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Abstract. Pattern matching is ubiquitous in functional programming
and also very useful for definitions in higher-order logic. However, it is not
directly supported by higher-order logic. Therefore, the parsers of theo-
rem provers like HOL4 and Isabelle/HOL contain a pattern-compilation
algorithm. Internally, decision trees based on case constants are used.
For non-trivial case expressions, there is a big discrepancy between the
user’s view and the internal representation.
This paper presents a new general-purpose representation for case ex-
pressions that mirrors the input syntax in the internal representation
closely. Because of this close connection, the new representation is more
intuitive and often much more compact. Complicated parsers and pretty
printers are no longer required. Proofs can more closely follow the user’s
intentions, and code generators can produce better code. Moreover, the
new representation is more general than the currently used representa-
tion, supporting guards, patterns with multiple occurrences of the same
bound variable, unbound variables, arithmetic expressions in patterns,
and more. This work has been implemented in the HOL4 theorem prover
and integrated into CakeML’s proof-producing code generator.

1 Introduction

Pattern matching is ubiquitous in functional programming and in definitions
within interactive theorem provers. Through the use of case expressions (a. k. a.
match expressions), pattern matching allows for concise and easy to read defi-
nitions. For provers based on higher-order logic (HOL), case expressions are not
natively part of the logic. To use them, they are processed outside the logic.

The term parsers of all major HOL systems, in particular HOL4 [11], Is-
abelle/HOL [13], HOL Light [2], and ProofPower, contain an implementation of
pattern compilation. This pattern compilation turns case expressions into deci-
sion trees consisting of nested applications of case constants [10, 1], which are
defined for each algebraic datatype. A complicated pretty printer prints the re-
sulting decision trees as case expressions. The decision trees can be evaluated
efficiently using basic rewriting techniques. They represent complete case splits;
no cases overlap and no case is missing. However, the pattern-compilation im-
plementation in the parser and the complicated pretty printer are a cause for



concern in an LCF-style prover. In addition to the inference kernel, these compo-
nents need to be trusted to some degree. Another disadvantage is that pattern
compilation often leads to a huge blow-up in term size. Code extracted from
the internal representation is often both hard to read and slow. Moreover, the
structure intended by the user is obfuscated by pattern compilation and proofs
have to follow the artificial, often very complicated structure of the internal
representation.

Our contribution is a new representation for case expressions that avoids
these problems. Our representation is able to mirror the user’s input syntax
faithfully. Therefore parsing and pretty printing are straightforward and the
blow-up in term size is avoided. Compared to the decision tree representation,
extracted code is of better quality and proofs need to consider fewer cases. More-
over, the new representation supports more advanced pattern-matching features.
For example, it supports patterns that include guards, binding a variable mul-
tiple times, arithmetic expressions as well as a concept similar to simple view
patterns [12].

Related to our work are function definitions packages like the ones imple-
mented in Isabelle/HOL [3], HOL4 [10] and HOL Light [2]. At the top level,
they are able to avoid case expressions in the logic completely by using a set of
(conditional) equations for function specifications. For example, the length func-
tion on lists (len l := case l of [] => 0 | x :: xs => (len xs + 1)) is
described by the equations len [] = 0 and ∀ x xs. len (x :: xs) = length

xs + 1. Since arbitrary equations are used instead of case constants, these pack-
ages provide all the features offered by our approach like guards, arithmetic ex-
pressions or binding a variable multiple times. However, unlike our approach,
these packages do not represent case expressions in the logic at all. Instead a set
of (conditional) equations is returned. The most striking difference in semantics,
compared to case expressions, is that there is no precedence on these equations.
This means that overlapping patterns are problematic. One option, implemented
by e g. HOL4 and Isabelle/HOL, is to use pattern compilation to transform the
input patterns to a set of non-overlapping patterns. This leads however to the
same issues and restrictions described for pattern compilation above. An alter-
native implemented in e. g. Isabelle/HOL [3] and HOL Light is to prove that
overlapping input patterns result in the same value. Enforcing non-overlapping
patterns often leads to either very complicated guards or similar blow-ups in the
number of cases as compilation to a decision tree.

