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Abstract. Theorems in automated theorem proving are usually proved by formal logical proofs.
However, there is a subset of problems which humans can prove by the use of geometric operations on
diagrams, so called diagrammatic proofs. Insight is often more clearly perceived in these proofs than
in the corresponding algebraic proofs; they capture an intuitive notion of truthfulness that humans
find easy to see and understand. We are investigating and automating such diagrammatic reasoning
about mathematical theorems. Concrete, rather than general diagrams are used to prove particular
concrete instances of the universally quantified theorem. The diagrammatic proof is captured by
the use of geometric operations on the diagram. These operations are the “inference steps” of the
proof. An abstracted schematic proof of the universally quantified theorem is induced from these
proof instances. The constructiveω-rule provides the mathematical basis for this step from schematic
proofs to theoremhood. In this way we avoid the difficulty of treating a general case in a diagram.
One method of confirming that the abstraction of the schematic proof from the proof instances is
sound is proving the correctness of schematic proofs in the meta-theory of diagrams. These ideas
have been implemented in the system, called DIAMOND, which is presented here.
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1. Introduction

1+ 3+ 5+ · · · + (2n− 1) = n2

It requires only basic secondary school knowledge of mathematics to realise that
the diagram above is a proof of a theorem about thesum of odd naturals.

It is an interesting property of diagrams that allows us to “see” and understand
so much just by looking at a simple diagram. Not only do we know what theorem

? Portions of this work were published in the Proceedings of the International Joint Conference
on Artificial Intelligence in Jamnik et al. (1997).
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the diagram represents, but we also understand the proof of the theorem represented
by the diagram and believe it is correct.

Is it possible to simulate and formalise this sort of diagrammatic reasoning on
machines? Or is it a kind of intuitive reasoning particular to humans that mere
machines are incapable of? Roger Penrose claims that it is not possible to automate
such diagrammatic proofs.? We are taking his position as a challenge and are trying
to capture the kind of diagrammatic reasoning that Penrose is talking about so that
we will be able to emulate it on a computer.

The importance of diagrams in many domains of reasoning has been extensively
discussed by Larkin and Simon (1987), who claim that “a diagram is (sometimes)
worth ten thousand words.” The advantage of a diagram is that it concisely stores
information, explicitly represents the relations among the elements of the diagram,
and it supports a lot of perceptual inferences that are very easy for humans. Dia-
grams have been extensively used in the history of mathematics toaid informal
mathematical reasoning. The use of diagrams in explanations of theorems and
proofs of geometry dates back to Ancient Greece, and the time of Aristotle and
Euclid. Thus it is surprising perhaps that more recently, starting with the invention
of formal axiomatic logic in the sense of Frege, Russell and Hilbert, diagrams
have been denied aformal role in theorem proving. It is generally thought by
logicians that diagrams have no accepted syntax nor semantic theory in a logical
formalism which would make them rigorous enough to be used in formal proofs.
Only very recently, in the last two decades, have there been efforts to fill this
gap and investigate whether and how diagrams can be used in formal proofs. For
instance, the investigation of Pierce’s existential graphs in Sowa (1984), the work
on GROVER in Barker-Plummer and Bailin (1997), the work on Hyperproof in
Barwise and Etchemendy (1991), the introduction of computational models for
interpreting Euler’s circles in Stenning and Oberlander (1995), the analysis of the
use of Venn diagrams as a formal system in Shin (1995), and the formalisation of
a logical theory of Venn diagrams in Hammer (1995).

Our work contributes in some sense to the effort in the research from the formal
perspective on the use of diagrams, especially that of automated reasoning systems
which use diagrams in the reasoning process. Our aim is to formalise diagrammatic
reasoning and to show that diagrams can be used for proofs. In this paper we
show how diagrams can be used for proofs in a formal system. We look into how
theorems of mathematics can be expressed as diagrams for some concrete values,
i.e., ground instantiations of a theorem. The initial diagram is manipulated using
some geometric operations. The sequence of geometric operations on a diagram
represents the inference steps of a diagrammatic proof. Such a concrete proof
instance is called an example proof. The set of all available operations defines the
proof search space. A general pattern is extracted from these proof instances, and
is captured in a recursive program. This recursive program constitutes a general

? Roger Penrose presented his position in the lecture at International Centre for Mathematical
Sciences in Edinburgh, in celebration of the 50th anniversary of UNESCO on 8 November, 1995.
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diagrammatic proof for the universally quantified theorem. An existing technique
in logic, namely the constructiveω-rule, justifies the step from schematic proofs to
theoremhood.

We also aim to investigate the relation between formal algebraic proofs and
more “informal” diagrammatic proofs. Usually, theorems areformallyproved with
the use of inference steps which often do not convey an intuitive notion of truth-
fulness to humans. The inference steps of a formal symbolic (as opposed to dia-
grammatic) proof are statements that follow the rules of some logic. The reason we
trust that they are correct is that the logic has been previously proved to be sound.
Following and applying the rules of such a logic guarantees that there is no mistake
in the proof. We want to have such a guarantee in our proof system, and moreover,
to gain an insight into the proof. Ultimately, the entire process of diagrammatically
proving theorems will illuminate the issues of formality, rigour, truthfulness and
power of diagrammatic proofs.

We implemented a diagrammatic proof system called DIAMOND, which au-
tomates such diagrammatic reasoning and applies it to problem solving in math-
ematics. The user interactively constructs example proofs by choosing an initial
diagram which represents the theorem, and then applies diagrammatic operations
to build a proof. DIAMOND then automatically extracts a general pattern from these
instances, and captures it in a recursive program.

First, we list some of the theorems and their diagrammatic proofs. These help
us define our problem domain. Second, we present DIAMOND’s architecture, some
operations required, the abstraction mechanism employed, and indicate how to
verify the abstracted proof. Next, we report on some of our results and discuss
future work. Then, we discuss some of the related diagrammatic reasoning systems.
Finally, we conclude by summarising the main points of this paper.

2. “Diagrammatic” Theorems

We are interested in mathematical theorems that admit diagrammatic proofs. In
order to clarify what we mean by diagrammatic proofs we first list some example
theorems. Then, we introduce a taxonomy for categorising these examples in order
to be able to characterise the domain of problems under consideration.

