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Introduction

This talk concerns verification of functional correctness of machine
code for commercial processors (ARM, PowerPC, x86 . . . ).

Outline of talk:

I motivation for decompilation into logic

I implementing decompilation

I compilation



Verification

Current approaches for machine-code verification:

I direct reasoning about next-state function.

I annotating code with assertions:

{...}

xor eax, eax

{...}

L1: test esi, esi

jz L2

{...}

inc eax

mov esi, [esi]

jmp L1

L2:

{...}

{???}

mov r0, #0

{???}

L: cmp r1, #0

ldrne r1, [r1]

addne r0, r0, #1

bne L

{???}

Proof reuse?
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Our approach

Decompilation produces the following tail-recursive functions
describing the effect of the code, f for x86 and f ′ for ARM:

f (eax , esi ,m) =
let eax = eax ⊗ eax in

g(eax , esi ,m)

g(eax , esi ,m) =
if esi & esi = 0
then (eax , esi ,m) else

let eax = eax+1 in
let esi = m(esi) in

g(eax , esi ,m)

f ′(r0, r1,m) =
let r0 = 0 in

g ′(r0, r1,m)

g ′(r0, r1,m) =
if r1 = 0
then (r0, r1,m) else

let r1 = m(r1) in
let r0 = r0+1 in

g ′(r0, r1,m)

Advantages: 1. no need for knowledge of the next-state function;
2. suitable for proofs in HOL, and
3. proof reuse, f = f ′ using w & w = w and w ⊗w = 0.
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Produced theorem

How does f relate to the x86 code?

Answer: For each run, the decompiler automatically:

1. generates a function f , and

2. proves a theorem relating the function to the code:

{ (eax, esi,m) is (eax , esi ,m) ∗ eip p ∗ fpre(eax , esi ,m) }
p : 31C085F67405408B36EBF7

{ (eax, esi,m) is f (eax , esi ,m) ∗ eip (p+11) }

Here eax, esi, m and eip (program counter) assert values of
resources and ‘(x , y , z) is (a, b, c)’ abbreviates (x a)∗ (y b)∗ (z c).
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Verification

The decompiler automates machine specific proofs and leaves the
user (verifier) to prove properties of the generated function f .

Suppose we have proved

∀xs w a m. list(xs, a,m) ⇒ f (w , a,m) = (length(xs), 0,m)

∀xs w a m. list(xs, a,m) ⇒ fpre(w , a,m)

for an appropriate definition of list.

Then we have:

{ (eax, esi,m) is (eax , esi ,m) ∗ eip p ∗ fpre(eax , esi ,m) }
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Algorithm

Given some code, the decompiler:

1. derives a specification for each instruction;

2. discovers the control flow;

3. for each code segment:

a) derives a specification for one pass through the code;

b) generates a function describing effect of code;

c) for loops, instantiates special loop rule.

4. composes the top-level specifications and repeats step 3
until all of the code is described by one specification.
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Proving loops

Approach: assume existence of termination proof, use induction
from termination proof to prove loop.

The decompiler models loops as tail-recursive functions k, with
appropriate instantiations of F , G and D, where:

k(x) = if G (x) then k(F (x)) else D(x)

We define pre(x) to state that there exists and invariant which
guarantees that k terminates when applied to x . Here ≺ is some
well-founded relation.

pre(x) =
∃inv . inv(x)∧

∃≺. ∀y . inv(y) ∧ G (y) ⇒ inv(F (y)) ∧ F (y) ≺ y
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Proving loops (continued)

The loop rule, used by the decompiler, for function

k(x) = if G (x) then k(F (x)) else D(x)

is the following: for any resource assertions res and res’,

(∀x . G (x) ⇒ {res x} c {res F (x)}) ∧
(∀x . ¬G (x) ⇒ {res x} c {res’ D(x)})
⇒ (∀x . {res x ∗ pre(x)} c {res’ k(x)})

In our x86 example the loop uses assertions:

res x = (eax, esi,m) is x ∗ eip p

res’ x = (eax, esi,m) is x ∗ eip (p+9)
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Proving loops (continued)

The loop rule is derived from the following induction, provable
from the definition of pre and well-founded relation:

∀ϕ. (∀x . G (x) ∧ ϕ(F (x)) ⇒ ϕ(x))∧
(∀x . ¬G (x) ⇒ ϕ(x))
⇒ (∀x . pre(x) ⇒ ϕ(x))

The proof of the loop rule uses the following composition:

{res x} c {res F (x)} ∧ {res F (x)} c {res’ k(x)}
⇒ {res x} c ∪ c {res’ k(x)}
⇒ {res x} c {res’ k(x)}



Decompilation

For most part proof-producing decompilation is just:

1. deriving specifications for individual instructions;

2. composing them; and

3. instantiating a loop rule.

Failure prone heuristic are largely avoided.

This method does not support advanced control-flow, e.g.
computed jumps and code pointers.

However, it does support non-nested loops, procedure calls
and, in an awkward way, procedural recursion.



Outline of talk:
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Proof-producing compilation

For a simple compiler, given a function f :

I generate code;

I run decompiler to get f ′;

I automatically prove f = f ′.

Works well, even for functions f which are hundreds of lines long.

Each expression in f must implementable in the target language,
e.g. “let eax = eax + 1 in” and “if eax < 400 then ... else ...”

However, we can do better...
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Proof-producing compilation (continued)

Suppose we have a specification for allocation on a garbage
collected heap h, which allows allocation of a new element if the
size of the current heap h does not exceed the limit l .

{heap (v1, v2, v3, v4, h, l) ∗ eip p ∗ size(h) < l}
...code...

{heap (fresh(h), v2, v3, v4, h[fresh(h) 7→ (v1, v2)], l) ∗ eip (p+416)}

Such specifications can be fed into the automation so that the
compiler can handle:

“let (v1, h) = (fresh(h), h[fresh(h) 7→ (v1, v2)]) in”

The side-condition size(h) < l is recorded in the precondition of
the theorem from the decompiler.
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Conclusions

Decompilation and compilation are based on:

(a) modelling loops as tail-recursion, and

(b) proving (a) correct using termination proofs.

Details described in paper available at: www.cl.cam.ac.uk/mom22

My questions for you:

I How has the correspondence between loops and
tail-recursion been formally proved before?

I Have termination proofs been used for this?

Questions?

Acknowledgments: I would like to thank Mike Gordon, Konrad Slind,
Thomas Tuerk, Anthony Fox, Susmit Sarkar, Peter Sewell, Boris Feigin,
Max Bolingbroke, John Regehr, Lu Zhao and Matthew Parkinson for
discussions.
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