The work4 presented here has been implemented in HOL4 [11]. Our repre-
sentation is very similar to concepts used internally by the HOL Light function
definition package5. However, we expose our definitions to the user, whereas
the function definition package uses it only internally. Since our representa-
tion uses Hilbert’s choice operator and existential quantification, naive usage is
likely to cause problems. In contrast to decision trees, simple rewrite techniques

4 The code can be found under: https://github.com/HOL-Theorem-Prover/HOL/

examples/pattern_matches
5 compare function CASEWISE in define.ml
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are not sufficient. Therefore, a significant part of this work consists in provid-
ing specialised tools for dealing with our case expressions. We provide parsers
and pretty printers6, and evaluation and simplification tools7. There is support
for turning function definitions using our case expression into equations similar
to the ones produced by function definition packages8. Furthermore, there are
tools for converting between our case expressions and ones represented by de-
cision trees. These tools range from untrustworthy parsers and pretty printers
to a pattern-compilation algorithm implemented inside the logic. This allows
the user to choose the right representation for the task at hand. Moreover, our
implementation of a pattern-compilation algorithm9 lets us leverage some of the
nice properties of decision trees. It is used to check the exhaustiveness of our
case expressions10 as well as pruning patterns that are made redundant by the
combination of multiple other patterns11.

Applying code generation to the new representation, we can produce higher-
quality code. We demonstrate the quality improvement with a few examples, and
describe how proof-producing code generation (for CakeML [5]) can be extended
to generate code that mirrors the exact structure of the HOL term and the
concrete syntax provided by the user (Section 6).

2 Shortcomings of Decision Tree Representation

All major HOL systems, in particular HOL4 [11], Isabelle/HOL [13], ProofPower
and HOL Light [2], use decision trees based on case constants for representing
case expressions. In this section, we try to illustrate this method and its short-
comings using a number of examples. If not explicitly stated otherwise, we use
HOL4 as the example prover. The implementation in the other systems is very
similar, though.

Basic Example The classical representation of case expressions is based on case
constants [10, 1]. HOL4’s datatype definition package produces for each algebraic
datatype definition a case constant that can perform a top-level pattern match
on the constructors of that datatype. HOL4’s list datatype (with constructors
Nil and Cons) for example has an associated case constant list_case, which is
characterised by the following equations

list_case Nil n f = n

list_case (Cons y ys) n f = f y ys

6 see patternMatchesSyntax
7 see e. g. PMATCH_SIMP_ss or PMATCH_REMOVE_GUARDS_ss
8 see PMATCH_LIFT_BOOL_ss
9 see e. g. PMATCH_CASE_SPLIT_ss

10 see COMPUTE_REDUNDANT_ROWS_INFO_OF_PMATCH and
PMATCH_IS_EXHAUSTIVE_CONSEQ_CONV

11 see PMATCH_REMOVE_REDUNDANT_ss
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The datatype definition package also informs the parser and the pretty printer
about such case constants. The term list_case x 5 (λy ys. y + 3) is pretty
printed as

case x of Nil => 5 | Cons y ys => y + 3

This representation is also accepted by the parser and parsed to the internal
list_case representation.

Pattern Match Heuristics For such simple case expressions, the classical ap-
proach works perfectly. However, problems start to appear if the case expressions
become even slightly more complex. As an example, let’s define b ∨ (a ∧ c)

via a case expression:

case (a, b, c) of

(_, T, _) => T

| (T, _, T) => T

| (_, _, _) => F

For this example, several applications of the case constant for type bool, better
known as if-then-else, need to be nested. Classically, HOL4 performs the splits
from left to right, i. e. in the order a, b, c. This leads to (slightly simplified) the
following internal representation and corresponding pretty printed output:

if a then (

if b then (

if c then T else T

) else (

if c then T else F

)

) else (

if b then T else F

)

case (a,b,c) of

(T,T,T) => T

| (T,T,F) => T

| (T,F,T) => T

| (T,F,F) => F

| (F,T,_) => T

| (F,F,_) => F

Even for this simple example, one can observe a severe blow-up. The number of
rows has doubled. One might also notice that the clear structure of the input is
lost. Other systems using the classical approach might behave slightly differently
in detail but in principle suffer from the same issues. Isabelle/HOL for example
also performs pattern compilation always from left to right, but is slightly better
at avoiding unnecessary splits.