2.1. EXAMPLES

2.1.1. Pythagoras’ Theorem

Pythagoras’ Theorem states that the square of the hypotenuse of a right angle
triangle equals the sum of the squares of its other two sides. Here is one of the
many different diagrammatic proofs of this theorem, taken from Nelsen (1993: 3):
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a2+ b2 = c2

The proof consists of first taking any right angle triangle, completing a bigger
square by joining to it identical triangles and squares along its sides, and then
rearranging the triangles in a bigger square.

2.1.2. Sum of Odd Naturals

This example is also taken from Nelsen (1993: 71). The theorem about thesum of
odd naturalsstates the following:

1+ 3+ · · · + (2n− 1) = n2

Note the use of parametern. If we take a square we can cut it into as many ells
(which are made up of two adjacent sides of the square) as the magnitude of the
side of the square. Note that one ell is made out of two sides, i.e., 2n, but the shared
vertex has been counted twice. Therefore, one ell has a magnitude of(2n − 1),
wheren is the magnitude of the square.

2.1.3. Geometric Sum

This example is also taken from Nelsen (1993: 118). A theorem about a geometric
sum of 1/2n states the following:

1

2
+ 1

4
+ 1

8
+ · · · = 1
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Note the use of ellipsis in the diagram. Take a square of unit magnitude. Cut it
down the middle. Now, cut one half of the previously cut square into halves again.
This will create two identical squares making up a half of the original square. Take
one of these two squares and continue doing this procedure indefinitely.

2.2. CLASSIFICATION

From the analysis of the examples that we presented above, and many others (see
Jamnik, 1999; Nelsen, 1993), three categories of proofs can be distinguished:

Category 1: Non-inductive theorems. Usually, there is only one representative di-
agram for all instances of the theorem. There is no need for induction to prove
the general case: proofs are not schematic. Simple geometric manipulations
of a diagram prove the individual case. Abstraction is required to show that
this proof will hold for alla, b. Theorems are of continuous space. Example
theorem:Pythagoras’ theorem.

Category 2: Inductive theorems with a parameter. A diagram is a representative of
a particular instance of a theorem. Proofs are schematic: they require induction
for the general diagram of magnituden (a concrete diagram cannot be drawn
for this instance). An alternative method can sometimes be used to capture
the generality of the proof. Theorems are of discrete space. Example theorem:
sum of odd naturals.

Category 3: Theorems whose proofs are inherently inductive: for each individual
concrete case of the diagram they need an inductive step to prove the theorem.
Every particular instance of a theorem, when represented as a diagram re-
quires the use of abstractions to represent infinity. Theorems are of continuous
space. Example theorem:geometric sum.

2.3. PROBLEM DOMAIN

We choose mathematics as our domain for theorems since it allows us to make
formal statements about the reasoning, proof search, induction, generalisations,
abstractions and such issues. Having introduced the examples and their categori-
sation, which is by no means exhaustive, we are now able to further restrict our
domain of mathematical theorems.

First, we narrow down the domain to a subset of theorems that can be repre-
sented as diagrams without the need for abstraction (e.g., the use of ellipsis, as
in the above example theorem forgeometric sum). Conducting proofs and using
abstractions in diagrams is problematic, since it is very difficult to keep track of
these abstractions while manipulating the diagram during the proof procedure.

Second, we consider diagrammatic proofs that require induction to prove the
general case (i.e., Category 2 above). Namely, diagrams can be drawn only for
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concrete situations and objects. We cannot draw, for example, ann × n square
without some abstraction device, e.g., ellipsis. Our challenge is to find a mechanism
for extracting a general proof that does not require using abstractions in diagrams.?

The generality of the proof will be captured in an alternative way (by using the
constructiveω-rule — see Section 2.4).

Third, to date we consider theorems of natural number arithmetic only. DIA -
MOND is designed to prove examples of Category 2, where diagrams represent
natural numbers. A more formal definition of diagrams is given in Section 3.4.1.
We may extend diagrammatic theorem proving for examples of Category 1 as well.

One of the possibilities for future work is to consider a need for a more formal
problem domain definition.

2.4. CONSTRUCTIVEω-RULE

As mentioned above we use the constructiveω-rule to prove theorems of Cate-
gory 2. Baker et al. (1992) did some work on the constructiveω-rule and schematic
proofs for theorems of arithmetic. Here, we explain the idea behind constructive
ω-rule and schematic proofs and how they can be applied to diagrammatic proofs.

2.4.1. Schematic Proof

Schematic proofs use the constructiveω-rule which is an alternative to induction.
The constructiveω-rule allows inference of the sentence∀xP (x) from an infinite
sequenceP(n) n ∈ ω of sentences.

P(0), P (1), P (2), . . .

∀n.P (n) ,

where “if eachP(n) can be provedin a uniform way(from parametern), then
conclude∀nP (n).” The criterion for uniformity of the procedure of proof using
the constructiveω-rule is taken to be the provision of a general schematic proof,
namely the proof ofP(n) in terms ofn, where some rulesR are applied some
function ofn (i.e., fR(n)) times (a rule can also be applied a constant number of
times). Let the proof ofP(n) be captured using a recursive functionproof(n). Now,
proof(n) is schematic inn, since we applied some ruleR n times. The following
procedure summarises the essence of using the constructiveω-rule in schematic
proofs:
1. Prove a few special cases (e.g.,P(2), P(16), . . . ).
2. Abstract (guess)proof(n) (e.g., fromproof(2), proof(16), . . . ).
3. Prove thatproof(n) provesP(n) by meta-induction onn.

? Note that Barker-Plummer and Bailin (1997) formalise the use of abstractions, however in the
domain of well founded relations.
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The general pattern is extracted (guessed) from the individual proof instances by
(learning type) inductive inference. By meta mathematical induction we mean that
we introduce system META such that for alln:

`META proof(n) : P(n),

where “:” stands for “is a proof of.” Baker usedPAω (i.e., Peano arithmetic withω-
rule) for the system META (Baker et al., 1992). The meta inductive rule is defined
as follows:

`META proof(0) : P(0) proof(r) : P(r) `META proof(s(r)) : P(s(r))
`META ∀n proof(n) : P(n) .

