
Automation of Diagrammatic Reasoning*

Mateja Jamnik, Alan Bundy, Ian Green
Department of Artificial Intelligence, 80 South Bridge

Edinburgh, EH1 1HN, UK
matejaj@dai.ed.ac.uk, A.Bundy@ed.ac.uk, I.Green@ed.ac.uk

\

Abstract

Theorems in automated theorem proving are usually
proved by logical formal proofs. However, there is
a subset of problems which humans can prove in a
different way by the use of geometric operations on
diagrams, so called diagrammatic proofs. Insight is
more clearly perceived in these than in the corres-
ponding algebraic proofs: they capture an intuitive
notion of truthfulness that humans find easy to see
and understand. We are identifying and automating
this diagrammatic reasoning on mathematical theor-
ems. The user gives the system, called DIAMOND, a
theorem and then interactively proves it by the use of
geometric manipulations on the diagram. These oper-
ations are the "inference steps" of the proof. DIA-
MOND then automatically derives from these example
proofs a generaJised proof. The constructive w-rule is
used as a mathematical basis to capture the general-
ity of inductive diagrammatic proofs. In this way, we
explore the relation between diagrammatic and algeb-
raic proofs.

Introduction

OlOlOlOlOlO
ooooloo
OlOlOlOOO
OlOlO o o o
OLOOOOO
000000

1 +3+ 5+...q- (2n- 1)---- 2

It requires only basic secondary school knowledge of
mathematics to realise that the diagram above is a
proof of a theorem about the sum of odd naturals.

It is an interesting property of diagrams that allows
us to "see" and understand so much just by looking at
a simple diagram. Not only do we know what theorem
the diagram represents, but we also understand the

*The work reported in this paper has been presented at
IJCAI-97 in Nagoya, Japan. The original version of this
paper is to be published by Morgan Kaufmann Publishers
in the Proceedings of IJCAI-97.

proof of the theorem represented by the diagram and
believe it is correct.

Is it possible to simulate and formalise this sort
of diagrammatic reasoning on machines? Or is it a
kind of intuitive reasoning particular to humans that
mere machines are incapable of? Roger Penrose claims
that it is not possible to automate such diagrammatic
proofs.1 We are taking his position as an inspiration
and are trying to capture the kind of diagrammatic
reasoning that Penrose is talking about so that we will
be able to simulate it on a computer.

The importance of diagrams in many domains of
reasoning has been extensively discussed by Larkin
and Simon (Larkin & Simon 1987), who claim that "a
diagram is (sometimes) worth ten thousand words".
The advantage of a diagram is that it concisely stores
information, explicitly represents the relations among
the elements of the diagram, and it supports a lot of
perceptual inferences that are very easy for humans.

It is exactly these characteristics of diagrams that we
wish to exploit in our project. In this paper we present
a system (which is currently being developed) called
DIAMOND (DIAgraMmatic reasONing and Deduc-
tion), which reasons with diagrams. With this sys-
tem, the user inputs a theorem of mathematics to be
proved, instructs the system what diagram to start the
search for the proof from, and decides what geometric
operations to perform during the proof search. Our
aim is to investigate the relation between formal algeb-
raic proofs and more "informal" diagrammatic proofs.
Usually, theorems are formally proved with the use of
inference steps which often do not convey an intuitive
notion of truthfulness to humans. The inference steps
are just statements that follow the rules of some logic.
The reason we trust that, they are correct is that the
logic has been previously proved to be sound. Follow-
ing and applying the rules of such a logic guarantees
us that there is no mistake in the proof. We might
not have such a guarantee in DIAMOND, but will gain

1Roger Penrose presented his position in the lecture at
International Centre for Mathematical Sciences in Edin-
burgh, in celebration of the 50th anniversary of UNESCO
on 8 November, 1995.

7- -
|

51

From: AAAI Technical Report FS-97-03. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

k5

a more informal insight into the proof. Ultimately, the
entire process of diagrammatically proving theorems
will illuminate the issues of formality, rigour, truthful-
ness and power of diagrammatic proofs.

