
Verification of Diagrammatic Proofs 

Mateja J amnik, Alan Bundy, Ian Green 
Department of Artificial Intelligence, 80 South Bridge 

Edinburgh, EH1 lHN, UK 
matejaj@dai .ed.ac.uk, A.Bundy@ed.ac.uk, LGreen@ed.ac.uk 

Abstract 

Human mathematicians often "prove" theorems 
by the use of diagrams and manipulations on 
them. We call these diagrammatic proofs. rn 
(Jamnik, Bundy, & Green 1997) we presented how 
"informal" reasoning with diagrams can be auto-
mated. Three stages of proof extraction proced-
ure were identified. First, concrete rather than 
general diagrams are used to prove particular in-
stances of the universally quantified theorem. The 
diagrammatic proof is captured by the use of geo-
metric operations on the diagram. Second, an ab-
stracted schematic proof of the universally quanti-
fied theorem is automatically induced from these 
proof instances. Third, the final step is to confirm 
that the abstraction of the schematic proof from 
the proof instances is sound. Our main focus in 
this paper is on the third stage, the verification 
of schematic proofs. We define a theory of dia-
grams where we prove the correctness of a schem-
atic proof. Vie give an example of an extraction 
of a schematic proof for a theorem about the sum 
of odd naturals, and prove its correctness in the 
theory of diagrams. 

Introduction 

• 0000 
• 000 
• 000 n 

• 00 
• ••• ,0 

n + 1 

nx(n+l) 
1+2+3+" ' +n= ----'---

2 
It requires only basic secondary school knowledge of 

mathematics to realise that the diagram above is a proof 
of a theorem about the sum of natural numbers. 

It is an interesting property of diagrams that allows 
us to "see" and understand so much just by looking at a 
simple diagram. Not only do we know what theorem the 
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diagram represents , but we also understand the proof 
of the theorem represented by the diagram and believe 
it is correct. 

Is it possible to simulate and formalise this sort of 
diagrammatic reasoning on machines? Or is it a kind 
of intuitive reasoning particular to humans that mere 
machines are incapable of? Roger Penrose claims that it 
is not possible to automate such diagrammatic proofs. l 

We are taking his position as an inspiration and are try-
ing to capture the kind of diagrammatic reasoning that 
Penrose is talking about so that we will be able to emu-
late it on a computer. It should be pointed out that we 
are not trying to discover automatically the diagram-
matic proofs, but rather to mechanise and explore them 
in order to understand them better. 

In (Jamnik, Bundy, & Green 1997) we presented a 
way of formalising diagrammatic reasoning for natural 
number arithmetic and showed how diagrams can be 
used for proofs in a formal system. Rather than using 
general diagrams, which need abstractions to repres-
ent their generality, we reason with concrete diagrams 
(i. e. of a particular size). Theorems of mathematics 
can be expressed as diagrams for some concrete values, 
i. e. ground instantiations of a theorem. We presented a 
three-stage algorithm for extraction of a diagrammatic 
proof. First, the initial diagram is manipulated using 
some geometric operations. The sequence of geometric 
operations on a diagram represents the inference steps 
of a diagrammatic proof. Such a concrete proof in-
stance is called an example proof. Second, a general 
pattern is extracted from these proof instances, and is 
captured in a recursive program. This recurslVe pro-
gram, referred to as a schematic proof, constitutes a 
general diagrammatic proof for the universally quanti-
fied theorem. Third , the induced schematic proof has to 
be verified to show that it indeed proves a proposition 
for all cases. 