To combat some of these issues, we extended HOL4’s pattern compilation al-
gorithm in early 2013 with state-of-the-art pattern match heuristics12 presented
by Luc Maranget [6]. These heuristics often choose a decent ordering of case
splits. Moreover, we also implemented – similar to Isabelle/HOL – the avoid-
ance of some unnecessary splits. With these extensions, the example is compiled
to:

12 see /src/1/PmatchHeuristics.sig in the HOL4 sources
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if b then T else (

if c then

(if a then T else F)

else F

)

case (a,b,c) of

(v,T,v3) => T

| (T,F,T) => T

| (F,F,T) => F

| (v,F,F) => F)

However, this improvement has a price. The pattern compilation algorithm in
the parser became slightly more complicated and the results are even harder to
predict.

Real World Example The following case expression is taken from Okasaki’s
book on Functional Datastructures [8]. It is used in a function for balancing
red-black trees, which are represented using the constructors Empty, Red and
Black.

case (a,b) of

(Red (Red a x b) y c,d) => Red (Black a x b) y (Black c n d)

| (Red a x (Red b y c),d) => Red (Black a x b) y (Black c n d)

| (a,Red (Red b y c) z d) => Red (Black a n b) y (Black c z d)

| (a,Red b y (Red c z d)) => Red (Black a n b) y (Black c z d)

| other => Black a n b

Parsing this term with the classical pattern-compilation settings in HOL4 results
in a huge term that pretty prints with 121 cases! Even with our state of the art
pattern-match heuristics a term with 57 cases is produced. In this term the right-
hand sides of the rows are duplicated a lot. The right-hand side of the last row
(Black a n b) alone appears 36 times in the resulting term.

This blowup is intrinsic to the classical approach. Our pattern match heuris-
tics are pretty good at finding a good order in which to perform case splits. For
this example, they find an optimal order. There is no term based on case con-
stants that gets away with fewer than 57 cases. However, clever pretty printers
might present a smaller looking case expression (see Sec. 6.2).

Also notice that this example relies heavily on the precedence of earlier rows
over later ones in the case expressions. If we use – as required by the equations
produced by function definition packages – non-overlapping patterns, we get a
similar blow-up as when compiling to a decision tree.

3 New Approach

In the previous section we presented the classical approach used currently by
all major HOL systems. We showed that the internal representation for this
approach often differs significantly from the input. There is often a huge blow-
up in size. This leads to less readable and more importantly less efficient code as
well as lengthier and more complicated proofs. In the following we will present
our new approach and how it overcomes these issues.
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3.1 Definition

A row of a case expression consists of a pattern p, a guard g and a right hand
side r. We need to model the variables bound by the pattern. Therefore, p, g
and r are functions that get the value of the bound variables as their argument.
They are of type γ → α, γ → bool and γ → β, respectively. The type of the
bound variables γ changes for each row of a case expression. In order to easily fit
into HOL’s type system, we apply these components to a function PMATCH_ROW

which maps them to their intended semantics.

PMATCH_ROW p g r := λv.
if (∃x. (p x = v) ∧ g x) then

SOME (r (@x. (p x = v) ∧ g x))

else

NONE

For injective patterns, i. e. the ones normally used, this function models perfectly
the standard semantics of case expressions (as e. g. defined in [9]).

It remains to extend this definition of the semantics of a single row to case
expressions. Our case expressions try to find the first row that matches a given
input value. If no row matches, a functional language like ML would raise a
match-exception. Here, we decided not to model this error case explicitly and
use ARB (a. k. a. Undef) instead. This constant is used to denote a fixed, but
unknown value of an arbitrary type in HOL. Formally, this means that our case-
expression constant PMATCH is defined recursively by the following equations:

PMATCH v [] := PMATCH_INCOMPLETE := ARB

PMATCH v (r::rs) := case r v of

SOME result => result

| NONE => PMATCH v rs

3.2 Concrete syntax and bound variables

The definitions above let us write case expressions with guards. The body of the
list-membership function mem x l, can for example be written as:

PMATCH l [

PMATCH_ROW (λ(uv:unit). []) (λuv. T) (λuv. F);

PMATCH_ROW (λ(y,ys). y::ys) (λ(y,ys). x = y) (λ(y,ys). T);

PMATCH_ROW (λ(_0,ys). _0::ys) (λ(_0,ys). T) (λ(_0,ys). mem x ys)

]

This syntax closely mirrors the user’s intention inside HOL. However, it is rather
lengthy and hard to read and write. Therefore, we implemented a pretty printer
and a parser for such expressions, enabling the following syntax:

CASE l OF [

||. [] ~> F;

|| (y,ys). y::ys when (x = y) ~> T;

|| ys. _::ys ~> mem x ys

]
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For rows, we write bound variables only once instead of repeating them for pat-
tern, guard and right-hand side. Moreover, there is support for wildcard syntax.
Finally, we provide the CASE . OF . notation for PMATCH and reuse standard
list syntax for the list of rows. Thus, in contrast to the classical approach the
parser and pretty printer are straightforward.

