
Proof-producing decompilation and compilation

Magnus Myreen

May 2008



Introduction

This talk concerns verification of functional correctness of machine
code for commercial processors (ARM, PowerPC, x86 . . . ).

Outline of talk:

I motivation for decompilation into logic

I implementing decompilation

I compilation



Verification

Current approaches for machine-code verification:

I direct reasoning about next-state function.

I annotating code with assertions:

{...}

xor eax, eax

{...}

L1: test esi, esi

jz L2

{...}

inc eax

mov esi, [esi]

jmp L1

L2:

{...}

{???}

mov r0, #0

{???}

L: cmp r1, #0

ldrne r1, [r1]

addne r0, r0, #1

bne L

{???}

Proof reuse?



Verification

Current approaches for machine-code verification:

I direct reasoning about next-state function.

I annotating code with assertions:

{...}
xor eax, eax

{...}
L1: test esi, esi

jz L2

{...}
inc eax

mov esi, [esi]

jmp L1

L2: {...}

{???}

mov r0, #0

{???}

L: cmp r1, #0

ldrne r1, [r1]

addne r0, r0, #1

bne L

{???}

Proof reuse?



Verification

Current approaches for machine-code verification:

I direct reasoning about next-state function.

I annotating code with assertions:

{...}
xor eax, eax

{...}
L1: test esi, esi

jz L2

{...}
inc eax

mov esi, [esi]

jmp L1

L2: {...}

{???}

mov r0, #0

{???}

L: cmp r1, #0

ldrne r1, [r1]

addne r0, r0, #1

bne L

{???}

Proof reuse?



Verification

Current approaches for machine-code verification:

I direct reasoning about next-state function.

I annotating code with assertions:

{...}
xor eax, eax

{...}
L1: test esi, esi

jz L2

{...}
inc eax

mov esi, [esi]

jmp L1

L2: {...}

{???}
mov r0, #0

{???}
L: cmp r1, #0

ldrne r1, [r1]

addne r0, r0, #1

bne L

{???}

Proof reuse?



Our approach

Decompilation produces the following tail-recursive functions
describing the effect of the code, f for x86 and f ′ for ARM:

f (eax , esi ,m) =
let eax = eax ⊗ eax in

g(eax , esi ,m)

g(eax , esi ,m) =
if esi & esi = 0
then (eax , esi ,m) else

let eax = eax+1 in
let esi = m(esi) in

g(eax , esi ,m)

f ′(r0, r1,m) =
let r0 = 0 in

g ′(r0, r1,m)

g ′(r0, r1,m) =
if r1 = 0
then (r0, r1,m) else

let r1 = m(r1) in
let r0 = r0+1 in

g ′(r0, r1,m)

Advantages: 1. no need for knowledge of the next-state function;
2. suitable for proofs in HOL, and
3. proof reuse, f = f ′ using w & w = w and w ⊗w = 0.



Our approach

Decompilation produces the following tail-recursive functions
describing the effect of the code, f for x86 and f ′ for ARM:

f (eax , esi ,m) =
let eax = eax ⊗ eax in

g(eax , esi ,m)

g(eax , esi ,m) =
if esi & esi = 0
then (eax , esi ,m) else

let eax = eax+1 in
let esi = m(esi) in

g(eax , esi ,m)

f ′(r0, r1,m) =
let r0 = 0 in

g ′(r0, r1,m)

g ′(r0, r1,m) =
if r1 = 0
then (r0, r1,m) else

let r1 = m(r1) in
let r0 = r0+1 in

g ′(r0, r1,m)

Advantages: 1. no need for knowledge of the next-state function;
2. suitable for proofs in HOL, and
3. proof reuse, f = f ′ using w & w = w and w ⊗w = 0.



Our approach

Decompilation produces the following tail-recursive functions
describing the effect of the code, f for x86 and f ′ for ARM:

f (eax , esi ,m) =
let eax = eax ⊗ eax in

g(eax , esi ,m)

g(eax , esi ,m) =
if esi & esi = 0
then (eax , esi ,m) else

let eax = eax+1 in
let esi = m(esi) in

g(eax , esi ,m)

f ′(r0, r1,m) =
let r0 = 0 in

g ′(r0, r1,m)

g ′(r0, r1,m) =
if r1 = 0
then (r0, r1,m) else

let r1 = m(r1) in
let r0 = r0+1 in

g ′(r0, r1,m)

Advantages: 1. no need for knowledge of the next-state function;
2. suitable for proofs in HOL, and
3. proof reuse, f = f ′ using w & w = w and w ⊗w = 0.