The main part of this paper deals with the last step in 
the extraction of a diagrammatic proof, i. e. the verifica-
tion step. In particular, we define a theory of diagrams 

'Roger Penrose presented his position in the lecture at 
International Centre for Mathematical Sciences in Edin-
burgh, in celebration of the 50th anniversary of UNESCO 
on 8 1995. 
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which models the processes in a diagrammatic proof. In 
this theory, we can prove by a meta-level inductive proof 
that a particular schematic proof is correct. There are 
two main motivations for defining a theory of diagrams 
in which schematic proofs are verified. The first one is 
that a diagrammatic schematic proof is an intelligent 
guess by a machine of the general form of a proof. In 
this sense it is much the same as what humans do when 
they induce an abstraction from examples. In an auto-
mated reasoning system, this guess needs to be formally 
checked for correctness. Secondly, we choose to avoid 
using abstractions (such as ellipsis) in general diagrams 
which would be needed if such general diagrams were 
used for checking correctness. We discussed in (Jamnik, 
Bundy, & Green 1998) why abstractions are problem-
atic to use. 

All three stages of the algorithm for formalisation 
of diagrammatic proofs are implemented in a diagram-
matic proof system called DrAMoND (DIAgraMmatic 
reasONing and Deduction) Rather than automatically 
discovering diagrammatic proofs, we use DL\MOND to 
try to understand better informal diagrammatic proofs. 
The user interactively constructs example proofs by 
choosing an initial diagram which represents the the-
orem, and then applies diagrammatic operations to 
build a proof. DrAMoND then automatically extracts 
a general pattern from these instances, and captures it 
in a recursive program . The correctness of a schematic 
proof is verified in the theory of diagrams. The verific-
atIOn proof is carried out in the proof planning system 
Clam. 

The work reported in this paper is intended to be self 
contained. Therefore, the next three sections present 
the background information on the formalisation of dia-
grammatic reasoning to enable us to put the main res-
ults of this paper in the appropriate context. First, 
we give an example of a diagrammatic theorem. In 
the subsequent couple of sections we introuuce schem-
atic proofs. Next, the implementation of DIAMOND is 
demonstrated. The presentation of the main result of 
this paper follows, i. e. we define the theory of diagrams 
and prove the correctness theorem for an example of a 
diagrammatic schematic proof. Then we report some of 
our results and discuss future work. vVe mention some 
of the related diagrammatic reasoning systems next. Fi-
nally, we conclude by summarising the main points of 
this papf'f. 

'Diagrammatic' Theorems 
We are interested in mathematical theorems that admit 
diagrammatic proofs. We choose mathematics as our 
domain for theorems since it allows us to make formal 
statements about the reasoning, proof search, induc-
tion, generalisations, abstractions and such issues. We 
presented several examples of diagrammatic theorems 
and their proofs in (Jamnik , Bundy, & Grren 1997). 
\Ve distinguished between three categories of examples, 
which are by no means exhaustive, and decided to con-
centrate on the examples of Category 2, an example of 
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which is the theorem about the sum of odd naturals. 
For examples of other categories, see (Jamnik, Bundy, 
& Green 1997). Other speCification of Our problem do-
main include theorems whose instances can be represen-
ted as diagrams without the need for abstraction (e.g., 
the use of ellipsis), and theorems of natura.l number 
arithmetic. 

Sum of Odd Naturals 

This example is taken from (Nelsen 1993). The theorem 
about the sum of odd naturals states the following: 

n 
.) "" n- = 

;=1 

•••••• •••••• •••••• •••••• •••••• 
Note the use of para.meter n. If we take a square we 
can cut it into as many ells (which are made up of two 
adjacent sides of the square) as the size of the side of 
the square. Note that one ell is made out of two sides, 
i.e., 2n , but the shared vertex has been counted twice. 
Therefore, one ell has a size of (2n - 1), where n is the 
size of the side of the square. 

From the analysis of the example above and many 
others (see (Jamnik, Bundy, & Green 1997) and (Jam-
nik, Bundy, & Green 1998)), we summarise now the 
characteristics of examples of Category 2. Theorems of 
Category 2 are theorems of discrete space. A diagram is 
a representative of a particular instance of a theorem. 
Proofs are schematic: they require induction for the 
general diagram of size n (a concrete diagram cannot 
be drawn for this insta.nce). The constructive w-rule 
(explained in more detail in section "Schematic Proof 
and Constructive w-rule") is used to formally justify the 
extraction of a general proof from the individual proof 
instances. 

