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Abstract— Current methods for mental disorder recognition
mostly depend on clinical interviews and self-reported scores
that can be highly subjective. Building an automatic recog-
nition system can help in early detection of symptoms and
providing insights into the biological markers for diagnosis.
It is, however, a challenging task as it requires taking into
account indicators from different modalities, such as facial
expressions, gestures, acoustic features and verbal content. To
address this issue, we propose a general-purpose multimodal
deep learning framework, in which multiple modalities - in-
cluding acoustic, visual and textual features - are processed
individually with the cross-modality correlation considered.
Specifically, a Multimodal Deep Denoising Autoencoder (multi-
DDAE) is designed to obtain multimodal representations of
audio-visual features followed by the Fisher Vector encoding
which produces session-level descriptors. For textual modality,
a Paragraph Vector (PV) is proposed to embed the transcripts
of interview sessions into document representations capturing
cues related to mental disorders. Following an early fusion
strategy, both audio-visual and textual features are then fused
prior to feeding them to a Multitask Deep Neural Network
(DNN) as the final classifier. Our framework is evaluated on the
automatic detection of two mental disorders: bipolar disorder
(BD) and depression, using two datasets: Bipolar Disorder
Corpus (BDC) and the Extended Distress Analysis Interview
Corpus (E-DAIC), respectively. Our experimental evaluation
results showed comparable performance to the state-of-the-
art in BD and depression detection, thus demonstrating the
effective multimodal representation learning and the capability
to generalise across different mental disorders.

I. INTRODUCTION

Mental disorders are highly prevalent worldwide. More
than 300 million people were estimated by WHO to suffer
from mental disorders in 2017 [1]. Not only these disorders
can continuously impair an individual’s well-being and abil-
ity to work but also some of them are associated with a sig-
nificant mortality risk [1]. Although some psycho-therapeutic
options are promising in relapse prevention, only a small
proportion of individuals in need receive treatment because
of limited medical resources and treatment refractoriness
[2]. Automatically recognizing signs of mental disorder can
help in early detection of relapses and reduce the treatment
resistance [3], [4]. Moreover, such systems can help as a
tool to assist psychologists during the face-to-face interview
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sessions and can even be deployed to mobile devices to
facilitate public access to mental healthcare.

It has been shown in the literature [5] that depressed pa-
tients differ from normal and psychiatric comparison groups
in terms of gross motor activity, body movements, speech,
and motor reaction time. These psychomotor symptoms
have high discriminative validity to distinguish depression
subtypes, and they are also easier to obtain when compared
to electroencephalogram (EEG) signals that require com-
plicated systems. During clinical interviews, it is common
practice for experts to capture these behavior signals in-
cluding acoustic, visual, and textual modalities to reach the
final diagnosis. While one single modality rarely provides
complete information, complementarity [6] of the symptom,
each modality brings some added value - known as diversity
[6] - that cannot be obtained from any of other modalities.
Therefore, it is significantly important to take advantage of
different modalities and process them accordingly to obtain
the final decision.

In this work, we propose a multimodal deep learning
framework to automatically detect mental disorders symp-
toms or severity levels. Within the framework, different
learning architectures are designed for different modalities.
For audio-visual modalities, we present a Multimodal Deep
Denoising Autoencoder (multi-DDAE) to learn the shared,
frame-level representations of multiple audio-visual inputs,
such as MFCC, eGeMAPS [7], facial landmarks, eye gaze,
head pose, and facial action units. To generate session-
level descriptors, we make use of Fisher Vector (FV) en-
coding to produce the Fisher Vectors for each interview
session. The Paragraph Vector (PV) models [8] are utilized
to encode transcripts into document embeddings for the
textual modality. An early fusion strategy is applied to fuse
features from both audio-visual and textual modalities before
feeding the multimodal features to a Multitask Deep Neural
Network (DNN), which addresses overfitting, on the final
classification task.

The contributions of our work are summarized as follows:
1) We propose a general-purpose multimodal fusion

framework to automatically estimate mental disorder scores,
which fuses the audio-visual-textual features with different
encoding methods and at different levels to retain the maxi-
mal amount of cues related to mental disorders.