3.3 Advanced Features

Our representation provides more expressive case expressions than the classical
approach. We don’t enforce syntactic restrictions like using only datatype con-
structors or binding variables only once in a pattern. Fine control over the bound
variables in a pattern allows inclusion of free variables, which act like constants.
Finally, there are guards.

These features can be used to very succinctly and clearly express complicated
definitions that could not be handled with the classical approach. Division with
remainder can for example be defined by:

my_divmod n c :=

CASE n OF [

|| (q, r). q * c + r when r < c ~> (q,r)

]

The new case expressions are not even limited to injective patterns. They can
for example be used to perform case splits on sets.

CASE n OF [

||. {} ~> NONE;

||(x, s). x INSERT s when ~(x IN s) ~> SOME (x, s)

]

3.4 Congruence rules

Case expressions are frequently used to define recursive functions. In order to
prove the well-foundedness of recursive definitions, HOL systems use a termina-
tion condition extraction mechanism, which is configured via congruence rules13.
We provide such congruence rules for HOL4.

∀v v’ rows rows’. (
(v = v’) ∧ (r v’ = r’ v’) ∧
(PMATCH v’ rows = PMATCH v’ rows’)) =⇒

(PMATCH v (r :: rows) =
PMATCH v’ (r’ :: rows’))

∀p p’ g g’ r r’ v v’. (
(p = p’) ∧ (v = v’) ∧
(∀x. (v = (p x)) ⇒ (g x = g’ x)) ∧
(∀x. (v = (p x) ∧ g x) ⇒

(r x = r’ x))) =⇒
(PMATCH_ROW p g r v =
PMATCH_ROW p’ g’ r’ v’)

These rules lead to very similar termination conditions as produced by the con-
gruence rules for the classical decision trees. Therefore they work well with ex-
isting automatic well-foundedness checkers.

13 see e. g. HOL4’s Description Manual Section 4.5.2 or Isabelle/HOL’s manual Defin-
ing Recursive Functions in Isabelle/HOL Section 10.1
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Remark The observant reader might wonder, why PMATCH_ROW uses 3 func-
tions as arguments instead of just one function returning a triple. This would
simplify parsing and pretty printing, but cause severe problems for recursive def-
initions using PMATCH. HOL4’s machinery would not be able to use the resulting
congruence rules, since their application would require higher-order matching.
We expect that Isabelle/HOL would be fine with rules that require higher-order
matching, but have not tested this.

4 Evaluation and Simplification

If one naively expands the definition of PMATCH, one easily ends up with huge
terms containing Hilbert’s choice operator and existential quantifiers. To avoid
this, we developed specialised tools for HOL4 to evaluate and simplify our case
expressions. As a running example consider

CASE (SOME x, ys) OF [

|| y. (NONE, y::_) ~> y;

|| (x’,y). (x’, y::_) ~> (THE x’)+y;

|| x. (SOME x, _) ~> x;

||. (_, _) ~> 0

]

Pruning Rows For each row of a PMATCH expression, we check, whether its
pattern and guard match the input value. If we can show that a row does not
match, it can be dropped. If it matches, all following rows can be dropped. We
don’t need a decision for each row. If it is unknown whether a row matches, the
row can just be kept. Finally, if the first remaining row matches, we can evaluate
the whole case expression. Applying this method to the running example results
in

CASE (SOME x, ys) OF [

|| (x’,y). (x’, y::_) ~> (THE x’)+y;

|| x. (SOME x, _) ~> x

]

Partial Evaluation In order to partially evaluate PMATCH expressions, we try
to split the involved patterns into more primitive ones. For this we split tuples
and group corresponding tuple elements in multiple rows into so-called columns.
In the running example the first column contains the input SOME x and the
patterns x’ (where x’ is bound) and SOME x (where x is bound). The second
column contains ys as input and y::_ and _ as patterns.