Schematic Proof and Constructive 
w-rule 

Schematic proofs use the constructive w-rule. The con-
structive w-rule allows inference of the sentence VxP(x) 
from an infinite sequence P(n), nEw of sentences by 
requiring to provide a general schematic proof, namely 
the proof of P(n) in terms of n, where some rules Rare 
applied some function of n (i.e., fR(n)) times (a rule 
can also be applied a constant number of times). Let 
the proof of P(n) be captured using a recursive func-
tion proof(n). ;.,row, proof(n) is schematic in n, since 
we applied some rule R fR(n) times. By instantiation 
proof(n) generates a proof of P(n) for every n. 



Diagrams and Schematic Proofs 
Baker did some work on the use of schematic proofs of 
arithmetic theorems (Baker, Ireland, & Smaill 1992). 
'vVe extend Baker's work on schematic proofs to our 
diagrammatic proofs so that the generality of the dia-
grammatic proof is embedded in the schematic proof. 
Thus, we eliminate the need for abstractions in dia-
grams, and can extract a general schematic proof from 
manipulations on concrete diagrams. The following is 
an algorithm for extraction of a diagrammatic schem-
atic proof: 

1. The diagrammatic schematic proof starts with a few 
particular concrete cases of a theorem represented 
by a diagram. The geometric operations on the dia-
gram are performed after that , capturing the infer-
ence steps of the diagrammatic proof. 

2. ='l"ext , we abstract (using a learning type inference) 
the operations involved in the schematic proof for n . 

that the generality is represented as a recurs-
ive program which specifies a sequence of geometric 
operations that are used on a diagram. and not as a 
general representation of a diagram. 

3. The last step is to prove by meta-induction that 
the abstracted diagrammatic schematic proof is in-
deed correct. We carry out the verification in a the-
ory of diagrams that models the processes in a dia-
grammatic reasoning system and prove correr:tness 
there. This will be! discussed in section "Correctness 
of Schematic Proofs". 

The schematic diagrammatic proof for the s'U.m of odd 
naturals can be more formally expressed as: 
• Cut a square into n ells, where an ell consists of 2 

adjacent sides of the square. 
• For each ell, continue splitting from an ell n - 1 pairs 

of dots at the end of two adjacent sides of the ell until 
only 1 dot is left, hence 2(n - 1) + l. 

DIAMOND System 
The diagrammatic proof system DIAMOND is an em-
bodiment of the ideas presented in this pap pr (see also 
(Jamnik, Bundy, & Green 1998)). 

Clearly, an important issue in the development of 
DIAMOND is the internal representation of diagrams 
and operations on them. In DIAMOND we use a mix-
ture of Cartesian and topological representations. The 
architecture of DIAMOND consists of tViO parts. The 
diagrammatic component forms and processes the dia-
gram. It is the interface between DIAMO ND and the 
user. The inference engine deals with the diagrammatic 
inference steps, processes the operations on the dia-
gram, extracts general schematic proofs from example 
proofs, and checks the correctness of schematic proofs. 

Geometric operations capture the inference steps of 
the proof. The user is expected to select from a set of 
all available operations the ones which are applied in 
an example proof. 'Ve distinguish between two types 
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of operations: atomic operations (simple, one-step; e.g. 
split, rotate) and composite operations (complex, re-
cursive; e.g. decompose into ells). 

The rest of this section presents how instances of 
proofs are constructed, the structure of proofs and the 
abstraction mechanism used in DIAMOND. 