First, we list some of the theorems that we aim to
prove. Second, we present DIAMOND’S architecture,
some operations required, the generalisation mechan-
ism employed, and indicate how to verify the gener-
alised proof. Next, we report on some of our results
and discusses future work. Then, we discuss some of
the related diagrammatic reasoning systems. Finally,
we conclude by summarising the main points of this
paper.

’Diagrammatic’ Theorems

We are interested in mathematical theorems that
admit diagrammatic proofs. In order to clarify what
we mean by diagrammatic proofs we first list some
example theorems. Then, we introduce a taxonomy
for categorising these examples in order to be able to
characterise the domain of problems under considera-
tion.

Examples
Pythagora’s Theorem Pythagora’s Theorem sta-
tes that the square of the hypotenuse of a right angle
triangle equals the sum of the squares of its other two
sides. Here is one of the many different diagrammatic
proofs of this theorem, taken from (Nelsen 1993, page
3):

a2 + b~ = c2

b a b s

The proof consists of first taking any right angle tri-
angle, completing a bigger square by joining to it
identical triangles and squares along its sides, and then
rearranging the triangles in a bigger square. For a more
elaborate explanation, see (Jamnik, Bundy, & Green
1997).

Sum of Odd Naturals This example is also taken
from (Nelsen 1993, page 71). The theorem about the
sum of odd naturals states the following:

1 + 3 +.-.+ (2n- 1) = 2

ooooolo
ooooloo
OlOlOlOOO
OlOlO o o o
o[ooooo
000000

Note the use of parameter n. If we take a square we
can cut it into as many L’s (which are made up of two

adjacent sides of the square) as the size of the side of
the square. Note that one L is made out of two sides,
i.e., 2n, but the shared vertex has been counted twice.
Therefore, one L has a size of (2n - 1), where n is the
size of the square.

Geometric Sum This example is also taken
from (Nelsen 1993, page 118). A theorem about a geo-
metric sum of ~ states the following:

1 1 1~+~+~+...=i

½
!

l

Note the use of ellipsis in the diagram. Take a square
of unit size. Cut it down the middle. Now, cut one
half of the previous cut square into halves again. This
will create two identical squares making up a half of
the original square. Take one of these two squares and
continue doing this procedure indefinitely.

Classification
From the analysis of the examples that we presented
above, and many others, three categories of proofs can
be distinguished:

Category 1: Proofs that are not schematic: there
is no need for induction to prove the general case.
Simple geometric manipulations of a diagram prove
the individual case. At the end, generalisation is
required to show that this proof will hold for all a, b.
Example theorem: Pythagora’s Theorem.

Category 2: Proofs that are schematic: they require
no inductive step to prove the theorem for each con-
crete diagram (i.e., problem), but require induction
for the general diagram of size n (a concrete diagram
cannot be drawn for this instance). The construct-
ive w-rule (explained in more detail later on in this
paper) is used to generate a generalised proof from
the individual proof instances. Example theorem:
Sum of Odd Naturals.

Category 3: Proofs that are inherently inductive: for
each individual concrete case of the diagram they
need an inductive step to prove the theorem. Every
particular instance of a theorem, when represen-
ted as a diagram requires the use of abstractions
to represent infinity. Thus, the constructive w-rule
(defined later) is not applicable here. Example the-
orem: Geometric Sum.

Problem Domain
We choose mathematics as our domain for theorems
since it allows us to make formal statements about the
reasoning, proof search, induction, generalisations, and
such issues. Having introduced the examples and their

r

52

categorisation, which is by no means exhaustive, we
are now able to further restrict our domain of math-
ematical theorems.

First, we narrow down the domain to a subset of the-
orems that can be represented as diagrams without the
need for abstraction (e.g., the use of ellipsis, as in the
above example theorem for geometric sum). Conduct-
ing proofs and using abstractions in diagrams is prob-
lematic, since it is very difficult to keep track of these
abstractions while manipulating the diagram during
the proof procedure.

Second, we consider diagrammatic proofs that
require induction to prove the general case (i.e., Cat-
egory 2 above). Namely, diagrams can be drawn only
for concrete situations and objects. We cannot draw,
for example, an n x n square. Our challenge is to find a
generalisation mechanism that does not require using
abstractions in diagrams. The generality of the proof
will be captured in an alternative way (by using the
constructive w-rule; see next Section).

