ⇢)!
app

s

(e, ⇢[args/vars])!
eval

s

(�[[vars]; e], args, ⇢)!
app

s

(fn, args, ⇢[fn/x])!
app

s

(label [[x]; fn], args, ⇢)!
app

s

([ ], ⇢)!
eval list

[ ]
(e, ⇢)!

eval

s ^ ([el ], ⇢)!
eval list

sl

([e; el ], ⇢)!
eval list

[s; sl ]

Here c, v , k and f range over value constants, value variables, function constants and

function variables, respectively.



Extending the compiler
Extending the compiler

We define heap assertion ‘lisp (v1, v2, v3, v4, v5, v6, l)’ and prove
implementations for primitive operations, e.g.

is pair v1 )
{ lisp (v1, v2, v3, v4, v5, v6, l) ⇤ pc p }
p : E5934000
{ lisp (v1, car v1, v3, v4, v5, v6, l) ⇤ pc (p + 4) }

size v1 + size v2 + size v3 + size v4 + size v5 + size v6 < l )
{ lisp (v1, v2, v3, v4, v5, v6, l) ⇤ pc p }
p : E50A3018 E50A4014 E50A5010 E50A600C ...

{ lisp (cons v1 v2, v2, v3, v4, v5, v6, l) ⇤ pc (p + 332) }

with these the compiler understands:

let v2 = car v1 in ...
let v1 = cons v1 v2 in ...

Short demo



Verified Lisp interpretersConstructing LISP implementations

Evaluation.

1. the compiler was extended with code for car, cons, plus, etc.

2. lisp eval defined as tail-rec function, for which we proved:

8s r . s !
eval

r ) fst (lisp eval (s, nil, nil, nil, nil, nil, l)) = r

3. the compiler automatically produced correct implementations.

Parsing/printing.

1. high-level definitions parsing/printing functions were defined,

8s. sexp ok s ) string2sexp (sexp2string s) = s

2. low-level definitions were compiled to machine code,

3. manual proof related high- and low-level definitions.



Correctness theoremCorrectness theorem

The result is an interpreter which parses, evaluates and prints LISP:

8s r l p.

s !
eval

r ^ sexp ok s ^ lisp eval pre(s, l))
{ 9a. R3 a ⇤ string a (sexp2string s) ⇤ space s l ⇤ pc p }
p : ... machine code not shown ...

{ 9a. R3 a ⇤ string a (sexp2string r) ⇤ space0 s l ⇤ pc (p+8968) }

where:

s !
eval

r is “s evaluates to r in Gordon’s semantics”
sexp ok s is “s contains no bad symbols”

lisp eval pre(s, l) is “s can be evaluated with heap limit l”
string a str is “string str is stored in memory at address a”

space s l is “there is enough memory to setup heap of size l”



Running the Lisp interpreter

LISP interpreter in use

To execute verified machine code, we:

1. wrote C wrapper around verified machine code,

2. compiled using gcc,

3. checked with hexdump that gcc didn’t alter the machine code,

4. ran code on real hardware:

Nintendo DS lite (ARM) MacBook (x86) old MacMini (PowerPC)

LISP interpreter in use

Example: paper gives a definition of pascal-triangle, for which:

(pascal-triangle ’((1)) ’6)

returns:

((1 6 15 20 15 6 1)

(1 5 10 10 5 1)

(1 4 6 4 1)

(1 3 3 1)

(1 2 1)

(1 1)

(1))

Timings: ARM 0.090 ms, x86 0.001 ms, PowerPC 0.004 ms



Next:  can we do better than a simple Lisp interpreter?



Two projects meet

Jared Davis Magnus Myreen

A self-verifying 
theorem prover

Verified Lisp 
implementations

verified LISP on
ARM, x86, PowerPC

My theorem prover is written in Lisp. 
Can I try your verified Lisp? Sure, try it.