Constructing a Proof 
DIAMOND 'S example proof consists of a sequence of ap-
plications of geometric operations on a diagram. The 
abstraction is then carried out automatically, if any 
such abstraction exists for the two example proofs 
given. Both example proofs are expected to be given 
with the same order of operations, but with some extra 
operations in the case of the proof of (n + 1) for some 
particular n . 

Consider the example for the sum of odd naturals. 
The step cases for proofs for n = 4 and n = 3 look as 
follows : ·1·· · •••• LCUT .... 
• ••• 

·1·· LCl;T 't SPLlT_ENDS(2) ... .. ... ... 
The aim is to recognise automatically the structure of 
the proof from a linear sequence of applications of op-
erations. The abstraction mechanism, which will be 
described next, extracts the structure common to ex-
ample proofs . 

Abstraction 
Gi ven some exampJe proofs DIAMOND needs to abstract 
from them, so that the final diagrammatic proof is not 
only for the cases of specific n's, but holds for all n. 
The aim is to reformulate example proofs for nand 
n + 1 in the general case into a schematic proof. Such 
a schematic proof is a general program which specifies 
the applications of some operations, where the number 
of application of each operation is dependent on n or is 
a constant. 

The general representation of an abstracted schem-
atic proof is formali::;ed as a recursive program: 

proof (n + 1) 
proof (1) 

A(n + 1) , proof(n) 
= B 

where for each n, A(n) is a step case consisting of a 
sequence of applications of some operations and B is 
a base case for n = 1. "," denotes concatenation of 
sequences of operations: "do operations of A(n + 1), 
then proof(n) " . 

The number of applications of each operation in the 
step case A of the schematic proof is dependent on the 
parameter n . DIA MON D can automatically detect any 
linea r dependency in the number of applications of an 



operation. For more information, the reader is referred 
to (Jamnik, Bundy, & Green 1998). 

The example proof for the sum of odd naturals is ab-
stracted into the following step case and base case: 

A(n) 
B 

[(icut, 1), (split-diagonal_ends, n - 1)] 
[I cut, 1)] 

where the function in parentheses indicates the num-
ber of times that the operations are applied for each 
particular n 

Correctness of Schematic Proofs 
The last stage of extracting a diagrammatic proof is 
to check that the guessed general schematic proof is 
indeed correct. In particular, the verification ensures 
that the transition from concreteness to generality of 
a diagrammatic proof is correct. In human reasoning 
this step is often omitted when humans are convinced 
that the examples used to induce a general schematic 
proof uniformly account for all cases of a theorem. This 
can sometimes result in erroneous proofs. In an auto-
mated reasoning system, however, we need to formally 
show thp correctness of a schematic proof. To prove 
that the schematic proof is correct we need to show in 
some meta-theory that proof(n) uniformly proves P(n) 
for all n, i.e. it gives a proof tree with P(n) at its root, 
and axioms at its leaves. This requires reasoning about 
proofs, i. e. meta-level reasoning. A meta-level proof us-
ing general diagrams would be an obvious method for, 
verifying our schematic proof. However, such meta-level 
proof reintroduces the need for manipulating abstrac-
tions (e.g. ellipsis) on diagrams, which we ari.". trying to 
avoid. 

One way of overcoming this problem is to define dia-
grams and operations in a theory of diagrams where we 
can express abstract diagrams symbolically rather than 
diagrammatically. In this theory we can verify schem-
atic proofs by defining the notion of applicability of a 
proof. Given that a particular theorem is expressed as 
an equality, its schematic proof is correct if applying 
the operations specified in the schematic proof on the 
diagrammatic representation of the left hand side of the 
theorem results in the diagrammatic representation of 
the right hand side of the theorem. There are two con-
ditions that need to be satisfied . The first condition is 
that there is an appropriate diagrammatic representa-
tion available for the mapping of the theorem into its 
diagrammatic representation. The second condition is 
that the operations of the schematic proof are defined. 
A verification proof is a meta-level proof, because it is 
a proof about a property of an object level schematic 
proof. 