2) We demonstrate that the proposed framework can be
generalized across different prediction tasks related to mental
disorder analysis. Our experimental evaluation shows that our
framework generates comparable results with previous work
in two different mental corpora without being specifically
modified.

3) We also perform feature ranking in an ablation study to
show that our framework has the potential to discover salient
biological markers. These results could assist psychologists
in mental disorder diagnosis.

II. RELATED WORK

Previous research has demonstrated the effectiveness of
deep architectures on multimodal data [9], [10], [11]. For
audio-visual speech recognition, Ngiam et al. [9] presented
bimodal deep autoencoders to capture the correlations across
different modalities. For emotion recognition, Kim et al
[10] and Ranganathan et al. [11] proposed multimodal Deep
Belief Network (DBN) models, in which first-order repre-
sentations on different modalities were fused to one shared
hidden layer, and they reported the increased classification
performance in comparison with unimodal baselines.

The mental disorder recognition differs from emotion
recognition as it needs to capture the dynamic aspects of
emotions and the temporal information from a variable-
length period [12]. Many frameworks were proposed in
AVEC2017 and AVEC2018 challenges [13], [14] to tackle
this problem. Yang et al. [15] proposed several histogram-
based features of arousal, speaking rate, and hands distance,
and these features were fed into tree-based classifiers after
dimension reduction, which might fail to capture the rapid
changes in multimodal features. Syed et al. [16] proposed
“turbulence features” to capture the sudden, erratic changes
in feature trajectories. They also applied Fisher Vector (FV)
encoding of one modality in feature aggregation step. Du
et al. [17] presented IncepLSTM on a single modality to
encode audio temporal representations on multiple scales
[18], and with an improved triplet loss function, their frame-
work was shown to capture dynamic information and to
obtain a high-level descriptor for the whole audio clip.
However, their framework only involved acoustic modal-
ity, and a performance gap was observed when compared
with other multimodal frameworks. Dibeklioğlu et al. [19]
presented Stacked Denoising Autoencoders (SDAE) to learn
the non-linear mapping of facial landmarks and head pose
respectively on frame-level, and the late fusion (or decision
fusion) of all the modalities showed higher accuracy than
unimodal models. Since strong correlations have been found
between interview contents and depression symptoms [20],
analyzing emotion-related textual modality has emerged as
a new approach in mental disorder detection. In the work
of Xing et al. [21] all available modalities were utilized
in their framework, including audio, video, and transcribed
text. They also introduced a hierarchical recall model for
the classifications. Each layer within the model contained
a Gradient Boosted Decision Tree (GDBTs) using different
subsets of all features, and following a boosting strategy, the

only un-recalled samples would be transmitted to the next
layer.

III. MULTIMODAL LEARNING FRAMEWORK

To address the discrepancy and granularity between audio-
visual-textual modalities, they are divided into two sub-
groups, audio-visual modality that is processed on frame-
level, and textual modality that is processed on session-
level. Fig. 1 illustrates our multimodal framework, in which
audio-visual features are encoded via a Multimodal Deep
Denoising Autoencoder (multi-DDAE) on frame-level and
then transformed to fixed-length Fisher Vectors (FVs) on
session-level. Textual features are obtained as transcripts and
then embedded into fixed-length vectors with a Paragraph
Vector (PV or doc2vec) model.

A. Audio-Visual modalities

For the audio-visual modalities, we propose a 3-layer Mul-
timodal Deep Denoising Autoencoder (multi-DDAE) (i.e.,
DDAEs with 3 hidden layers) that learns shared and robust
representations upon several modalities by reconstructing the
denoised target from the noisy input. Different visual fea-
tures, like facial landmarks and action units, are considered
as different modalities because of the different ranges and
expert-knowledge involved. The audio-visual features are
typically Low-Level Descriptors (LLDs) that, for instance,
can be MFCC, eGeMAPS [7], facial landmarks, facial land-
marks, eye gaze, head pose, action units (AUs) or other
representations learned from deep learning architectures. The
number of input features can be extended to any number
larger than one. Before feeding multimodal features into
multi-DDAE, features must be aligned on frame-level first
to ensure they are extracted from the same time interval.
Some audio-visual features could be missing in some time
frames, which are zeroed as the missing modalities in order
to match the dimension.