This essentially says that by using the rules onP(s(n)) we can reduce it to
P(n). For more information, see Baker et al. (1992).

2.4.2. Diagrams and Schematic Proofs

We claim that we can extend Baker’s work on schematic proofs to our diagram-
matic proofs so that the generality of the diagrammatic proof is embedded in the
schematic proof. Thus, we eliminate the need for abstractions in diagrams, and can
extract a general schematic proof from manipulations on concrete diagrams.

The diagrammatic schematic proof starts with a few particular concrete cases
of the theorem represented by the diagram. The diagrammatic procedures (i.e.,
operations) on the diagram are performed next, capturing the inference steps of the
diagrammatic proof. This step corresponds to the first step of the schematic proof
procedure given in Section 2.4.

The second step is to abstract the operations involved in the schematic proof for
n. Note that the generality is represented as a recursive program which specifies a
sequence of diagrammatic procedures (operations) that are used on a diagram, and
not as a general representation of a diagram. More precisely, the basic idea is to
consider proofs forn+1 which can be reduced to proofs forn (or conversely, such
proofs forn which can be extended to proofs forn + 1 by adding to them some
additional sequence of operations). The difference between the proof for(n+1) and
the proof forn, i.e., the additional sequence of operations in the proof for(n+ 1)
with respect to the proof forn is referred to as the step case of the abstracted
schematic proof.

The last step in the schematic proof procedure is to prove by meta-induction
that the abstracted diagrammatic schematic proof is indeed correct. One way of
proving the correctness of schematic proofs is to create a theory of diagrams that
models the processes in a diagrammatic reasoning system and prove correctness
there. A formal definition of a diagrammatic proof of an arithmetic statement, and
the correctness of this diagrammatic proof will be discussed in Section 3.4.
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2.4.3. Schematic Diagrammatic Proof for the Sum of Odd Naturals

Now we can structure the diagrammatic proofs in a more formal way. Here we list
the proof for the theorem about thesum of odd naturalsas a sequence of steps that
need to be performed on the diagram:
1. Cut a square inton ells, where an ell consists of 2 adjacent sides of the square.
2. For each ell, continue splitting from an ell pairs of dots at the end of two adja-

cent sides of the ell until only 1 dot is left (note that for each ell of magnitude
n, we will haven−1 pairs of dots plus another dot which is a vertex of the two
adjacent sides, i.e., 2(n− 1)+ 1).

Identifying the operations (i.e., geometric manipulations) that were required to
prove the theorem will help us define a large repertoire of such operations which
will be used in the diagrammatic proofs. The generality of the proof is captured
by the use of the constructiveω-rule, by which we take a few special cases of the
diagram (say squares of magnitudes 15 and 16), and find the general pattern of the
proof that will hold for each case (e.g., the schematic proof given above).

3. Diamond System

The diagrammatic proof system DIAMOND is an embodiment of some of the
ideas presented in this paper. DIAMOND stands forDiagrammatic Reasoning and
Deduction.

Clearly, an important issue in the development of DIAMOND is the internal
representation of diagrams and operations on them. It was George Pólya who was
first to advise us on the importance of knowledge representation (see Pólya, 1945,
1965). Simon (1996) argued Pólya’s point further by stating that solving a problem
means representing it so that the solution becomes trivial, or at least transparent.
In automated reasoning it is difficult to see how to use this advice, since there is
normally only one representation scheme for the problem which is available to
the system. In DIAMOND we choose a representation which we hope captures the
intuitiveness, rigour and simplicity of human reasoning with diagrams. We aim to
represent diagrams in a way which enables a theorem prover to prove theorems
using diagram.

In DIAMOND we use a mixture of Cartesian and topological representations.
DIAMOND uses a primitive notion of a diagram, a dot. All otherelementaryand
deriveddiagrams (e.g., rows, columns, ells, frames, squares, triangles, rectangles,
etc.) are composed in various ways out of dots. The advice of Pólya about alter-
native representations can readily be used in DIAMOND. Namely, diagrams can be
represented in a variety of different ways. For instance, a square is represented as: a
sequence of rows; a sequence of columns; a concentric sequence of circumferences,
each of which is called a frame; a nested sequence of ells; a sequence of four similar
squares; a matrix; a sequence of diagonals.

The choice of the representation that DIAMOND uses is important. Most of the
proofs that DIAMOND proves require some kind of recursive decomposition of a
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diagram. Each alternative representation makes available a different form of recur-
sive decomposition. For more information on the choice of internal representation
for diagrams in DIAMOND, see Jamnik (1999).

The architecture of DIAMOND consists of two parts. Thediagrammatic com-
ponentforms and processes the diagram. It is the interface between DIAMOND

and the user. Theinference enginedeals with the diagrammatic inference steps. It
processes the operations on the diagram. An important submodule is the abstraction
mechanism which is used to extract general schematic proofs from example proofs.

The rest of this section presents the operations used to construct proofs, the
structure of proofs and the abstraction mechanism used in DIAMOND.

3.1. GEOMETRIC OPERATIONS

Geometric operations (also referred to as manipulations or procedures) capture the
inference steps of the proof. Thus, a sufficiently large number of such operations
which are then available to the user in the search for the proof, needs to be identified
and formalised. Since we are not generating, i.e., discovering diagrammatic proofs,
but rather we are trying to understand them, we can expect from the user to input
these operations. To date, a small number of such operations has been implemented
and is available to the user.

DIAMOND is targeted to prove theorems of discrete arithmetic. Diagrams are a
way of representing natural numbers. The interest lies in the effect on the numbers
that diagrams represent after an operation has been applied on the diagrams. Thus,
the operations join and split diagrams apart in various ways. Some operations are
just simple ones (e.g., split a row from a square), and some are more compli-
cated ones (e.g., decompose a square into a sequence of rows). Hence, DIAMOND

distinguishes between two types of operations,atomicandcomposite:?

Atomic operations: are basic one-step operations that can be combined into more
complex operations. Examples of such operations are: rotate, translate, cut,
split, join, remove, insert a segment,. . . To date, there are 14 atomic operations
implemented in DIAMOND.