Before Wi.". can state the definition for rorrectness 
property of schematic proofs, we need to formalise the 
machinery which will enable us to model the processes 
of a diagrammatic proof. Therefore, we need to define 
diagrams , operations on them, and the applicability of 
operations of a schematic proof, which we do next. 
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Diagrams 
Diagrams in the theory are defined to be of object type. 
Here are examples of names of diagrams in the theory: 
row, column, ell, frame, square, rectangle , triangle, ... 

Diagrams of the theory model natural numbers, DIA-
MOND's primitive notion of a diagram, a dot, is mod-
elled in the theory as the natural number 1. Objects 
are introduced via a function diagram which takes the 
name of the type of a diagram and the parameters for Its 
size. 2 So for instance, a square of size 4 is expressed in 
the theory as diagram(square, [4]) . All elementary and 
derived objects are expressed using a primitive object 
dot. 

Constant 0 denotes a null diagram, or in other 
words an empty diagram. Note also, that all 
triangles are isosceles. Here are some examples 
of diagrams: diagram(row , n), diagram(column , n), 
diagram(ell , n) , diagram(square, n) 

Operators 
This section gives the operators available in the theory. 
First , we denote the diagrammatic equality by f: which 
denotes that two lists of diagrams are identical. 3 This 
is to distinguish it from the usual arithmetic equality. 
These are the operators that introduce the existence 
of several diagrams: ;Q) for append on lists, :: for list 
constructor, 0 for an infix operator which introduces a 
combination of a number of identical diagrams, : 
object -+ object list. Here is the recursive definition of 

for all a b: 

a l:0 diagram(name, f(i)) f: [diagram(name, f(a))J (1) 

u+l u l:0 diagram(name, f(i )) l:0 diagram(name, f(i)) @ 
i =a i=a. 

[diagram(name, f(b + 1))J (2) 

Note that f (i) is some list of functions of i that denote 
the parameters of a size of a diagram. 

Operations 
Diagrammatic operations are represented via a function 
op : opname x object list -t object list. We give here a 
definition of one operation only, but there are many 

2The size of a diagram should not be confused with the 
arithmetic size of the diagram. The notion of an arithmetic 
size of a diagram will be explained in section "Mapping re-
lation dmap". 

3To be more precise, denotes an equality of two lists of 
diagrams modulo additional information about the position 
of a diagram in the proof tree attached to each diagram, 
and modulo the order of the list, i. e. two lists with the same 
diagrams but in different order are still the same. Therefore, 
rather than lists we could use bags which are sometimes 
called multisets. This is what is used in the implementation 
of the theory, but for the simplicity of presentation in this 
papeL we \lse lists as a datatype for collections of diagrams. 



more operations defined in the theory. Any other, non-
defined combination of a diagram and an operation is 
invalid. 

op(lcut, [diagram(square, [n - 1]), 
diagram(ell, [n])]@D (3) 

Function Definitions 
One_Apply and Apply Here we define what it means to 
apply an operation opnm to a diagram 0 several times. 
vVe use a function apply and function one_apply. Let: 

d one_apply(O,opnm, D) = D (4) 
d one_apply(n + 1, opnm, D) = op(opnm, 

one_apply(n , opnm, D)) (5) 

apply([ ], D) D (6) 
d apply((opnm,x) :: opss, D) = apply(opss, 

one_apply(x,opnm, D) (7) 

Note that OpSS is a list of pairs of operation and the 
number of times that this operation is applied to a dia-
gram. 