Does your Lisp support ..., ... and ...?  No, but it could ...



verified LISP on
ARM, x86, PowerPC

Jitawa: verified LISP 
             with JIT compiler 

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:                   
>500 million unique conses

‣ takes 16 hours to run on a 
state-of-the-art runtime (CCL)

(TPHOLs 2009)

hopelessly “toy”Contribution:
‣ a new verified Lisp which is able 

to host the Milawa thm prover



 A short introdution to

work by Jared Davis

• Milawa is styled after theorem provers 
such as NQTHM and ACL2,

• has a small trusted logical kernel similar 
to LCF-style provers, 

• ... but does not suffer the performance 
hit of LCF’s fully expansive approach. 



core derived rules

decision
 procedures

Comparison with LCF approach

work by Jared Davis

LCF-style approach the Milawa approach
• all proofs pass through the 

core’s primitive inferences
• extensions steer the core

• all proofs must pass the core
• the core can be reflectively 

extended at runtime

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools

case splitting

rewriting

‘auto’ tactics
...

...



Requirements on runtime
work by Jared Davis

Milawa uses a subset of Common Lisp which 

(Lisp subset defined on later slide.)

is for most part first-order pure functions over 
natural numbers, symbols and conses,

cons car cdr consp natp symbolp 
equal + - < symbol-< if

uses primitives:

macros: or and list let let* cond 
first second third fourth fifth

and a simple form of lambda-applications.



Requirements on runtime

• uses destructive updates, hash tables

• prints status messages, timing data

• uses Common Lisp’s checkpoints

• forces function compilation

• makes dynamic function calls

• can produce runtime errors

work by Jared Davis

...but Milawa also

}

}

not 
necessary

runtime 
must support

(Lisp subset defined on later slide.)



Runtime must scale
Designed to scale:

• just-in-time compilation for speed

‣ functions compile to native code

• target 64-bit x86 for heap capacity

‣ space for 231 (2 billion) cons cells (16 GB)

• efficient scannerless parsing + abbreviations

‣ must cope with 4 gigabyte input

• graceful exits in all circumstances

‣ allowed to run out of space, but must report it



Workflow

1.specified input language: syntax & semantics

2.verified necessary algorithms, e.g.

• compilation from source to bytecode
• parsing and printing of s-expressions
• copying garbage collection

3.proved refinements from algorithms to x86 code

4.plugged together to form read-eval-print loop

~30,000 lines of HOL4 scripts



AST of input language
term ::= Const sexp

| Var string
| App func (term list)
| If term term term

| LambdaApp (string list) term (term list)
| Or (term list)
| And (term list) (macro)

| List (term list) (macro)

| Let ((string � term) list) term (macro)

| LetStar ((string � term) list) term (macro)

| Cond ((term � term) list) (macro)

| First term | Second term | Third term (macro)

| Fourth term | Fifth term (macro)

func ::= Define | Print | Error | Funcall
| PrimitiveFun primitive | Fun string

primitive ::= Equal | Symbolp | SymbolLess
| Consp | Cons | Car | Cdr |
| Natp | Add | Sub | Less

sexp ::= Val num

| Sym string

| Dot sexp sexp

Example of semantics for macros:

(App (PrimitiveFun Car) [x], env , k, io) ev�! (ans, env 0
, k

0
, io

0)
(First x, env , k, io) ev�! (ans, env 0

, k

0
, io

0)



compile:  AST     bytecode list

bytecode ::= Pop pop one stack element

| PopN num pop n stack elements

| PushVal num push a constant number

| PushSym string push a constant symbol

| LookupConst num push the nth constant from system state

| Load num push the nth stack element

| Store num overwrite the nth stack element

| DataOp primitive add, subtract, car, cons, . . .

| Jump num jump to program point n

| JumpIfNil num conditionally jump to n

| DynamicJump jump to location given by stack top

| Call num static function call (faster)

| DynamicCall dynamic function call (slower)

| Return return to calling function

| Fail signal a runtime error

| Print print an object to stdout

| Compile compile a function definition



How do we get just-in-time compilation?

We have verified compilation algorithm:

compile:  AST     bytecode list

but compiler must produce real x86 code....