Composite operations:are more complex, typically recursive operations, com-
posed from simple atomic ones. One can think of them as tactics in automated
reasoning. Composite operations are defined in terms of decomposition of
different recursive representations of diagrams. Depending on the theorem at
hand, the diagram is viewed using a particular representation, which enables
one to use a particular recursive composite operation. Ideally, the internal
representation of the diagram is pertinent to the composite operation that is
being carried out on it. Such a representation would render an operation very
easy to apply. It would be just a simple decomposition of the representation

? A complete list of operations can be found in Jamnik (1999), however, a more formal definition
of operations as part of the diagrammatic theory can be found in Section 3.4.3.
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of a diagram. Examples of such operations are: recursive decomposition of a
square into rows, or columns, or ells, or frames, . . .

In the example of the theorem for thesum of odd naturalsthe proof consists of the
following operations:lcut andsplit_ends.

3.2. CONSTRUCTING APROOF

DIAMOND’s example proof consists of a sequence of applications of geometric
operations on a diagram. The abstraction is then carried out automatically, if any
such abstraction exists for the two example proofs given.? DIAMOND expects the
example proofs to be formulated in a particular way where the order of operations
in the user’s formulation of the example proofs is crucial. Both example proofs
are expected to be given with the same order of operations, but with some extra
operations in the case of the proof of(n+ 1) for some particularn.

Consider the example for thesum of odd naturals. The step cases for proofs for
n = 4 andn = 3 look as follows:

The aim is to recognise automatically the structure of the proof from a linear se-
quence of applications of operations, so that the example proofs forn andn + 1
can be reformulated in the general case into the following:

proof(n) = A(n),A(n− 1), . . .A(1),B,
proof(n+ 1) = A(n+ 1),A(n),A(n− 1), . . .A(1),B,

where for eachn, A(n) is a step case consisting of a sequence of applications
of some operations andB is a base case forn = 0. Alternatively, we seek this
recursive reformulation:

proof(n+ 1) = A(n+ 1), proof(n),

proof(0) = B.

? If the proof contains a case split for say, even and odd integers, and the two example proofs
given are for two different cases, then DIAMOND cannot abstract from them. However, DIAMOND

recognises that the example proofs were given for different cases, and requests the user to supply
another example proof for each case, in order for it to be able to abstract. This will be further
explained in Section 3.3.2.
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Note thatproof(0) is often an empty list of operations, because often no diagram is
defined forn = 0, i.e., a diagram which consists of no dots.

A further issue that we are investigating currently is to relax the requirement for
a particular ordering of operations in formulating example proofs. Sets with partial
ordering could be used as an alternative.

3.3. ABSTRACTION

Given some example proofs DIAMOND needs to abstract from them, so that the
final diagrammatic proof is not only for the cases of specificn’s, but holds for all
n. Such a schematic proof is a general program which specifies the applications of
some operations, where the number of application of each operation is dependent
onn or is a constant.

We distinguish between two types of example proofs:destructor, i.e., the exam-
ple proofs which are formulated so that the base case operations are performed last
(in a sense, the initial diagram is “destructed” by the application of operations down
to a trivial diagram, forming the proof along in this way); andconstructor, i.e., the
base case operations are performed first followed by the step case operations. In
DIAMOND we arbitrarily choose to use destructor schematic proofs.

A proof that has the same structure for alln, i.e., one recursive function defines
a complete proof for alln, is called a 1-homogeneous proof. Proofs can bec-
homogeneous; then there arec cases of the proof. For instance, when there are
two cases of a proof, one for odd and one for even natural numbers, then there
need to be two recursive functions defining each case of the proof – the proof is
2-homogeneous. We say that if all concrete instances of the proof (for instances
of numbers that “equal moduloc”) have the same structure and can be abstracted,
then the proof isc-homogeneous. If there arec cases, then there arec different
abstracted proofs, one for each case. We seek the smallest complete recursive
definition of a proof, i.e.,c potentially different schematic proofs, if there arec
cases. The following theorem and corollary will help us define what we mean by
the smallest complete proof:

THEOREM 1. If a proof isc-homogeneous, then it is also(kc)-homogeneous for
every natural numberk > 0.

The immediate consequence of Theorem 1 is:

COROLLARY 1. If a proof isnot c-homogeneous, then it is alsonot f -homoge-
neous for every factorf of c.

In a c-homogeneous proof we will denote byBr a base case for a branch of
numbers which give remainderr when divided byc. Br is actually a proof for
the smallest natural number that gives remainderr when divided byc.
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A schematic proof is defined to be the smallest complete proof if there is no
otherf -homogeneous proof obtainable from ac-homogeneous proof for any factor
f of c, and allf schematic proofs forf cases are defined.

The general representation of a destructor proof is formalised as follows – let:
n = kc + r wherec = number of cases andr < c, andi ≥ 1. Then the recursive
definition of a general proof is:

proof(ic + r) = Ar (ic + r), proof((i − 1)c + r),
proof(r) = Br ,

whereAr is a step case andBr is a base case for a class of proofs wheren ≡
r(modc). “,” denotes concatenation of sequences of operations: “do operations of
A(n + 1), thenproof(n).” The formalisation of abstracted proof forconstructor
proofs is symmetric to the one given above.

3.3.1. Abstracting for All Linear Functions

As mentioned above, we aim to recognise the particular recursive structure of the
given example proofs. More precisely, we want to extract the step caseA and the
base caseB of the proof and then abstract them for alln. The general methodology
employed for doing this can be demonstrated as:

The first step of the abstraction algorithm is to extract the difference between the
two given example proofs forn1 andn2 (n1 > n2), wherec = n1− n2, in the hope
that this, when abstracted, will be the step caseA of the proof. This is done by
commutative and associative matching? which detects and returns the difference
between the two example proofs. Now we have a concrete step case of the proof.
This difference consists of a few operationsopk each appliedxk,n1 times for some
naturalk.

To make a step case general, we need to find the dependency function between
everyxk,n1 andn1. This demands identifying a function ofn1, which would give a
specificxk,n1, i.e.,fk(n1) = xk,n1 for somek andn1. DIAMOND assumes that the
dependency is linear:an + b. This is a heuristically adequate choice. Thus, let us
write for eachopk a linear equationan1+b = xk,n1, wheren1 andxk,n1 are known.