Mapping relation dmap Let the dmap rdation de-
note a mapping of a particular class of statements of 
dfithmetic to their equivalent diagrammatic expressions 
in the theory of diagrams. dmap is used for linking a 
theorem of arithmetic which is stated symbolically to its 
diagrammatic representation and diagrammatic proof. 
The equivalence is defined to be over the arithmetic 
size of the diagram. The arithmetic size of a diagram 
is defined to be the the number of counters (dots) in 
the diagram. Note that dmap is a relation rather than 
a function, because there are several choice in mapping 
the same arithmetic expression to different diagrams. 
Here are some general mappings: 

dmap(n2
, [diagram(square, [n])]) 

dmap(2n - 1, [diagram(ell, [n])]) 
b b 

dmap(L fu), Dj) such that 
)=n j=a 

\;fj, a::; j ::; b, dmap(f(j) , [Dj]) 

(8) 
(9) 

(10) 

Let us denote the arithmetic size of the diagram 0 with 
1 0 I· The following holds: 

Theorem 1 (Arithmetic size of a diagram) The 
arithmetic size of the diagram is equal to the value of the 
arithmetic expression that it represents: if dmap(e,O) 
then 101 = e. 

Note that the type of 1 I is: object list ---+ pnat. The 
proof of Theorem 1 is carried out straightforwardly by 
mduction on the structure of the relation dmap. Con-
sequently, we have the following: 
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I [diagram(square, [n]) J 1 n 2 (11) 
I [diagram( ell, [n])] I = 2n - 1 (12) 

D
j I b 

LI[Dj]1 (13) 
j=a 

Now, we state a lemma about the preservation of the 
arithmetic size of the sum of all existent diagrams when 
an operation is applied on a diagram. For all operations 
that were just introduced, the following holds: 

Lemma 1 (Arithmetic Size Invariance Under 
One Operation) The arithmetic size of the sum of 
the resulting diagrams when an operation is applied to 
some diagrams is the same as the arithmetic size of the 
diagrams on which the operation was applied. Let 0 be 
some diagrams such that dmap(e, 0) then: 

1 op(opname, D) 1 = 1 D I· 
The proof of this lemma consists of a case analysis of 
operations and mappings of arithmetic expressIOns. We 
shall not give it here. The immediate consequence of 
Lemma 1 is the preservation of size when a list of op-
erations is applied to some diagram. 

Lemma 2 (Arithmetic Size Invariance Under 
Multiple Operations) The size of the s'um of the res-
ulting diagrams when a list of operations is applied to 
some diagrams is the same as the size of the diagrams 
on which the operations were applied. Let 0 be some 
diagrams such that dmap(e, 0) then: 

1 apply(ops, D) 1 = 1 D 1 

The proof of this lemma is by a straightforward induc-
tion on the structure of opS. We shall not give it here. 

Equations 
Here Wf! give some axioms (note that a E b denotes that 
a natural number a is an element of a list b; thus the 
type of an infix E is: pnat x pnat list -t boolean): 

o E s ---'; diagram(x, s) cl 

0:: D 
if! 
D 

(14) 

(15) 

Here is theorem (16) which is provable from (6) and (7). 

apply(ops, D :: Ds) 1:: apply(ops, [D])@Ds (16) 

Finally, we have the machinery for stating a desirable 
property about the correctness of a schematic proof 
formally: 

Definition 1 (Correctness of Schematic Proofs) 
For all schematic proofs of a paTticular theorem L(n) = 
R(n) for which the following is given: 

1 there is a mapping of the arithmetic expressions 
L(n) and R(n) into a diugmm representation: 
dmap(L(n), D) and dmap(R(n), E), 



Base case: n=l 

apply(proof(I), [diagram(square, [ID]) [diagram (eJl, [1])] 
proof(l) = [(Icut , I)J .JJ. 

apply ([( lcut , 1)], [diagram(square, [1])]) !!.. [diagram(ell, [1])J 
(7) and (6) .JJ. 

one_apply(l, Icut , [diagram(square, [ID]) [diagram(ell, [I])] 
(5) and (4) .JJ. 

op( lcut , [diagram (sq uare , [1])]) !!:.. [diagram(ell , [IDJ 
(3) .JJ. 

