
Steps Towards Verified
Implementations of HOL Light

Magnus O. Myreen1, Scott Owens2, Ramana Kumar1

1 University of Cambridge, UK
2 University of Kent, UK

ITP 2013

Background

Jared Davis (UT Austin)

Could your verified Lisp
run my ACL2-like prover?

Jitawa: verified LISP
 with JIT compiler

verified LISP on
ARM, x86, PowerPC

(TPHOLs 2009)

“a self-verifying
theorem prover”

(Davis’ PhD thesis)

Proving Milawa sound

Lisp implementation (x86)
(approx. 7000 64-bit x86 instructions)

semantics of Milawa’s logic

inference rules of Milawa’s logic

Lisp semantics

semantics of x86-64 machine

Milawa theorem prover
(kernel approx. 2000 lines of Milawa Lisp)

construction of a verified
language implementation
(ITP’11)

soundness of the logic and
reflection mechanism
(yet to be published)

At ITP’11

Freek Wiedijk
Radboud University Nijmegen

Please, do the same for
HOL light!

That would be difficult...

My immediate response:

Later thought: Maybe...

CakeML

A new project:

A verified implementation of ML

“The CakeML language is designed to be both easy
to program in and easy to reason about formally”

People involved

Ramana Kumar
(Uni. Cambridge)

Michael Norrish
(NICTA, ANU)

Scott Owens
(Uni. Kent)

Magnus Myreen
(Uni. Cambridge)

verified compilation from
CakeML to bytecode

operational semantics

verified type inference

verified parsing (syntax is
compatible with SML)

verified x86 implementations

proof-producing code
generation from HOL

CakeML implementation
(a read-eval-print loop in 64-bit x86 code)

semantics of HOL with defns

inferences of HOL with defns

CakeML op. semantics

semantics of x86-64 machine

HOL light kernel in CakeML
(module consisting of ~500 lines of CakeML)

Soundness of HOL light
CakeML version of

nearly complete, ask for details!

John Harrison’s proof (IJCAR
2006) but without definitions

Topic of this short paper.
(ITP 2013)

CakeML op. semantics

inferences of HOL with defns

HOL light kernel in CakeML
(module consisting of ~500 lines of CakeML)

Topic of this short paper.
(ITP 2013)

This talk
We reuse John Harrison’s formalisation.

Note that this is CakeML, not Ocaml.

Approach
Harrison’s spec. of HOL’s

inferences (IJCAR’06)

Proof-producing CakeML
code generation (ICFP’12)

fusion.ml from the Ocaml
sources of HOL light

Harrison’s spec. of the HOL’s
inferences + definition mech.

monadic functions in HOL impl.
the Ocaml function

manual verification

fusion.ml as CakeML that is
proved to respect HOL’s

inference rules (with defns)

automatic proof

Proof-producing CakeML
code generation with support
for stateful CakeML (ref, exc)

More concretely
For each Ocaml function in fusion.ml,

let REFL tm = Sequent([],mk eq(tm,tm))

REFL tm = do eq <- mk eq(tm,tm);
 return (Sequent [] eq) od

val REFL = fn tm =>
 let val eq = mk eq (tm, tm)
 in Sequent ([], eq) end;

we define a monadic function in HOL:

prove that this shallow embedding respects the inferences and
use proof-producing code generation to produce CakeML:

Summary

Current status of the project on next slide...

Main message of the talk:

We are working towards a verified
implementation of ML (called CakeML)

A verified HOL light is an initial challenge
case study for CakeML.

CakeML implementation
(a read-eval-print loop in 64-bit x86 code)

semantics of HOL with defns

inferences of HOL with defns

CakeML op. semantics

semantics of x86-64 machine

HOL light kernel in CakeML
(module consisting of ~500 lines of CakeML)

Current status

nearly complete, ask for details!

John Harrison’s proof (IJCAR
2006) but without definitions

Topic of this short paper.
(ITP 2013)

Lift soundness of kernel to
soundness result for entire prover