The subsequent stage of the abstraction is to extract the next step case from
the rest of the example proof for the corresponding newn (i.e.,n2). If successful,
continue extracting step cases for the correspondingn’s from the rest of the proof
until only the base case is left.

? Using commutative and associative matching reduces the sensitivity to the order of proof steps
(Jamnik, 1999).
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Since we are dealing with inductive proofs, it is expected that every step case
of a proof will have the same structure, i.e., will consist of the same sequence of
application of operations, but a different number of times. Thus, we could in the
same way as above for every operationopk write a linear equationan2+b = xk,n2.
However, the numberxk,n2 of applications of a particular operationopk in the next
step case is not known. A possible value ofxk,n2 is acquired by counting the number
x′ of times every operationopk of the initial step case occurs in the rest of the
proof. The actual value of the number of occurrences of each operation could be
any number from 0 tox′. Thus, we do branching for all such values and thus we
have:

an1+ b = xk,n1,

an2+ b = xk,n2,

wheren1, n2, xk,n1 andxk,n2 are known, so the equations can be solved fora and
b, andxk,n2 takes values from 0 tox′. This results in several possible potential
abstractions of the step case. The aim is to eliminate those that are impossible. After
checking if step cases for alln down to the base case are structurally consistent
one hopes to be left with at least one possible abstraction of the example proofs.
The step case is rejected when the sequence of operations in the subsequent step
cases is impossible, i.e., the functions were wrong. This normally occurs when
the dependency function gives a negative number of applications of a particular
operation, when the calculated sequence is not identical to the rest of the example
proof, or when there is no integer solution to our equations. Usually, there will be
only one possible abstraction of the two given example proofs.

The example proof for thesum of odd naturalsis abstracted into the following
step case and base case:

A(n) = [(lcut,1), (split_diagonal_ends, n− 1)],
B = [ ],

where the function in parentheses indicates the number of times that the operations
are applied for each particularn.

3.3.2. f -Homogeneous Proof

Assume two example proofs for thesum of odd naturals(the example proof would
consist of makingn lcuts, and then showing that each ell consists of an odd number
of dots). If the user supplies two example proofs for values ofn andn + 1, for
some concreten, then there is no problem, so DIAMOND will abstract normally
and determine that the proof is 1-homogeneous. However, should the user supply
proofs forn andn + 2 for some concreten, the first stage of abstraction would
determine that the step case consists of twolcuts. However, a complete recursive
function for abstraction requires a step case to consist of onelcut only.

DIAMOND checks this by trying to split the step case into a furtherf struc-
turally the same sequences of operations, for all factorsf of c in order to obtain an
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f -homogeneous proof. If the method fails, then there is no suchf -homogeneous
further abstraction of the step caseA(n). If the method succeeds, and DIAMOND

finds a new abstraction of the step case, call thisA′(n), then it also needs to find a
new base caseB ′r ′ where the previousr for c was such thatn = kc + r andr < c,
and the newr ′ is now such thatn = kf + r ′ andr ′ < f .

3.4. CORRECTNESS OF THESCHEMATIC PROOF

The last stage of extracting a diagrammatic proof is to check that theguessedgen-
eral schematic proof is indeed correct. To prove that the schematic proof is correct
we need to show in some meta-theory thatproof(n) uniformly provesP(n) for all n,
i.e., it gives a proof tree withP(n) at its root, and axioms at its leaves. This requires
reasoning about proofs, i.e., meta-level reasoning. A meta-level proof using general
diagrams would be an obvious method for verifying our schematic proof. However,
such a meta-level proof would reintroduce the need for abstractions (e.g., ellipsis)
of diagrams, which we are trying to avoid.

One way of overcoming this problem is to define diagrams and operations in
a theory of diagrams where we can express abstract diagrams symbolically rather
than diagrammatically. In this theory we can verify schematic proofs by defining
the notion of applicability of a posited proof. Given that a particular theorem is
expressed as an equality, its schematic proof is correct if applying the operations
specified in the schematic proof of the diagrammatic representation of the left
hand side of the theorem results in the diagrammatic representation of the right
hand side of the theorem. There are two conditions that need to be satisfied. The
first condition is that there is an appropriate diagrammatic representation available
for the conversion of the theorem into its diagrammatic representation. The sec-
ond condition is that the operations of the schematic proof are defined on those
diagrams.

Before we can state the definition of the correctness property of schematic
proofs, we need to formalise the machinery which will enable us to model the
processes of a diagrammatic proof. Therefore, we need to formally define di-
agrams, operations on them, and the applicability of operations of a schematic
proof.

3.4.1. Diagrams

Diagrams in the theory are defined to be ofobject type. Some examples of the
different kinds of objectnames in the theory are:row, column, ell, frame, square,
rectangle, andtriangle.

Diagrams of the theory model natural numbers. DIAMOND’s primitive notion
of a concrete diagram, a dot, is represented in the theory as the natural number 1.
Objects are introduced via a constructor function,diagram, which takes the name
of the type of a diagram and the list of parameters of its magnitude. Thus, the type
of constructor functiondiagram is name × pnat list → object. So, for instance,
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a square of magnitude 4 is expressed in the theory asdiagram(square,[4]). All
elementary and derived concrete diagrams are expressed using a primitive object
dot, hence in the theory they can be expressed using a constructor function, the
object name and some parameter representing a natural number for the magnitude
of the diagram.

Constant∅ denotes a null diagram, or in other words an empty diagram. We
define that any diagram that is of 0 magnitude is an empty diagram (note thata ∈ b
denotes that a natural numbera is an element of a listb; thus the type of an infix∈
is: pnat × pnat list→ boolean):

0 ∈ s → diagram(x, s) ≡ ∅. (1)

Note also, that all triangles are equilateral.? Here are some examples of diagrams:
diagram(row,n), diagram(column,n), diagram(square,n) anddiagram(ell,n).

3.4.2. Operators

This section gives the operators available in the theory. First, we write diagram-

matic equality using
d= which denotes that two lists of diagrams are identical. Here

is the definition of
d=

X
d= Y←→ ∀d. count(d,X) = count(d,Y),

where the functioncount can be defined by:

count(d, [ ]) = 0,

count(d,d::D) = 1+ count(d,D),

d 6= e→ count(d,e::D) = count(d,D).