[diagram(square, [0]), diagram(ell, [1])] !!:.. [diagram(ell, [IDJ 
(14) .JJ. 

[0, diagram( ell , [1])J !!:.. [diagram (e ll , [1])J 
(15 ) .JJ. 

[diagram(ell , [ID] d [diagram(ell, [1])J 

Figure 1: Base case of the proof of correctness of a schematic proof. 

2. all the operations in the schematic proof are defined, 
then, 

d apply (proof (n), D) = E 

The property in Definition 1 is impossible to prove 
for the ,e;eneral case for any theorem, unless very strict 
conditions are imposed . The problem is in the mapping 
of the expression stating the theorem into its diagram-
matic representation, i.e. L(n) and R(n). In the general 
case it is not known what L(n) and R(n) are, so it is 
not possible to map them into dia[?;rammatic represent-
ations. It is possible, however , to prove the property in 
Definition 1 for a particular theorem at hand. 

Proof of Correctness of Schematic Proofs 
for an Example 
Here we prove the property given in Definition 1 for an 
example of a schematic proof of a theorem about the 
sum of odd naturals. The theorem is stated as n 2 = 
2:7:1 (2i - 1). The schematic proof of this theorem is 
given as: 4 

proof(l) 

proof (n + 1) 

[(leut , I)J 

[(leut , I)], proof(n) 

(17) 

( 18) 

Notice that we can use (8), (10) and (9) to map 
the sentential theorem into its diagrammatic repres-
entation: dmap(n2 , [diagram (square, [n ])]) and also 
dmap(2:7:1 (2i - 1) , diagram (e ll, [iJ)). Thus the 

4For the brev ity of presentation we take a simpler version 
of the schematic proof which does not include the operation 
spliLends. This version of the proof assumes that it has been 
previously proved that any ell is of odd size . 
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first condition of the detinition for correctness is sat-
isfied. The operations of a schematic proofs are also 
defined, so the second condition is satisfied as well. The 
proof of correctness of a schematic proof for this par-
ticular example is a meta-level proof which requires in-
duction on n. Figure 1 shows the base case of the proof 
of correctness. Figure 2 shows the step case of this in-
ductive proof. • 

Results and Further Work 
DIAMOND is implemented in Standard ML of New Jer-
sey, Version 109. The code is available upon request to 
the first author. DIA MON D passes an induced schematic 
proof to Clam, the inducti ve proof planner developed in 
Edinburgh (see (Bundy et al. 1991»), where the theory 
is implemented and the correctness proof is carried out. 

Thus far, the interactive construction of proofs , auto-
matic abstraction from example proofs, and automatIc 
verification of some schematic proofs have been Imple-
mented in DIAMO ND. We will extend the commUnIca-
tion between DIA:vtOND and Clam so that other schem-
atic proofs that DIAMOND extracts can be passed to 
Clam and be verified in the theory of diagrams . To 
date, we can prove about fifteen theorems of significant 
depth and range (see (Jamnik, Bundy, & Green 1998». 
The correctness proof for most of these theorems can 
be carried out in Clam. We are extending the theory 
of diagrams, and working on more examples. 

Some interesting properties of this theory which 
could be investigated include algebraic correctness of 
all schematic proofs, incompleteness, and charactensa-
tion of the class of theorems that we can prove In this 
theory. 

An alternative method to proving correctness of 
schematic proofs is to carry out a meta-inductive proof 



Step case: 
Hypothesis: for n 

n 

apply(proof(n), [diagram(square , [n])]) diagram(ell, [iD 
i =l 

Conclusion: for n + 1 
n+l 

apply(proof(n + 1) , [diagram(square, [n + 1])]) d diagram(ell , [il) 
i=l 

proof(n + 1) = [(Icut, 1)], proof(n) 
n +l 

apply(((lcut, 1), proof(n», [diagram(square, [n + 1])]) .E.. diagram(ell, [i]) 
i=l 