Produced theorem

How does f relate to the x86 code?

Answer: For each run, the decompiler automatically:

1. generates a function f , and

2. proves a theorem relating the function to the code:

{ (eax, esi,m) is (eax , esi ,m) ∗ eip p ∗ fpre(eax , esi ,m) }
p : 31C085F67405408B36EBF7

{ (eax, esi,m) is f (eax , esi ,m) ∗ eip (p+11) }

Here eax, esi, m and eip (program counter) assert values of
resources and ‘(x , y , z) is (a, b, c)’ abbreviates (x a)∗ (y b)∗ (z c).



Produced theorem

How does f relate to the x86 code?

Answer: For each run, the decompiler automatically:

1. generates a function f , and

2. proves a theorem relating the function to the code:

{ (eax, esi,m) is (eax , esi ,m) ∗ eip p ∗ fpre(eax , esi ,m) }
p : 31C085F67405408B36EBF7

{ (eax, esi,m) is f (eax , esi ,m) ∗ eip (p+11) }

Here eax, esi, m and eip (program counter) assert values of
resources and ‘(x , y , z) is (a, b, c)’ abbreviates (x a)∗ (y b)∗ (z c).



Verification

The decompiler automates machine specific proofs and leaves the
user (verifier) to prove properties of the generated function f .

Suppose we have proved

∀xs w a m. list(xs, a,m) ⇒ f (w , a,m) = (length(xs), 0,m)

∀xs w a m. list(xs, a,m) ⇒ fpre(w , a,m)

for an appropriate definition of list.

Then we have:

{ (eax, esi,m) is (eax , esi ,m) ∗ eip p ∗ fpre(eax , esi ,m) }
p : 31C085F67405408B36EBF7

{ (eax, esi,m) is f (eax , esi ,m) ∗ eip (p+11) }



Verification

The decompiler automates machine specific proofs and leaves the
user (verifier) to prove properties of the generated function f .

Suppose we have proved

∀xs w a m. list(xs, a,m) ⇒ f (w , a,m) = (length(xs), 0,m)

∀xs w a m. list(xs, a,m) ⇒ fpre(w , a,m)

for an appropriate definition of list.

Then we have:

{ (eax, esi,m) is (eax , esi ,m) ∗ eip p ∗ fpre(eax , esi ,m) }
p : 31C085F67405408B36EBF7

{ (eax, esi,m) is f (eax , esi ,m) ∗ eip (p+11) }



Verification

The decompiler automates machine specific proofs and leaves the
user (verifier) to prove properties of the generated function f .

Suppose we have proved

∀xs w a m. list(xs, a,m) ⇒ f (w , a,m) = (length(xs), 0,m)

∀xs w a m. list(xs, a,m) ⇒ fpre(w , a,m)

for an appropriate definition of list.

Then we have:

list(xs, esi ,m) ⇒
{ (eax, esi,m) is (eax , esi ,m) ∗ eip p ∗ fpre(eax , esi ,m) }

p : 31C085F67405408B36EBF7

{ (eax, esi,m) is f (eax , esi ,m) ∗ eip (p+11) }



Verification

The decompiler automates machine specific proofs and leaves the
user (verifier) to prove properties of the generated function f .

Suppose we have proved

∀xs w a m. list(xs, a,m) ⇒ f (w , a,m) = (length(xs), 0,m)

∀xs w a m. list(xs, a,m) ⇒ fpre(w , a,m)

for an appropriate definition of list.

Then we have:

list(xs, esi ,m) ⇒
{ (eax, esi,m) is (eax , esi ,m) ∗ eip p ∗ fpre(eax , esi ,m) }

p : 31C085F67405408B36EBF7

{ (eax, esi,m) is (length(xs), 0,m) ∗ eip (p+11) }



Verification

The decompiler automates machine specific proofs and leaves the
user (verifier) to prove properties of the generated function f .

Suppose we have proved

∀xs w a m. list(xs, a,m) ⇒ f (w , a,m) = (length(xs), 0,m)

∀xs w a m. list(xs, a,m) ⇒ fpre(w , a,m)

for an appropriate definition of list.

Then we have:

list(xs, esi ,m) ⇒
{ (eax, esi,m) is (eax , esi ,m) ∗ eip p }

p : 31C085F67405408B36EBF7

{ (eax, esi,m) is (length(xs), 0,m) ∗ eip (p+11) }



Verification

The decompiler automates machine specific proofs and leaves the
user (verifier) to prove properties of the generated function f .