As Fig. 1 (1) shows, multiple encoders are merged into
one shared layer after one hidden layer, which ensures
multimodal features are fused at “middle-level” as the first-
order representations [9] as it would be difficult to correlate
raw data of different modalities. From the shared layer,
multimodal features are reconstructed via their decoders with
the weighted sum of mean squared errors on all reconstructed
inputs as the loss function. Since the denoising criterion in
autoencoders helps to learn robust features, masking noise
that corrupts a specific portion of the inputs to zero is
implemented prior to the per-modality normalization. The
multi-DDAE is compiled with the Adam optimizer with
0.001 learning rate and the weight setting within the loss
function varies across different corpora. Two hyperparam-
eters are investigated in multi-DDAE as listed in Table I:
noise level (a) and hidden ratio (h), which is defined as the
dimension ratio between two consecutive hidden layers. For
instance, with hidden ratio 0.5, the dimensions of hidden
layers would be {0.5d, 0.25d, 0.5d} where d represents the
input dimension. As the unsupervised feature learning, the



Fig. 1. The pipeline of the proposed framework: (1) audio-visual features are encoded by the multi-DDAE to generate compact per-frame representations;
(2) these representations along with computed dynamics are encoded into fixed-length per-session descriptors using GMM and Fisher Vector encoding; (3)
most discriminative features are selected via random forests; (4) session-level document embeddings are produced by the PV/doc2vec model; (5) early-fused
multimodal features are fed into the multitask DNN for the classification task.

multi-DDAE is trained on all available unlabelled audio-
visual data.

The per-frame representations learned in multi-DDAE can
be regarded as static because they solely encode the static
element of the input, such as locations of facial landmarks
or pitch of audio signal without any temporal information.
Similar as the work in [19], we extend these representations
with the per-frame dynamics. Considering the latent repre-
sentations as a matrix H ∈ Rn×d, in which n denotes the
number of frames and d the final dimension of represen-
tations. Each column in Hi(i ∈ {1, 2...d}) corresponds to
one node in the representation layer. We then compute the
first-order dynamics, velocity V , of H by the 1st derivative
Vi =

dHi

dt , measuring the velocity of the change between per-
frame representations. We continue to calculate the second-
order dynamics, acceleration A, of H by the 2nd derivative
Ai = d2Hi

d2t , measuring the acceleration of the change. To
align H , V , and A, the first two frames are discarded in video
sessions, and three features H , V , and A are concatenated
as frame-level representations, as seen in Fig. 1 (2).

Because the video sessions vary in length, we encode
frame-level representations with Fisher encoding to produce
Fisher Vectors (FVs), fixed-length descriptors on session-
level, by fitting them into a Gaussian Mixture Model (GMM)
[22]. Specifically, a GMM is firstly built with a specified
number of kernels to estimate the probability distribution
of multiple multivariate Gaussian distributions on the time-
series frame-level representations. The investigated values for
the number of GMM kernels (g) are shown in Table I. FVs
are calculated afterwards with the estimated distributions
along with their mean and variance. We also implement
the power normalization and l2 normalization to generate
the Improved Fisher Vectors (IFVs) [22] as the session-level
descriptors in the framework.

To reduce redundancy and select the most informative
feature set, we apply a tree-based model (Random Forest)
to select salient features in our framework ((3) in Fig. 1).
The selection process is based on the feature importance by
computing the information gain Gain(S,A):

Gain(S,A) = Entropy(S)−
∑

v∈v(A)

|Sv|
|S| Entropy(Sv) (1)

where v(A) is the set of all possible values for feature
A relative to a dataset S, and Sv is the subset of S
for which feature A has value v. As Random Forest is
robust to redundant features and insensitive to irrelevant
information, the feature importance usually leads to a reliable
and discriminative subset of features.