If the input value of a column consists of the application of an injective func-
tion, e. g. a datatype constructor, and all patterns of this column contain either
applications of the same injective function or bound variables, this column can
be partially evaluated. We can remove the function application and just keep the
arguments of the function in new columns. For rows containing bound variables,
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we substitute that variable with the input value and fill the new columns with
fresh bound variables. In our running example, we can simplify the first column
with this method. This partial evaluation leads to:

CASE (x, ys) OF [

|| y. (x’’, y::_) ~> x’’ + y;

|| x. (x, _) ~> x

]

Now, the first column consists of only variables and can be removed:

CASE ys OF [

|| y. y::_ ~> x + y;

||. _ ~> x

]

The semantic justification for this partial evaluation is straightforward. Essen-
tially we are employing the same rules used by classical pattern compilation
algorithms (compare e. g. Chap. 5.2 in [9]). However, implementing it smoothly
in HOL4 is a bit fiddly. It involves searching for a suitable column to simplify
and instantiating general theorems in non-straightforward ways.

Integration with Simplifier Pruning rows and partial evaluation are the most
important conversions for PMATCH-based case expressions. Other useful conver-
sions use simple syntactic checks to remove redundant or subsumed rows. Ad-
ditionally, we implemented conversions that do low-level maintenance work on
the datastructure. For example, there are conversions to ensure that no unused
bound variables are present, that the variable names in the pattern, guard and
right-hand side of each row coincide and that each row has the same number
of columns. All these conversions are combined in a single conversion called
PMATCH_SIMP_CONV. We also provide integration with the simplifier in form of a
simpset-fragment called PMATCH_SIMP_ss.

The presented conversions might look straightforward. However, the imple-
mentation is surprisingly fiddly. For example, one needs to be careful about not
accidentally destroying the names of bound variables. The implementation of
PMATCH_SIMP_CONV consists of about 1100 lines of ML.

5 Pattern Compilation

We provide several methods based on existing pretty printing and parsing tech-
niques to translate between case expressions represented as decision trees and
via PMATCH. The equivalence of their results can be proved automatically via
repeated case splits and evaluation.

More interestingly, we implemented a highly flexible pattern-compilation al-
gorithm for our new representation. As stated above, our simplification tools for
PMATCH are inspired by pattern compilation. Thus, the remainder is simple: we
provide some heuristics to compute a case-split theorem. Pattern compilation
consists of choosing a case split, simplifying the result and iterating.
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5.1 Constructor Families

We implemented the heuristics for finding case splits in form of a library called
constrFamiliesLib. This library maintains lists of ML functions that construct
case splits. An example of such a function is a literal-case function that performs
a case distinction based on nested applications of if-then-else when a column
consists only of bound variables and constants. However, the main source of
case splits found by the library are constructor families.

A constructor family is a list of functions (constructors) together with a case
constant and a flag indicating whether the list of constructors is exhaustive.
Moreover, it contains theorems stating that these constructors have the desired
properties, i. e. they state that all the constructors are injective and pairwise
distinct and that the case constant performs a case split for the given list of
constructors. If a column of the input PMATCH expression contains only bound
variables and applications of constructor functions of a certain constructor fam-
ily, a case-split theorem based on the case constant of that constructor family is
returned.

constrFamiliesLib accesses HOL4’s TypeBase database and therefore auto-
matically contains a constructor family for each algebraic datatype. This default
constructor family uses the classical datatype constructors and case constant.
One can easily define additional constructor families and use them for pattern
compilation as well as simplifying PMATCH expressions. These families can use
constructor functions that are not classical datatype constructors. Such con-
structor families provide a different view on the datatype. They lead to a feature
similar to the original views in Haskell [12]. This is perhaps best illustrated by
a few examples.

List Example One can for example declare [] and SNOC (appending an element
at the end of a list) together with list_REVCASE as a constructor family for lists,
where list_REVCASE is defined by

list_REVCASE l c_nil c_snoc =

if l = [] then c_nil else (c_snoc (LAST l) (BUTLAST l))

With this declaration in place, we get list_REVCASE l 0 (λ x xs. x) auto-
matically from compiling

CASE l OF [

||. [] ~> 0;

|| (x, xs). SNOC x xs ~> x

]

5.2 Exhaustiveness Check / Redundancy Elimination

The case-split heuristics of our pattern compilation algorithm can be used to
compute for a given PMATCH expression an exhaustive list of patterns with the
following property: a pattern in the list is either subsumed by a pattern of the
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original PMATCH expression or does not overlap with it. There are no partial
overlaps. Moreover, subsumption can be checked easily via first-order matching.