Suppose we have proved

∀xs w a m. list(xs, a,m) ⇒ f (w , a,m) = (length(xs), 0,m)

∀xs w a m. list(xs, a,m) ⇒ fpre(w , a,m)

for an appropriate definition of list.

Then we have:

{ (eax, esi,m) is (eax , esi ,m) ∗ eip p ∗ list(xs, esi ,m) }
p : 31C085F67405408B36EBF7

{ (eax, esi,m) is (length(xs), 0,m) ∗ eip (p+11) }



Outline of talk:

I motivation for decompilation into logic

I implementing decompilation

I compilation



Algorithm

Given some code, the decompiler:

1. derives a specification for each instruction;

2. discovers the control flow;

3. for each code segment:

a) derives a specification for one pass through the code;

b) generates a function describing effect of code;

c) for loops, instantiates special loop rule.

4. composes the top-level specifications and repeats step 3
until all of the code is described by one specification.



Algorithm

Given some code, the decompiler:

1. derives a specification for each instruction;

2. discovers the control flow;

3. for each code segment:

a) derives a specification for one pass through the code;

b) generates a function describing effect of code;

c) for loops, instantiates special loop rule.

4. composes the top-level specifications and repeats step 3
until all of the code is described by one specification.



Algorithm

Given some code, the decompiler:

1. derives a specification for each instruction;

2. discovers the control flow;

3. for each code segment:

a) derives a specification for one pass through the code;

b) generates a function describing effect of code;

c) for loops, instantiates special loop rule.

4. composes the top-level specifications and repeats step 3
until all of the code is described by one specification.



Algorithm

Given some code, the decompiler:

1. derives a specification for each instruction;

2. discovers the control flow;

3. for each code segment:

a) derives a specification for one pass through the code;

b) generates a function describing effect of code;

c) for loops, instantiates special loop rule.

4. composes the top-level specifications and repeats step 3
until all of the code is described by one specification.



Proving loops

Approach: assume existence of termination proof, use induction
from termination proof to prove loop.

The decompiler models loops as tail-recursive functions k, with
appropriate instantiations of F , G and D, where:

k(x) = if G (x) then k(F (x)) else D(x)

We define pre(x) to state that there exists and invariant which
guarantees that k terminates when applied to x . Here ≺ is some
well-founded relation.

pre(x) =
∃inv . inv(x)∧

∃≺. ∀y . inv(y) ∧ G (y) ⇒ inv(F (y)) ∧ F (y) ≺ y



Proving loops

Approach: assume existence of termination proof, use induction
from termination proof to prove loop.

The decompiler models loops as tail-recursive functions k, with
appropriate instantiations of F , G and D, where:

k(x) = if G (x) then k(F (x)) else D(x)

We define pre(x) to state that there exists and invariant which
guarantees that k terminates when applied to x . Here ≺ is some
well-founded relation.

pre(x) =
∃inv . inv(x)∧

∃≺. ∀y . inv(y) ∧ G (y) ⇒ inv(F (y)) ∧ F (y) ≺ y



Proving loops

Approach: assume existence of termination proof, use induction
from termination proof to prove loop.

The decompiler models loops as tail-recursive functions k, with
appropriate instantiations of F , G and D, where:

k(x) = if G (x) then k(F (x)) else D(x)

We define pre(x) to state that there exists and invariant which
guarantees that k terminates when applied to x . Here ≺ is some
well-founded relation.

pre(x) =
∃inv . inv(x)∧

∃≺. ∀y . inv(y) ∧ G (y) ⇒ inv(F (y)) ∧ F (y) ≺ y



Proving loops (continued)

The loop rule, used by the decompiler, for function

k(x) = if G (x) then k(F (x)) else D(x)

is the following: for any resource assertions res and res’,

(∀x . G (x) ⇒ {res x} c {res F (x)}) ∧
(∀x . ¬G (x) ⇒ {res x} c {res’ D(x)})
⇒ (∀x . {res x ∗ pre(x)} c {res’ k(x)})

In our x86 example the loop uses assertions:

res x = (eax, esi,m) is x ∗ eip p

res’ x = (eax, esi,m) is x ∗ eip (p+9)



Proving loops (continued)

The loop rule, used by the decompiler, for function

k(x) = if G (x) then k(F (x)) else D(x)

is the following: for any resource assertions res and res’,

(∀x . G (x) ⇒ {res x} c {res F (x)}) ∧
(∀x . ¬G (x) ⇒ {res x} c {res’ D(x)})
⇒ (∀x . {res x ∗ pre(x)} c {res’ k(x)})