Diagrammatic equality
d= is a larger relation than an arithmetic equality=,

because it has all the properties of=, i.e., reflexivity, symmetry, transitivity and
substitution properties, plus an additional one – the order of elements in a list does
not matter. Therefore, two lists of diagrams,X andY, are diagrammatically equal,

X
d= Y, even if the orders in which the diagrams are listed in both lists differ.??

We now define some operators that introduce the existence of several diagrams
(note that the data typepnat stands for non-negative natural number of Peano
arithmetic): @ is append on lists; :: andnil are list constructors (concatenation

? It is hard to represent discrete triangles that are of any magnitude, i.e., the sides are of different
and any magnitudes. Triangles are represented in a discrete space. Hence, they appear to be right-
angle triangles, despite the fact the all the sides of any triangle are of equal discrete magnitude. Were
we to extend DIAMOND to prove theorems of real arithmetic (see Section 4), then there would be a
need for continuous space, and therefore a scope for triangles of any magnitude.
?? Note that our definition of diagrammatic equality of lists is equivalent to bag equality. The order

of the elements in a bag does not matter.
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of elements onto a list, and an empty list);⊗ is an infix operator which introduces
a combination of a number of identical lists of diagrams;

⊎
denotes a collection of

diagrams of increasing magnitudes which are all of the same kind – it is analogous
to
∑

for summation of integers. Here is the recursive definition of
⊎b
i=a for all

a ≤ b:?
a⊎
i=a

diagram(name, f (i))
d= [diagram(name, f (a))], (2)

a ≤ b→
b+1⊎
i=a

diagram(name, f (i))
d=

b⊎
i=a

diagram(name, f (i))@

[diagram(name, f (b + 1))]. (3)

Note thatf is some function which generates a list of natural numbers for a given
numberi. This list denotes the parameters of a magnitude of a diagram.

3.4.3. Operations

Diagrammatic operations are represented via a functionop : opname × object list
→ object list. We give here a definition of one operation only, but there are many
more operations defined in the theory – see Jamnik (1999).

op(lcut,diagram(square, n)::D)
d= [diagram(square, n− 1),

diagram(ell, n)]@D. (4)

3.4.4. One_Apply andApply

Here we define what it means to apply an operation on a diagram several times. We
use a functionapply and functionone_apply. Let:

one_apply(0, opnm,D)
d= D, (5)

one_apply(n+ 1, opnm,D)
d= op(opnm,one_apply(n, opnm,D)), (6)

apply([ ],D)
d= D, (7)

apply((opnm, x) :: opss,D)
d= apply(opss,one_apply(x, opnm,D). (8)

3.4.5. Equations

Here we give a theorem which will be needed. Equation (9) is provable from (7)
and (8). Its proof is not given here, but can be found in Jamnik (1999).

? Note that to simplify the notation we write
⊎b
i=a D(i) instead of

⊎
(a, b, λi.D(i)).
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apply(ops,D::Ds)
d= apply(ops,[D])@Ds . (9)

3.4.6. Conversion Relationdmap

Let dmap denote a relation between a particular class of statements of arithmetic
and their equivalent diagrammatic expressions in the theory of diagrams. The
equivalence is defined to be over thesizeof the diagram. The size of a diagram is
defined to be the number of counters (dots) in the diagram, i.e., the natural number
that the diagram represents.dmap takes two arguments, an arithmetic expression
and a list of diagrams which could collectively represent this expression. Hence, the
type of the relationdmap is pnat × object list. Here are some general conversions:

dmap(0, [ ]), (10)

dmap(n2, [diagram(square, [n])]), (11)

dmap(2n− 1, [diagram(ell, [n])]), (12)

dmap

 b∑
j=a

f (j),

b⊎
j=a

Dj

 such that∀j, a ≤ j ≤ b, dmap(f (j), [Dj ]). (13)

We have now formalised enough machinery to be able to define the correctness
property of a schematic proof.

DEFINITION 1 (Correctness of Schematic Proofs).Proof is a correct schematic
proof of a particular conjecture∀n L(n) = R(n) if for all n there exist two lists of
diagramsD andE such thatdmap(L(n),D) anddmap(R(n),E), and

apply (proof (n), D)
d= E.

It is possible to prove the property in Definition 1 only ifL(n), R(n) andproof
are known, i.e., for a specific case of a conjecture and a schematic proof. Knowing
L(n) andR(n) allows us to infer some conversion relations which specify two lists
of diagramsD andE. This satisfies the first part of Definition 1. In the next section
we prove the correctness of a schematic proof for a particular conjecture at hand.

3.4.7. Proof of Correctness of Schematic Proofs for an Example

Here we prove the property given in Definition 1 for an example of a schematic
proof of a theorem about thesum of odd naturals. The theorem is stated asn2 =∑n

i=0(2i − 1). The schematic proof of this theorem is given as:?

proof(0) = [ ], (14)

proof(n+ 1) = [(lcut,1)], proof(n). (15)
? For the brevity of presentation we take a simpler version of the schematic proof which does not

include the operationsplit_ends.
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The proof of correctness of a schematic proof for this particular example
requires induction onn. The base case forn = 0 is trivial, since by (10) no
operations are applied to an empty diagram list which results in[ ]. We consider a
step case of induction.