TABLE I
HYPERPARAMETER SETTINGS IN THE FRAMEWORK

Model Hyperparameter Investigated values

multi-DDAE Hidden ratio (h) {0.4, 0.5}
Noise level (a) {0.1, 0.2, 0.4}

FV GMM Kernel (g) {16, 32}

PV

Architecture {PV-DM, PV-DBOW}
Vector size (v) {25, 50, 100}
Window size (w) {5, 10}
Negative words (n) {5, 10}

B. Textual modality

To incorporate textual modality into our framework, the
transcripts of recordings (psychotherapy interviews) are
firstly obtained via open-source API, such as Google Cloud
Platform (GCP). As shown in Fig. 1 (4), Paragraph Vector
(PV) models, or doc2vec models [8], are utilised to embed
the variable-length transcripts into fixed-length, session-level
representations. Generally, there are two architectures within
doc2vec, PV with Distributed Memory (PV-DM) and PV



with Distributed Bag-of-Words (PV-DBOW) [8]. Two ar-
chitectures are experimented with different hyperparameter
settings as Table I. To boost the performance of doc2vec
models, the model is pre-trained on an additional corpus,
which helps to learn mental implication.

C. Multimodal fusion

We follow the early fusion strategy to concatenate the
compact-size vectors from audio-visual modalities and tex-
tual modality to obtain a joint multimodal representation. As
the limited size is a typical issue for most mental disorder
corpora, a Multitask Deep Neural Network (DNN) with
hard parameter setting is built for the classification task to
overcome overfitting, as shown in Fig. 1 (5). The proposed
Multitask DNN has the shared hidden layers between two
tasks with unchanged task-specific output layers where one
task is the classification of disorder levels while the other
task could be the regression of disorder scores [23] or other
auxiliary tasks. The joint loss function is adjusted as the
weighted sum of cross-entropy loss for classification and the
Euclidean loss for regression, as shown in Eq. 2.

L =WcLc +WrLr

=Wc(−
N∑

c=1

yc log(pc)) +Wr(
1

M

M∑
i=1

‖ yr − pr ‖2)
(2)

where the weights for two losses are denoted as Wc and
Wr, ground-truth values as yc and yr, predicted values as
pc and pr, the number of classes as N and the number of
samples as M .

IV. BIPOLAR DISORDER RECOGNITION

We first evaluate our framework on the Bipolar Disorder
Corpus (BDC) [4]. We also compare our framework with the
models presented at AVEC2018 [14].

A. Dataset

The BDC was introduced by Çiftçi et al. [4] to provide
an insight for the personalized treatment of BD patients. The
BDC is annotated by psychiatrists with BD states as well as
the Young Mania Rating Scale (YMRS) scores which were
obtained at session level such that each score corresponds
to one patient on one of the pre-determined test days. The
data format in the corpus is a set of audio-visual recordings
of structured interviews performed by 46 Turkish speaking
patients. For the classification experiments, the BDC contains
104 recordings as the training partition, 60 recordings as
the development partition, and 54 recordings as the test
partition. The provided ground-truth labels are clinician-
annotated YMRS scores of corresponding sessions, and the
recordings are also grouped into three disjoint subgroups
as follows, thus leading to a ternary classification task: 1)
Depression: YMRS ≤ 7; 2) Hypo-mania: 7 < YMRS < 20;
3) Mania: YMRS ≥ 20.

The availability of the BDC is upon request but labels
for the test set cannot be obtained outside the challenge.
Therefore, in the following experiments, we evaluated our

framework on the pre-determined training and development
sets and compared our framework with the competing frame-
works [15], [17], [21], [16] in AVEC2018.

B. Multimodal Features and Preprocessing

The baseline features (LLDs) used in AVEC2018 were
extracted with open-source toolkits, such as acoustic features
extracted via OpenSMILE1, visual features extracted via
OpenFace [24]. The baseline features include MFCC and
eGeMAPS [7] for acoustic modality, and facial landmarks,
eye gaze, head pose, and action units for visual modality.
MFCC features are computed at the frame level while
eGeMAPS features are computed at speaker turn level that
however can be aligned with other modalities unless given
the frame time. Since MFCC and eGeMAPS have overlap-
ping elements, the shared representation layer in our multi-
DDAE was trained from only one acoustic feature, either
MFCC features or eGeMAPS features.

To align multimodal features, 3 contiguous acoustic fea-
tures were concatenated as each input that has approximately
the same duration as 1 visual feature. Thus, a total of five
modalities were used in one multi-DDAE for the BD recog-
nition, which included facial landmarks, eye gaze, head pose,
action units and acoustic features (MFCC or eGeMAPS).