We can use such an exhaustive list of patterns to implement an exhaustiveness
check14. We prune all patterns from the list that are subsumed by a pattern
and guard in the original PMATCH expression. Pruning the list with respect to a
pattern p and guard g, consists of adding the negation of g to all patterns in
the list that are matched by p. Then we remove patterns whose guard became
false. If after pruning with all original patterns and guards, the resulting list is
empty, the original pattern match is exhaustive. Otherwise, we computed a list
of patterns and guards that don’t overlap with the original patterns and when
added to the original case expression make it exhaustive.

The same algorithm also leads to a powerful redundancy-detection algo-
rithm15. To check whether a row is redundant, we prune the exhaustive list
of patterns with the patterns and guards of the rows above it. Then we check
whether any pattern in the remaining list overlaps with the pattern of the row
in question.

6 Improved code generation

In this section we turn our attention to code generation. It has become increas-
ingly common to generate code from function definitions in theorem provers.
Code generators for HOL operate by traversing the internal structure of HOL
terms and producing corresponding code in a suitable functional programming
language, e. g. SML, OCaml or Scala.

As discussed in Section 2, the classical per-datatype case constants can pro-
duce harmful duplication and a significant blow-up in the size of the HOL terms.
Code generators that walk the internal structure of the terms are likely not to
realise that there is duplication in various subterms and therefore to produce
code that is unnecessarily verbose and somewhat unexpected considering what
the user gave as input in their definition.

Our PMATCH-based case expressions avoid accidental duplication and instead
very carefully represent the user’s desired format of case expressions in the logic.
As a result, even naive term-traversing code generators can produce high-quality
code from HOL when PMATCH-based case expressions are used.

In what follows, we first illustrate the quality difference between code gen-
erated from the classical approach versus from PMATCH-based case expressions.
Then, we will explain how our proof-producing code generator for CakeML has
been extended to handle PMATCH. Typically, code generators do not provide any
formal guarantee that the semantics of the generated code matches the seman-
tics of the HOL definitions given as input, but code generation for CakeML is
exceptional in that it does produce proofs. We have found that PMATCH is bene-
ficial not only to the generated code itself but also when producing proofs about
the semantics of the generated code.

14 see PMATCH_IS_EXHAUSTIVE_CONSEQ_CONV
15 see PMATCH_REMOVE_REDUNDANT_ss
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6.1 The quality of generated code

Simple code generators, which traverse the syntax of the HOL terms, produce
code that is very similar to the internal representation. Take for instance a
variation, using a catch-all pattern, of the basic example in Section 2. When
compiled classically, this case expression results in a term that repeats the 5 on
the right-hand side. The generated code also repeats the 5. We show the user
input on the left and the output of code generation16 on the right.

case x of

Cons y Nil => y + 3

| _ => 5

case v5 of

Nil => 5

| Cons v4 v3 => case v3 of

[] => v4 + 3

| Cons v2 v1 => 5

If we instead input the example above as a PMATCH-based case expression, we
retain the intended structure: the result does not repeat the 5 and the Cons y

Nil row stays on top. It is easy for a code generator to follow the structure of a
PMATCH term, so the generated code reflects the user’s input.

CASE x OF [

|| y. Cons y Nil ~> y + 3 ;

||. _ ~> 5

]

case v2 of

Cons v1 Nil => v1 + 3

| _ => 5

In this simple example, the duplication of the 5 is not too bad. However, for
more serious examples like the red-black tree balancing function (in Section 2)
the difference in code quality is significant. The code generated from the classi-
cal version is 90 lines long and unreadable, while the code generated from the
PMATCH-based case expression is almost identical to the input expression, i. e.
readable, unsurprising and only 8 lines long.

The red-black tree example is not the only source of motivation for producing
better code. Our formalisation of the HOL Light kernel, which we have proved
sound [4], contains several functions with tricky case expressions. For the HOL
Light kernel, we want to carry the soundness proof over to the generated imple-
mentation, so it is important that the code generator can also produce proofs
about the semantics of its output.