• bytecode is represented by numbers in 
memory that are x86 machine code

• we prove that jumping to the memory 
location of the bytecode executes it 

Solution:

Treating code as data:

⇥p c q. {p} c {q} = {p � code c} ⇤ {q � code c}

(POPL’10)

Definition of Hoare triple:

{p} c {q} = 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)



I/O and efficient parsing
Jitawa implements a read-eval-print loop:

• reading next string from stdin

• printing null-terminated string to stdout

  

Use of external C routines adds assumptions to proof:

An efficient s-expression parser (and printer) is proved, 
which deals with abbreviations:

(append (cons (cons a b) c)
        (cons (cons a b) c))

(append #1=(cons (cons a b) c)
        #1#)



Read-eval-print loop

• Result of reading lazily, writing eagerly

• Eval = compile then jump-to-compiled-code

• Specification: read-eval-print until end of input

is empty (get input io)
(k, io) exec�! io

¬is empty (get input io)⇤
next sexp (get input io)) = (s, rest)⇤
(sexp2term s, [], k, set input rest io) ev�⇥ (ans, k0, io0)⇤
(k0, append to output (sexp2string ans) io0) exec�⇥ io

00

(k, io) exec�⇥ io

00



Correctness theorem

Top-level correctness theorem:

{ init state io ⇥ pc p ⇥ ⌃terminates for io⌥ }
p : code for entire jitawa implementation

{ error message ⇧ ⌅io0. ⌃([], io) exec�⇤ io

0⌥ ⇥ final state io

0 }

Each execution is 
allowed to fail with 
an error message.

If there is no error message, 
then the result is described by 
the high-level op. semantics.

There must be enough 
memory and I/O 

assumptions must hold.

This machine-code Hoare 
triple holds only for 

terminating executions.

list of numbers



Verified code
  $ cat verified_code.s

       /*  Machine code automatically extracted from a HOL4 theorem.  */
       /*  The code consists of 7423 instructions (31840 bytes).      */

        .byte   0x48, 0x8B, 0x5F, 0x18
        .byte   0x4C, 0x8B, 0x7F, 0x10
        .byte   0x48, 0x8B, 0x47, 0x20
        .byte   0x48, 0x8B, 0x4F, 0x28
        .byte   0x48, 0x8B, 0x57, 0x08
        .byte   0x48, 0x8B, 0x37
        .byte   0x4C, 0x8B, 0x47, 0x60
        .byte   0x4C, 0x8B, 0x4F, 0x68
        .byte   0x4C, 0x8B, 0x57, 0x58
        .byte   0x48, 0x01, 0xC1
        .byte   0xC7, 0x00, 0x04, 0x4E, 0x49, 0x4C
        .byte   0x48, 0x83, 0xC0, 0x04
        .byte   0xC7, 0x00, 0x02, 0x54, 0x06, 0x51
        .byte   0x48, 0x83, 0xC0, 0x04
        ...



A short demo:
Jitawa — a verified runtime for Milawa



Running Milawa on Jitawa

CCL
SBCL
Jitawa

  16 hours
  22 hours
128 hours

Running Milawa’s 4-gigabyte booststrap process:

(8x slower than CCL)

Parsing the 4 gigabyte input:

CCL
Jitawa

  716 seconds
    79 seconds

(9x slower than Jitawa)

Jitawa’s compiler performs 
almost no optimisations.



Next:  can we do better than Lisp?

(on going work)



The CakeML project

Aim: to do the same for a subset of Standard ML:

produce verified read-eval-print-loop for ML

construct a proved-to-be-sound version of HOL light

synthesise hardware that runs ML programs on ‘bare metal’

Collaborators:

Scott Owens  –  semantics, type/module systems
Ramana Kumar  –  compiler verification
Michael Norrish  –  parsing, general HOL expertise
David Greaves  –  hardware, FPGAs



Implementation of ML compiler
LISP case study

Idea: create LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compiler
HOL4 functions for 

LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc. 

ARM, x86, PowerPC code 
and certificate theorems

machine-code Hoare triple

verified ML-to-x86 compiler 
as logic function

verified x86

How to produce compile component?

Very cumbersome....



Bootstrapping the compiler

Instead:  we bootstrap the verified compile function,
we evaluate the compiler on a deep embedding 
of itself within the logic:

EVAL ``compile COMPILE``

derives a theorem:

compile COMPILE  =  compiler-as-machine-code

We believe this is the first bootstrapping of a 
formally verified compiler.



Summary

Part I:   Tools and infrastructure

Part 2:   Case studies

proof-producing decompiler: 

proof-producing compiler: 

translates machine code into equivalent functions in logic

translates functions in logic into correct-by-cons. machine code

simple verified Lisp interpreter

verified just-in-time compiler for Lisp

verified read-eval-print-loop for a subset of Standard ML