It is clear that we will need a stronger problem
domain definition which remains a subject of our
research. One possibility is to consider theorems of
arithmetic or number theory only. To date, DIA-
MOND is targeted to prove examples of Category 2,
but we may implement diagrammatic theorem proving
of examples for Category 1 as well.

Constructive w-Rule

As mentioned above we could use the constructive w-
rule to prove theorems of Category 2. Siani Baker
in (Baker, Ireland, & Smaill 1992) did some work
the constructive w-rule and schematic proofs for arith-
metic theorems. Here, we explain the idea behind
schematic proofs and how it can be applied to dia-
grammatic proofs.

Schematic Proof Schematic proofs use the con-
structive w-rule which is an alternative to induction.
The constructive w-rule allows inference of the sen-
tence YxP(x) from an infinite sequence P(n) n E
of sentences.

P(O),P(1),P(2),...
Vn.P(n)

where "if each P(n) can be proved in a uniform way
(from parameter n), then conclude VnP(n)." The cri-
terion for uniformity of the procedure of proof using
the constructive w-rule is taken to be the provision of
a general schematic proof, namely the proof of P(n)
terms of n, where some rules R are applied some func-
tion of n (i.e., fn(n)) times (a rule can also be applied
a constant number of times). Now, proof(n) is schem-
atic in n, since we applied some rule R n times. The
following procedure summarises the essence of using
the constructive w-rule in schematic proofs:

1. Prove a few special cases (e.g., P(2), P(16),

2. Generalise (guess) proof(n) (e.g., from proof(2),
proof(16), ...).

3. Prove that proof(n) proves P(n) by meta-induction
on n.

The general pattern is extracted (guessed, to be exact)
from the individual proof instances by (learning type)
inductive inference. By meta (mathematical) induc-
tion we mean that we introduce system PA~ (i.e.,
Peano Arithmetic with w-rule) such that:

proof(n): P(n) FpA. proof(s(n)): P(s(n))

where ":" stands for "is a proof of", and s(n) is a
notation for successor of n. This essentially says that
by using the rules on P(s(n)) we can reduce it to P(n).
For more information, see (Baker, Ireland, & Smaill
1992).

Diagrams and Schematic Proofs We claim that
we can extend Baker’s work on schematic proofs in our
diagrammatic proofs in that the generality of the dia-
grammatic proof is embedded in the schematic proof.
Thus, we eliminate the need for abstractions in dia-
grams, and can generalise from manipulations on con-
crete diagrams.

The diagrammatic schematic proof starts with a few
particular concrete cases of the theorem represented
by the diagram. The diagrammatic procedures (i.e.,
operations) on the diagram are performed next, cap-
turing the inference steps of the diagrammatic proof.
In DIAMOND, this step (also referred to as the proof
checking step) is done interac¢ively with the user, and
corresponds to the first step of the schematic proof
procedure given in the previous section.

The second step is to generalise the operations
involved in the schematic proof for n. Note that the
generality is represented as a sequence of diagrammatic
procedures (operations) and not as a general repres-
entation of a diagram. In DIAMOND, this step is done
automatically. More precisely, the basic idea is to con-
sider proofs for n+l which can be reduced to proofs for
n (or conversely, such proofs for n which can be exten-
ded to proofs for n + 1 by adding to them some addi-
tional sequence of operations). The difference between
the proof for (n+ 1) and the proof for n, i.e., the addi-
tional sequence of operations in the proof for (n + 1)
with respect to the proof for n is referred to as the step
case of the generalised proof.

The last step in the schematic proof procedure is to
prove by meta-induction that the generalised diagram-
matic schematic proof is indeed correct. It remains a
subject of this research project to determine whether
this will be considered at all or not. An alternative at
this point could be to translate the diagrammatic proof
to an algebraic proof. We are currently exploring this
latter possibility (see "Correctness of Schematic Proof"
below).