The helper function raconv (used in deciding alpha-convertibility) has the
most complex case expression in the HOL Light kernel:

raconv env tm1 tm2 =

case (tm1,tm2) of

(Var _ _, Var _ _) => alphavars env tm1 tm2

| (Const _ _, Const _ _) => (tm1 = tm2)

| (Comb s1 t1, Comb s2 t2) => raconv env s1 s2 ∧ raconv env t1 t2

| (Abs v1 t1, Abs v2 t2) =>

(case (v1,v2) of

(Var n1 ty1, Var n2 ty2) => (ty1 = ty2) ∧
16 Our code generator renames variables. Here x has become v5, for example.
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raconv ((v1,v2)::env) t1 t2

| _ => F)

| _ => F

For this and other examples, a significant case explosion happens when parsed
using the classical approach. The generated code is verbose, and the performance
of our verified CakeML implementation [4] suffers as a result. By using PMATCH-
based case expressions as input to the code generator, we retain the original
structure and avoid the explosion.

6.2 Why good input case expressions matter

For generating high-quality code, there is an alternative to rephrasing the in-
put: post-processing the generated code. Such post-processing is (in a simple
form) implemented as part of the case-expression pretty printers and the code-
generation facilities of all major HOL systems. For translating decision trees
into PMATCH expressions, (see Sec. 5) we implemented a similar, but more pow-
erful post-processor, which combines rows by reordering them and introducing
wildcards.

As discussed in Section 2, the 5 input cases of the red-black tree example
produce 57 cases when printed naively in HOL4. After re-sorting and collapsing
rows, our post-processor reduces this to 8 cases. Isabelle/HOL’s pretty printer
and code generator produce 41 cases. What’s worse, these figures depend on the
exact form of the internal decision tree. For another valid decision tree our post-
processor produced e. g. 25 cases. So, post-processing can improve the result, but
the results are still significantly worse than good user input.

For CakeML, there is the added difficulty that we need to verify the post-
processing optimisation phase. Formally verifying optimisations over a language
which includes closure values is very time consuming, as we have found when
working on the CakeML compiler [5]. The reason is that optimisations alter the
code, and, through closure values, code can appear in the values of the language.
As a result, every optimisation requires a longwinded value-code relation for its
correctness theorem.

Reasoning about and optimising PMATCH-based case expressions is much sim-
pler. Moreover, the PMATCH-based approach allows manual fine-tuning of the
exact form of the case expression in the logic, before the automation for code
generation takes over. In general this leads to better results.

6.3 Proof-producing code generation for CakeML

It is straightforward to write a code generator that walks a PMATCH term and
produces a corresponding case expression in a functional programming language
like CakeML. For CakeML, we additionally need to derive a (certificate) theorem
which shows that the semantics of the generated CakeML code matches the
semantics of the input PMATCH term. In this section, we explain how the proof-
producing code generator of Myreen and Owens [7] has been extended to handle
PMATCH-based case expressions.
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The proof-producing code generator has been described previously [7]; due
to space restrictions, we will not present a detailed description here. Since the
approach is compositional, it is sufficient for the purposes of this paper to focus
on the form of the HOL theorems that are produced during code generation.
These theorems relate generated code (deep embeddings) to input terms (shallow
embeddings) via the CakeML semantics. They are of the the following form.

assumptions =⇒ Eval deep_embedding env (inv shallow_embedding)

Here Eval is an interface to the CakeML semantics, and the env argument is
the semantic environment. The assumptions are used to collect constraints on
the environment. The refinement invariant inv describes how a HOL4 value is
implemented by a CakeML value. For example, for lists of Booleans, the appro-
priate refinement invariant would relate the HOL value Cons F Nil to the value
Conv "Cons" [Litv (Bool F); Conv "Nil" []] in the semantics of CakeML.

The code-generation algorithm traverses a given shallow embedding bottom-
up. To each subterm se, it applies a theorem of the form ... =⇒ Eval ...

env (inv se), where inv is the refinement invariant appropriate for the type
of se. Assumptions that relate shallow and deep embeddings are discharged via
recursive calls. Other assumptions are either collected or discharged directly. The
by-product of this forward proof is a deep embedding constructed in the first
argument of Eval.