The PV models for the textual modality were pre-trained
on an additional Turkish corpus, triwiki2, which contained
various kinds of texts in Turkish, such as articles and primary
meta-pages.

C. Experimental Results

The multi-DDAE and the PV were evaluated on the
classification of BD symptoms with the same multitask DNN
classifier in the framework.

For evaluation, we used the unweighted F1-score which
ignores the imbalance between the three classes. As seen
in Table II, in audio-visual modalities, multi-DDAE using
MFCC features achieves a performance of 0.656 UAR and
0.667 F1, slightly better than multi-DDAE using eGeMAPS
features. Furthermore, the multi-DDAE using MFCC tends
to perform better with a more compact size of the latent rep-
resentation while the multi-DDAE using eGeMAPS favors
a less compact size. In textual modality, the experimental
results show better performance in PV-DBOW in comparison
with PV-DM (0.013 higher in UAR and 0.038 higher in F1).

With the best-performing multi-DDAEs and doc2vec mod-
els, we evaluate 4 multimodal fusion models as shown in
Table II (5-8). The best-performing multimodal framework
is based on multi-DDAE using MFCC and PV-DM and it
obtains a UAR of 0.709 and F1 of 0.721, significantly better
than the unimodal architectures.

Additionally, to validate the generalization of the proposed
framework, 10-fold cross-validation (CV) was implemented
on the entire dataset (training set + dev set) and the best-
performing framework ((5) in Table II) also reaches the
highest averaged UAR at approximately 0.60. This shows

1https://www.audeering.com/opensmile/
2https://dumps.wikimedia.org/trwiki/

https://www.audeering.com/opensmile/
https://dumps.wikimedia.org/trwiki/


TABLE II
PERFORMANCE IN AUDIO-VISUAL MODALITIES, TEXTUAL MODALITY AND MULTIMODAL FUSION ON BD CLASSIFICATION. BEST PERFORMANCE IN

BOLD. METRICS INCLUDE UNWEIGHTED F1, UNWEIGHTED AVERAGE RECALL (UAR), AND UNWEIGHTED AVERAGE PRECISION (UAP).

ID Hyperparameters Metrics

Audio-Visual
Acoustic h a g UAR ↑ UAP ↑ F1* ↑

(1) MFCC 0.4 0.1 32 0.656 0.678 0.667
(2) eGeMAPS 0.5 0.1 32 0.622 0.665 0.642

Textual
Model v w n UAR ↑ UAP ↑ F1* ↑

(3) PV-DM 50 10 5 0.492 0.481 0.486
(4) PV-DBOW 50 - 5 0.505 0.544 0.524

Multimodal Fusion

Audio-Visual Textual UAR ↑ UAR (CV) ↑ F1* ↑
(5) (1) MFCC (3) PV-DM 0.709 0.598 0.721
(6) (1) MFCC (4) PV-DBOW 0.667 0.572 0.673
(7) (2) eGeMAPS (3) PV-DM 0.675 0.543 0.691
(8) (2) eGeMAPS (4) PV-DBOW 0.659 0.581 0.665

that our framework is not overfitted to the pre-determined
development set and generalizes well on unseen data.

TABLE III
COMPARISON OF OUR FRAMEWORK WITH AVEC2018 FRAMEWORKS

Framework UAR (dev.) ↑ Acc. (dev.) ↑
Yang et al. 2018 [15] 0.714 0.717
Du et al. 2018 [17] 0.651 0.650
Xing et al. 2018 [21] 0.868 NA
Syed et al. 2018 [16] 0.635 NA
Ours 0.709 0.717

Table III lists the experimental results obtained by four
frameworks in AVEC2018 on the development set. It is
clear that our framework, (5) in Table II, outperforms the
frameworks proposed by [17] and [16] in both UAR and
accuracy. Furthermore, our framework achieves the same
accuracy as [15] and a close UAR (only 0.005 lower) even
though [15] benefited from extra data as they extracted the
”arousal features” from pre-trained LSTM-RNN model on
AVEC2015 affective dataset. [21] seems to have a better
performance than ours, but [21] suffers overfitting issues due
to the performance drop, 0.868 UAR on the development
but only 0.574 UAR on the test set. Therefore, our proposed
multimodal framework shows comparable performance to the
state-of-the-art on BD recognition.