Step case:

Hypothesis: forn
Using (11) noticedmap(n2, [diagram(square, [n])]),
hence letD = [diagram(square, [n])].
Using (13) and (12) noticedmap(

∑n
i=0(2i − 1),

⊎n
i=0 diagram(ell, [i])),

hence letE =⊎n
i=0 diagram(ell, [i]).

apply(proof(n), [diagram(square, [n])]) d=
n⊎
i=0

diagram(ell, [i])

Conclusion: forn+ 1
Similarly to the hypothesis,D andE are converted forn+ 1.

apply(proof(n+ 1), [diagram(square, [n+ 1])]) d=
n+1⊎
i=0

diagram(ell, [i])

proof(n+ 1) = [(lcut,1)], proof(n) ⇓

apply(((lcut,1), proof(n)), [diagram(square, [n+ 1])]) d=
n+1⊎
i=0

diagram(ell, [i])

(8) ⇓
apply(proof(n), one_apply(1, lcut,

[diagram(square, [n+ 1])])) d=
n+1⊎
i=0

diagram(ell, [i])

(6) and(5) ⇓

apply(proof(n), op(lcut,[diagram(square, [n+ 1])]) d=
n+1⊎
i=0

diagram(ell, [i])

(4) ⇓
apply(proof(n), [diagram(square, [n]),

diagram(ell, [n+ 1])]) d=
n+1⊎
i=0

diagram(ell, [i])
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(9) ⇓
apply(proof(n), [diagram(square, [n])])

@[diagram(ell, [n+ 1])] d=
n+1⊎
i=0

diagram(ell, [i])

(RHS of hypothesis) ⇓
n⊎
i=0

diagram(ell, [i])@[diagram(ell, [n+ 1])] d=
n+1⊎
i=0

diagram(ell, [i])

(3) ⇓
n+1⊎
i=0

diagram(ell, [i]) d=
n+1⊎
i=0

diagram(ell, [i])

2

3.5. ARITHMETIC CONJECTURE ANDDIAGRAMMATIC PROOF

Definition 1 makes no claims about the link between a schematic proof and the
theoremhood of a conjecture∀n L(n) = R(n). We still need to consider the
possibility of acorrectschematic proof of afalseconjecture. To establish that the
conjecture is true when proved by a schematic proof, an explicit algebraic link
between them needs to be defined. We establish this link via thesize of diagrams.
We first define the size of a diagram, and later, in Theorem 2, we state the theorem
about the algebraic correctness of a schematic proof for a given conjecture.

Let us denote the size of the diagramD by |D |. Here is a definition for the size
of a diagram:

DEFINITION 2 (Size of Diagrams). The size of a list of diagrams is equal to the
value of the arithmetic expression that it represents: ifdmap(e,D) then|D | = e.

Note that the type of| | is: object list→ pnat. Using the property of size defined
in Definition 2 on formulae from (10) to (13), we have the following:

| [ ] | = 0, (16)

| [diagram(square, [n])] | = n2, (17)

| [diagram(ell, [n])] | = 2n− 1, (18)∣∣∣∣∣∣
b⊎
j=a

Dj

∣∣∣∣∣∣ =
b∑
j=a

∣∣ [Dj ] ∣∣ . (19)
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Apart from being diagrammatically correct, we want every schematic proof to
bealgebraically correctas well. A schematic proof is algebraically correct if the
sizes of the diagrams representing both sides of the proposition after the opera-
tions of the schematic proof have been applied are the same. Theorem 2 states the
property of algebraic correctness for any schematic proof.

THEOREM 2 (Algebraic Correctness of Schematic Proofs).For all instances of a
schematic proofP and for all pairs of lists of diagramsD andE, a schematic proof
P is algebraically correct if and only if

apply (P,D)
d= E −→ |D | = |E | .

The proof of Theorem 2 is straightforward by appealing to the properties of dia-
gram size invariance under applications of multiple operations. The lemmas about
these properties and the proof of Theorem 2 are not given here, but can be found in
Jamnik (1999).

There is one last theorem needed in the formalisation of diagrammatic theory
which will allow usto provetheorems of arithmetic usingdiagrammaticproofs. We
state in Theorem 3 the property about the diagrammatic provability of arithmetic
arguments.

THEOREM 3 (Diagrammatic Provability of Arithmetic Conjecture).A conjecture
∀n L(n) = R(n) is diagrammatically provable if and only if for alln there exist
two lists of diagramsD andE such thatdmap(L(n),D) anddmap(R(n),E), and

|D | = |E | −→ L(n) = R(n)

The proof of Theorem 3 is trivial by the definition of size of a list of diagrams given
in Definition 2.

3.5.1. Diagrammatic Provability for an Example

We consider now an example of an arithmetic conjecture and prove it diagrammati-
cally using a schematic proof that DIAMOND extracts. Let the arithmetic conjecture
be

∀n n2 =
n∑
i=0

2i − 1

and the schematic proofproof that DIAMOND extracted be as defined in (14)
and (15). Here are the reasoning steps of the proof:
1. Appealing to Theorem 3 we can discharge the conjecture by:

– using (11) noticedmap(n2, [diagram(square, [n])]), hence let
D = [diagram(square, [n])],
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– using (13) and (12) noticedmap(
∑n

i=0(2i − 1),
⊎n
i=0 diagram(ell, [i])),

hence letE =⊎n
i=0 diagram(ell, [i]),

and proving for alln

| [diagram(square, [n])] | =
∣∣∣∣∣
n⊎
i=0

diagram(ell, [i])
∣∣∣∣∣ (20)

2. Appealing to Theorem 2 andproof(n) that DIAMOND extracted, we can
discharge the expression in (1) by proving for alln

apply (proof(n), [diagram(square, [n])]) d=
n⊎
i=0

diagram(ell, [i]) (21)

3. Finally, notice that we already proved (2) in Section 3.4.7.
2

4. Results and Further Work

DIAMOND is implemented in Standard ML of New Jersey, Version 109.? The code
is available upon request to the first author.

The entire process of interactive construction of proofs, automatic abstraction
from example proofs, and automatic verification of schematic proofs in the theory
of diagrams have been implemented in DIAMOND. In the evaluation of DIAMOND

we distinguished between a development and a test set of theorems which we
proved using DIAMOND. The development set of theorems included three theo-
rems:the sum of odd naturals, i.e.,n2 =∑n

i=0 2i − 1, the sum of all naturals, i.e.,
n(n+1)/2=∑n

i−0 i, andan odd triangular sum, i.e.,T ri2n+1 = T rin+1+3T rin,
whereT rii is an i-th triangular number (Nelsen, 1993). The test set included 26
theorems. Some proofs of these theorems are reported more elaborately in Jam-
nik (1999). All of these theorems contribute to the significant range and depth of
theorems proved using DIAMOND. For more information, the reader is referred to
Jamnik (1999).

We want to relax the restriction currently imposed on the formulation of ex-
ample proofs. Our abstraction mechanism can deal with a linear sequence of
operations. This sequence is in fact a linearisation of some partially ordered se-
quence of operation. We want an abstraction mechanism which would be sensitive
to partially ordered sequences of operations.