In order to support PMATCH, we need to provide theorems of the following
form to this algorithm:

... =⇒ Eval (...) env (inv (PMATCH xv rows))

For an empty set of rows, the CakeML semantics of case expressions raises a Bind

exception, whereas PMATCH results in PMATCH_INCOMPLETE. There is no connec-
tion between these two outcomes. Therefore, the following theorem intentionally
uses the assumption false (F) to mark that one should never end up in this case.

F =⇒ Eval env (Mat x []) (b (PMATCH xv []))

The case of non-empty pattern lists is more interesting. The theorem is long
and complicated, so we explain its parts in turn. First, let us look at the conclu-
sion, i. e. lines 11 and 12 below. The conclusion allows us to add a pattern row,
PMATCH_ROW, to the shallowly embedded PMATCH term and, at the same time, a
row is added to the deep embedding: Mat x ((p,e)::ys).

1 ALL_DISTINCT (pat_bindings p []) ∧
2 (∀v1 v2. (pat v1 = pat v2) =⇒ v1 = v2) ∧
3 Eval env x (a xv) ∧
4 (p1 xv =⇒ Eval env (Mat x ys) (b (PMATCH xv yrs))) ∧
5 EvalPatRel env a p pat ∧
6 (∀env2 vars.

7 EvalPatBind env a p pat vars env2 ∧ p2 vars =⇒
8 Eval env2 e (b (res vars))) ∧
9 (∀vars. (pat vars = xv) =⇒ p2 vars) ∧

14



10 ((∀vars. ¬(pat vars = xv)) =⇒ p1 xv) =⇒
11 Eval env (Mat x ((p,e)::ys))

12 (b (PMATCH xv ((PMATCH_ROW pat (K T) res)::yrs)))

Now let us look at the assumptions on the theorem and how they are discharged
by the code generator when the theorem is used. The subterm evaluations are on
lines 4 and 6-8. The code generator derives theorems of these forms by recursively
calling its syntax-traversing function. As mentioned above, each such translation
comes with assumptions and these assumptions are captured by variables p1 and
p2. When the theorem above is used lines 9 and 10 will be left as assumptions,
but the internal assumptions, p1 and p2, are passed in these lines to higher levels
(see [7] for details).

The other lines 1, 2 and 5 are simple assumptions that are discharged by
evaluation and an automatic tactic. Line 1 states that all the variables in the
pattern have distinct names. PMATCH allows multiple binds to the same variable,
but CakeML’s pattern matching semantics does not allow this. Line 2 states
that the pattern function in HOL is injective; and line 5 states that the CakeML
pattern p corresponds to the pattern function pat in the current CakeML envi-
ronment env and based on refinement invariant a for the input type.

The CakeML code generator can only generate code for PMATCH-based case
expressions when there is an equivalent pattern expression in CakeML. This
means, for instance, that one cannot generate code for case expressions with
multiple binds to a variable, those that use non-constructor based patterns, or
those that use guards. PMATCH-based case expressions that do not fall into this
subset can usually be translated by removing these features first. We provide
automated tools which work for most situations17, although using this feature-
removing automation can, in the worst case, lead to significant changes in struc-
ture of the terms, even replacing them with bulky decision trees similar to those
of the classical approach.

We have used this PMATCH-based translation to produce high-quality CakeML
code for all of the case expressions in the HOL Light kernel.

7 Summary

This paper presents a new representation, PMATCH, for case expressions in higher-
order logic which faithfully captures the structure of the user’s input. Because
pattern-matching structure is retained, proofs over PMATCH expressions are sim-
pler, and code generated from PMATCH expressions is better. Moreover, PMATCH
is more general than currently-used representations: it supports guards, views,
unbound variables, arithmetic expressions in patterns and even non-injective
functions in patterns.

In addition to the new representation itself, we provide tools for working with
PMATCH expressions in HOL4. Our tools include a parser and pretty printer, con-
versions for simplification and evaluation, and a pattern-compilation algorithm

17 The exceptions are non-constructor patterns that are not part of a constructor family.
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inside the logic. This pattern compilation is used to check the exhaustiveness of
lists of patterns as well as for implementing powerful techniques for eliminat-
ing redundant rows. Furthermore, we have extended CakeML’s proof-producing
code generator to translate PMATCH expressions into high-quality CakeML code.

At present, our tools are already more powerful and convenient than the
existing support for case expressions in the major HOL systems. In the future
we plan to extend them further. In particular, we plan to improve the support
for advanced patterns like arithmetic expressions.
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