V. DEPRESSION DETECTION

To further demonstrate the generalisability, we experiment
our framework with the depression detection task on the
Extended Distress Analysis Interview Corpus (E-DAIC) [25],
which is used in AVEC2019 challenge [26]. Note that we
only compare our experimental results with the AVEC2019
baseline system.

A. Dataset

E-DAIC is the extended version of WOZ-DAIC which
contains semi-clinical interviews designed to support the
diagnosis of psychological distress conditions such as anxiety
and depression [25]. The dataset excluding the un-released
test set is partitioned into a training set of 163 samples and
a development set of 56 samples while the overall diversity
of the speakers - in terms of age, gender distribution, and

the eight-item Patient Health Questionnaire (PHQ-8) scores
- is preserved. Our analysis was based on the training and
development sets following the restrictions of AVEC2019
[26]. Because PHQ-8 values and depression binary labels
are reported for each participant, the challenge task could
be thus considered as a combination of a regression and a
binary classification.

B. Multimodal Features and Preprocessing

Since the multi-DDAE with MFCC performed the best
in BD classification, we defined the acoustic features as
MFCC and therefore, MFCC features, FAUs (including pose,
gaze, and action units), and ResNet deep spectrum features
were chosen as the fundamental frame-level features in the
multi-DDAE. To avoid biasing the multi-DDAE by feeding
modalities of unbalanced dimensions or incompatible magni-
tudes, PCA was performed on ResNet features to reduce the
dimension from 2048 to 200 and z-norm was applied for each
feature. We investigated different settings for the number of
features selected in Random Forests as a considerable impact
was found on the performance.

Finally, MFCC, ResNet features, Pose, Gaze, and Action
Units were used for training and 3 contiguous acoustic
features were concatenated as each input to match the
duration time for 1 visual feature. We also ran the session-
level analysis with textual information but the PV models
were pre-trained on the transcripts only without additional
English corpora.

C. Experimental Results

Following the AVEC2019 baseline [26], Concordance
Correlation Coefficient (CCC) [27] was used to evaluate the
regression task, and we additionally reported mean-squared-
error (MSE) for regression and unweighted F1-score and
accuracy for classification.

The multi-DDAE and the PV are evaluated using our pro-
posed multitask DNN classifier in the framework. The multi-
DDAE is validated to perform the best with hyperparameters
of 0.5 hidden ratio, 0.1 corruption noise level, and the FV
encoding with 32 GMM kernels.

As seen in Table IV, the baseline system that fuses MFCC,
ResNet, and FAUs features shows a CCC value of 0.336. For



TABLE IV
PROPOSED FRAMEWORK PERFORMANCE IN AUDIO-VISUAL MODALITIES, TEXTUAL MODALITY AND MULTIMODAL FUSION ON DEPRESSION

DETECTION. THE BEST PERFORMANCE FOR EVERY COLUMN IS GIVEN IN BOLD AND UNWEIGHTED F1-SCORE IS USED.

Regression PLSR Classification
fused dimension CCC ↑ MSE ↓ CCC ↑ F1* ↑ Acc. ↑

Audio-Visual
500 0.464 26.75 0.774 0.857
700 0.452 25.73 0.838 0.857
1000 0.386 29.38 0.884 0.893

Textual 50 (PV-DM) 0.560 21.72 0.907 0.839

Multimodal Fusion
500 0.506 20.85 0.894 0.821
700 0.528 20.06 0.917 0.857
1000 0.504 20.67 0.896 0.821

10-fold CV
500 0.419 26.47 0.352 0.845 0.785
700 0.423 25.85 0.382 0.884 0.817
1000 0.385 28.85 0.360 0.868 0.785

Baseline (AVEC2019) Late fusion 0.336 - - - -

audio-visual modalities, the multi-DDAE reports a maximum
CCC value of 0.464 on the development set with 500 features
selected, better than the fusion of all baseline features. The
framework with 1000 features selected, however, shows a
better performance than the one with 500 features in terms
of classification. In textual modality, the PV-DM model
achieves a performance of 0.560 CCC and 0.907 F1, showing
a significant gain from the baseline.