In our x86 example the loop uses assertions:

res x = (eax, esi,m) is x ∗ eip p

res’ x = (eax, esi,m) is x ∗ eip (p+9)



Proving loops (continued)

The loop rule is derived from the following induction, provable
from the definition of pre and well-founded relation:

∀ϕ. (∀x . G (x) ∧ ϕ(F (x)) ⇒ ϕ(x))∧
(∀x . ¬G (x) ⇒ ϕ(x))
⇒ (∀x . pre(x) ⇒ ϕ(x))

The proof of the loop rule uses the following composition:

{res x} c {res F (x)} ∧ {res F (x)} c {res’ k(x)}
⇒ {res x} c ∪ c {res’ k(x)}
⇒ {res x} c {res’ k(x)}



Decompilation

For most part proof-producing decompilation is just:

1. deriving specifications for individual instructions;

2. composing them; and

3. instantiating a loop rule.

Failure prone heuristic are largely avoided.

This method does not support advanced control-flow, e.g.
computed jumps and code pointers.

However, it does support non-nested loops, procedure calls
and, in an awkward way, procedural recursion.



Outline of talk:

I motivation for decompilation into logic

I implementing decompilation

I compilation



Proof-producing compilation

For a simple compiler, given a function f :

I generate code;

I run decompiler to get f ′;

I automatically prove f = f ′.

Works well, even for functions f which are hundreds of lines long.

Each expression in f must implementable in the target language,
e.g. “let eax = eax + 1 in” and “if eax < 400 then ... else ...”

However, we can do better...



Proof-producing compilation

For a simple compiler, given a function f :

I generate code;

I run decompiler to get f ′;

I automatically prove f = f ′.

Works well, even for functions f which are hundreds of lines long.

Each expression in f must implementable in the target language,
e.g. “let eax = eax + 1 in” and “if eax < 400 then ... else ...”

However, we can do better...



Proof-producing compilation (continued)

Suppose we have a specification for allocation on a garbage
collected heap h, which allows allocation of a new element if the
size of the current heap h does not exceed the limit l .

{heap (v1, v2, v3, v4, h, l) ∗ eip p ∗ size(h) < l}
...code...

{heap (fresh(h), v2, v3, v4, h[fresh(h) 7→ (v1, v2)], l) ∗ eip (p+416)}

Such specifications can be fed into the automation so that the
compiler can handle:

“let (v1, h) = (fresh(h), h[fresh(h) 7→ (v1, v2)]) in”

The side-condition size(h) < l is recorded in the precondition of
the theorem from the decompiler.



Proof-producing compilation (continued)

Suppose we have a specification for allocation on a garbage
collected heap h, which allows allocation of a new element if the
size of the current heap h does not exceed the limit l .

{heap (v1, v2, v3, v4, h, l) ∗ eip p ∗ size(h) < l}
...code...

{heap (fresh(h), v2, v3, v4, h[fresh(h) 7→ (v1, v2)], l) ∗ eip (p+416)}

Such specifications can be fed into the automation so that the
compiler can handle:

“let (v1, h) = (fresh(h), h[fresh(h) 7→ (v1, v2)]) in”

The side-condition size(h) < l is recorded in the precondition of
the theorem from the decompiler.



Conclusions

Decompilation and compilation are based on:

(a) modelling loops as tail-recursion, and

(b) proving (a) correct using termination proofs.

Details described in paper available at: www.cl.cam.ac.uk/mom22

My questions for you:

I How has the correspondence between loops and
tail-recursion been formally proved before?

I Have termination proofs been used for this?

Questions?

Acknowledgments: I would like to thank Mike Gordon, Konrad Slind,
Thomas Tuerk, Anthony Fox, Susmit Sarkar, Peter Sewell, Boris Feigin,
Max Bolingbroke, John Regehr, Lu Zhao and Matthew Parkinson for
discussions.



Conclusions

Decompilation and compilation are based on:

(a) modelling loops as tail-recursion, and

(b) proving (a) correct using termination proofs.

Details described in paper available at: www.cl.cam.ac.uk/mom22

My questions for you:

I How has the correspondence between loops and
tail-recursion been formally proved before?

I Have termination proofs been used for this?

Questions?

Acknowledgments: I would like to thank Mike Gordon, Konrad Slind,
Thomas Tuerk, Anthony Fox, Susmit Sarkar, Peter Sewell, Boris Feigin,
Max Bolingbroke, John Regehr, Lu Zhao and Matthew Parkinson for
discussions.