There is also a possibility of allowing non-linear dependency functions in
general schematic proofs: e.g., exponential or polynomial function.

Some recognition and generalisation of diagrams using abstractions could be an
interesting issue to consider. This requires some formalisation of abstractions (e.g.,
ellipsis) in diagrams.
? Standard ML of New Jersey (SML/NJ) is a compiler and programming environment for the

Standard ML programming language. SML/NJ is publicly available via the internet on the following
site:http://cm.bell-labs.com/cm/cs/what/smlnj/index.html
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There is a possibility to extend DIAMOND’s problem domain from natural num-
ber arithmetic to geometry or even further to a different field such as hardware
verification. Extending our problem domain to geometry would enable us to prove
theorems of Category 1 which are usually geometric theorems of continuous space.
These do not require induction, hence there would be no need for DIAMOND’s
abstraction mechanism. The generality is embedded in the use of continuous space
and diagrams of general magnitude. The existing operations and the formalisation
of schematic proofs can be used. Additional operations for moving diagrams in
various directions would need to be implemented. For more information on the
possible extension of DIAMOND to other problem domains, see Jamnik (1999).

DIAMOND is an interactive proof checker. A long term goal is to design an
automated theorem prover capable of discovering diagrammatic proofs.

5. Related Work

Several diagrammatic systems such as the Geometry Machine (Gelernter, 1963),
Diagram Configuration model (Koedinger and Anderson, 1990), GROVER
(Barker-Plummer and Bailin, 1997), and Hyperproof (Barwise and Etchemendy,
1991) have been implemented in the past and are of relevance to our system.
Additional information about issues in reasoning with diagrams can be found in
Chandrasekaran et al. (1995) which is a good reference for demonstrating how
extensive and important this field is.

One of the first systems to use a diagram in proving theorems was Gelernter’s
Geometry Machine (Gelernter, 1963). The diagram in the geometry machine has
two roles. Itsnegativerole is to reject hypotheses (subgoals) that are not true in the
diagram. In this way the search space is pruned. Thepositiverole of the diagram
is to shorten the inference paths by assuming various facts that are obvious in the
diagram as true.

Koedinger and Anderson (1990) implemented a geometry problem solver called
the Diagram Configuration (DC) model. The key feature of the system is that it
organises its data in perceptual chunks, called diagram configurations. These are
analogical to key features of diagrams that humans recognise when they inspect
a diagram. Therefore, during the process of generating a solution path, DC infers
the key steps first, and ignores along the way the less important features of the
diagram, i.e., the less important inference steps.

“&”/GROVER, developed by Barker-Plummer and Bailin (1997) is an auto-
mated reasoning system which uses information from a diagram to guide proof
search. Its problem domain are theorems of well founded relations. It consists of
the “&” automated theorem prover, based on the sequent calculus for Zermelo
set theory, and GROVER, which is the diagram interpreting component of the
system. It passes information extracted from the diagram and translated into logical
formulae in the language of “&” to the “&” theorem prover. These formulae are
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then used as additional hypotheses to the main proof of the conjecture. GROVER
considers only subgoals that are known to be true in the diagram.

The main common feature of these three systems is their use of diagrams. The
diagram is used to model algebraic statements, and the system uses these models
for heuristic guidance while searching for analgebraicproof. Thus, the basic un-
derlying reasoning process is non-diagrammatic. In contrast, proofs in DIAMOND

are explicitly constructed by operations on diagrams, thus the inference steps of
the proof are entirely diagrammatic.

Perhaps a more closely related system to DIAMOND is Hyperproof (Barwise
and Etchemendy, 1991). Hyperproof reasons about the blocks world. It is an
educational tool to teach principles of logic reasoning and proof construction.
Hyperproof is an interactive tool for proof checking, as opposed to an automated
theorem prover. It is a heterogeneous logic system, because it models inferencing
between different kinds of representation. Unlike traditional systems for first-order
logic, which use sentential representation, Hyperproof uses sentential and diagram-
matic (graphical) representation. It uses a diagram for a concise representation of
a complex system aiming to aid human reasoning. The user can take advantage
either of conventional sentential inference rules or diagrammatic inference rules. It
differs from DIAMOND in that Hyperproof’s diagrammatic inference rules deduce
from a diagram to a sentential formula or vice versa. It does not have diagrammatic
inference rules between two diagrams, as it is the case in DIAMOND. Moreover, in
Hyperproof the sentential inference rules (as well as diagrammatic description of a
situation) are essential to construct a proof.

Closer to our work is work done by Baker et al. (1992) described in Section 2.4
on constructiveω-rule, whereby she exploits the uniform structure of inductive
proofs to abstract from example proofs. The main difference between Baker’s work
and ours is the problem domain. Baker implemented the use of constructiveω-rule
for proving arithmetic theorems. Our domain, on the other hand, is diagrammatic
theorems. Furthermore, Baker’s motivation was to use schematic proofs for the-
orems that require a cut rule in the inductive proof, otherwise the proof cannot
be carried out automatically. Schematic proofs avoid the need for a cut rule. On
the other hand, we use the constructiveω-rule in order to justify the automatic
provision of general arguments about theorems and their proofs from particular
instances.

6. Conclusion

One of the aims in the research reported here is to see whether it is possible to
automate the use of diagrams in formal proofs. The hope is that automating the
“informal” diagrammatic reasoning of humans will shed light on the issues of
formality, informality, rigour and “intuitive” understanding of the correctness of
diagrammatic proofs. We have made good progress in exploring this important and
difficult area. In particular, we have an explicit handle on abstraction. We showed
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that diagramscanbe used forformal proofs. We presented, as an example, a dia-
grammatic reasoning system, DIAMOND, which supports interactive construction
of diagrammatic proofs. DIAMOND applies diagrammatic reasoning to problem
solving in mathematics. The user proves concrete examples of a theorem, and the
system automatically abstracts these instances to give a general schematic proof
which we hope holds for alln. In DIAMOND we have the logical machinery (meta-
theory, constructiveω-rule) to subsequently justify that the schematic proof does
indeed prove the original theorem.
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