Other than for the BD classification, we noticed the per-
formance gap between different numbers of selected features
shown in Table IV. Specifically, with more features selected
in the audio-visual modalities, the proposed framework
achieved better classification but unstable performance in
regression. As shown in Table IV, an increasing number of
selected audio-visual features (from 500 to 700) benefits the
final result, but however, with 1000 features, the performance
is suppressed. As we adopted an early-fusion strategy where
selected audio-visual features are merged with textual fea-
tures, we believe that when selected audio-visual features are
above 700, the redundant information biased the classifier
and deteriorated results. Therefore, we conclude that the
audio-visual features have less discriminative features than
textual features in depression detection.

The performance improvement of multimodal fusion over
the multi-DDAE is observed (0.076 higher in CCC and 0.079
higher in F1) when 700 features are selected. However, when
compared with PV-DM on textual modality, the multimodal
fusion shows a better classification result (0.01 higher in F1)
and a worse regression result (0.032 lower in CCC).

The 10-fold Cross Validation (CV) demonstrates that our
framework is not overfitted to the development set with
an averaged CCC of 0.423 and F1 of 0.884. Furthermore,
we implemented Partial Least Square Regression (PLSR) in
10-fold CV to validate the effectiveness of the proposed
multitask DNN in the regression. As seen in Table IV,
while the multitask DNN obtains a CCC value of 0.423, the
PLSR obtains a CCC of 0.263 with the same multimodal
features, proving the superiority of our proposed multitask
configuration.

D. Ablation Study

To gain some insights into salient biological markers, we
conducted an ablation experiment to investigate the impor-
tance of individual audio-visual features in our framework. It
can also be considered as an audio-visual feature ranking. We
investigated every individual feature by excluding it from our
multi-DDAE and then proceeding with the rest of 10-fold CV
experiments. In other words, different feature combinations
were fed into the multi-DDAE, and the investigated feature
was the one missing from the combination.

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT FEATURE COMBINATIONS.

(*) REPRESENTS THE ORIGINAL SETTING AS THE BASELINE

Feature Combination CCC change CCC change
(multitask DNN) (PLSR)

MFCC + ResNet + FAUs (*) 0.419 0.352
MFCC + ResNet 0.167 ↓ 0.147 ↓
ResNet + FAUs 0.137 ↓ 0.106 ↓
MFCC + FAUs 0.040 ↓ 0.054 ↓

Table V shows performance changes of three feature
combinations compared with the original setting, which
indicates the audio-visual feature ranking as: FAUs > MFCC
> ResNet. Based on the findings that textual modality itself
gives high performance (0.560 CCC as shown in Table IV),
we can reach a conclusion that the depression cues are more
likely to be the speech content and patients’ facial expression,
which could assist psychologists in the depression diagnosis.

VI. CONCLUSION
This work proposed a multimodal deep learning frame-

work to automatically analyze signs of mental disorders,
especially from video, audio and textual data. A Multimodal
Deep Noising Autoencoder (multi-DDAE) was used to en-
code the per-frame representations across multiple audio-
visual features and Fisher Vector (FV) encoding was used to
encode the compact per-session descriptors. The document
embeddings of interview transcripts, inferred by Paragraph
Vector (PV) models were incorporated to helped to improve
the performance. To handle overfitting, a multitask learning
model was proposed. Experimental evaluation showed that



our proposed framework achieved comparable performance
to previous work in bipolar disorder recognition and base-
lines in depression detection, showing effective multimodal
representation learning. Moreover, without being specially
optimized for the learning task, our framework generalizes
well across different mental disorder corpora and shows the
potential to discover the biological markers with the feature
ranking, which helps the diagnosis of mental disorders.

As future work, we evaluated an improved version of our
framework in another audio-visual dataset [28]. In the future,
We will also investigate the semantic interface between all
audio-visual-textual modalities to address the discrepancy
and granularity and compare it with the early fusion strat-
egy in the current framework. Furthermore, it would be
worthwhile to incorporate the spatial information in our
framework with additional layers in the multi-DDAE, such
as convolutional and pooling.
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