(7) 
n+1 

apply(proof(n) , one _apply(l, Icut, [diagram(square , [n + 1])]) .E.. diagram(ell, [ill 
i =l 

(5) and (4) 
n.+ l 

apply(proof(n), op(icut, [diagram(square, [n + 1))]) d diagram(ell , [i]) 
i=l 

(3) 
n+l 

apply (proof (n), [d iagram(square, [n]), diagram(ell, [n + 1])]) .5!.. diagram(ell, [ill 
i=1 

(16) 
n+l 

app ly(proof(n) , [diagram(square, [n])J)@[diagram(ell, [n + 1])] .E.. diagram(ell , [iJ) 
.=1 

(RHS of hypothesis) lJ. 
n n+l 

diagram(ell , [iJ)CQl[diagram(el l, [n + lJ)] !!.- diagram(ell , [iD 
i=l ,=1 

(2) lJ. 
11. +1 n+l 

diagram(ell, [iD d diagram(ell , [iJ) 
1. = 1 i=l 

Figure 2: Step case of the proof of correctness of a schematic proof. 

on diagrams. This necessitates reasoning with general 
diagrams which use abstractions to represent general-
ity. Formalising abstractions (e.g . ellipsis) in diagrams 
to use them in meta-inductive proofs could be an inter-
esting issue to consider. 

DIAMOND is an interactive proof checker. A long 
term goal is to design an automated theorem prover 
capable of discovering diagrammatic proofs. For each 
new schematic proof that such a theorem prover would 
discover, the theory of diagrams will need to be exten-
ded automatically to incorporate and be able t o check 
the correctness of the new schematic proof. 

Related Work 
Several diagrammati c systems such as the Geometry 
Nlachine by (Gelernter 1963), Diagram Configuration 
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model by (Koedinger & Anderson 1990), GROVER by 
(Barker-Plummer & Bailin 1992) , and Hyperproof by 
(Barwise & Etchemendy 1991) have been implemented 
in the past and are of relevance to our system. 

However, they all use diagrams to model algebraic 
statements, and use these models for heuristic guid-
ance while searching for an algebraic proof. In contrast, 
proofs in our system are explicitly constructed by op-
erations on diagrams. 

Other projects on diagrammatic reasoning which are 
of interest are by (Furnas 1992), by (Anderson & Mc-
Cartney 1996) , and by (Lindsay 1998). 

Closer to our work, but not in the domain of dia-
grammatic reasoning, is work done by (Baker, Ireland , 
& Smail! 1992) described in section "Schematic Proof 
and Constructive w-rule" , whereby we exploit the uni-



form structure of inductive proofs to generalise from 
example proofs. 

Conclusion 
In this paper we presented a theory of diagrams which 
enables us to check the correctness of diagrammatic 
schematic proofs. This constitutes the last stage of 
the procedure for extraction of diagrammatic proofs as 
presented in our previous work (see (Jamnik, Bundy, & 
Green 1997)). A schematic proof is correct if it proves 
all cases (i. e. for all n) of the proposition. It consists 
of a sequence of operations applied some function of n 
times. In the theory we defined the notion of applic-
ability of a schematic proof and defined the correctness 
property of schematic proofs. We finally proved the cor-
rectness property for an example of a schematic proof 
of a theorem. 

One of the aims of our research is to see whether it 
is possible to automate the use of diagrams in formal 
proofs. We showed that diagrams can be used for formal 
proofs. We presented , as an example, a diagrammatic 
reasoning system, DIAMOND, which supports interact-
ive construction of diagrammatic proofs. 

The first step is to prove interactively concrete ex-
amples of a theorem. Second, the system automatic-
ally abstracts these instances to give a general schem-
atic proof which we hope holds for all n. Finally, in 
DIAMOND we have a logical machinery (a theory of dia-
grams, constructive ..J-rule) to subsequently justify that 
the schematic proof proves the original theorem. 
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