Schematic Diagrammatic Proof for the
Sum of Odd Naturals
Now we can attempt to structure the diagrammatic
proofs in a more formal way. Here we list the proof

V
|

53

for the theorem about the sum of odd naturals as a
sequence of steps that need to be performed on the
diagram:

1. Cut a square into n L’s, where an L consists of 2
adjacent sides of the square.

2. Cut each L into two segments.

3. For each L, join these two segments one on top of the
other length-wise (note that one of the two segments
is always one unit longer than the other, thus an
L always consists of an odd number of units, i.e.,
2n - 1).

Identifying the operations (i.e., geometric manipula-
tions) that were required to prove the theorem will
help us define a large repertoire of such operations
which will be used in the diagrammatic proofs. The
generality of the proof is captured by the use of the
constructive w-rule, by which we take a few special
cases of the diagram (say a square of size 15 and 16),
and find the general pattern of the proof that will hold
for each case (e.g., the schematic proof given above).

DIAMOND System

Clearly, an important issue in the development of DIA-
MOND is the internal representation of diagrams and
operations on them. The hope is that these capture the
intuitiveness, rigour and simplicity of human reasoning
with diagrams. We aim to emulate human visual per-
ception to enable a theorem prover to prove theorems
using diagrammatic inference steps. There are several
representations available to achieve this. In DIAMOND
we use a mixture of Cartesian and topological repres-
entations.

The architecture of DIAMOND consists of two parts.
The diagrammatic component forms and processes the
diagram. The inference engine deals with the diagram-
matic inference steps. It processes the operations on
the diagram. An important submodule is the gener-
alisation tool (i.e., implementation of the constructive
w-rule).

The rest of this section presents the operations used
to construct proofs, the structure of proofs and the
generalisation mechanism used in DIAMOND. For more
information see (Jamnik, Bundy, & Green 1997).

Geometric Operations

Geometric operations (also referred to as manipula-
tions or procedures) capture the inference steps of the
proof. Thus, a sufficiently large number of such opera-
tions which are then available to the user in the search
for the proof, needs to be identified and formalised.
Since we are not generating, i.e., discovering diagram-
matic proofs, but rather we are trying to understand
them, we can expect from the user to input these oper-
ations. To date, a small number of such operations has
been implemented and is available to the user.

We distinguish between two types of operations:

Atomic operations: they are basic one-step opera-
tions that will be combined into more complex oper-
ations. Examples of such operations are: rotate,
translate, cut, join, project from 3D to 2D, remove,
insert a segment.

Composite operations: they are more complex,
typically recursive operations, composed from simple
atomic ones. Perhaps, we can think of them as
tactics or tacticals in automated reasoning. In the
future we need to investigate several different recurs-
ive structures of diagrams. Depending on the the-
orem that we are proving, we use a different recurs-
ive composite operation. Ideally, the internal repres-
entation of the diagram should be pertinent to the
composite operation that we are performing on it.

In the example of the theorem for the sum of odd nat-
urals the proof consists of the following operations:
lcut, splil_*op_row, rolategO, join, rein_left_column,
remove_dot.

Constructing a Proof

DIAMOND’s example proof consists of a sequence of
applications of geometric operations on a diagram.
The generalisation is then carried out automatically,
if any such generalisation exists for the two example
proofs given} DIAMOND expects the example proofs
to be formulated in a particular way where the order
of operations in the user’s formulation of the example
proofs is crucial. Both example proofs are expected to
be given with the same order of operations, but with
some extra operations in the case of the proof(n + 1)
for some particular n.

Consider the example for the sum of odd naturals.
The step cases for proofs for n = 4 and n = 3 look as
follows:

OLO’,O:_9o
OLO!OOo
olooo o ooo
0 0 0 0~010 0 0~0 0 0 0

o o,’_(3
0 0 0 0 010
o o o--o~o o--ololo

The aim is to recognise automatically the structure of
the proof from a linear sequence of applications of oper-
ations, so that the example proofs for n and n + 1 can
be reformulated in the general case into the following:

proof(n) = A(n)..4(n - 1)... ¢I(2)B(1)
proof(n + 1) ..4(n + 1).A(n),.4(n - 1)....A(2)/~(1)

2If the proof contains a case split for say, even and
odd integers, and the two example proofs given are for
two different cases, then DIAMOND cannot generalise from
them. However, DIAMOND recognises that the example
proofs were given for different cases, and requests the user
to supply another example proof for each case, in order for
it to be able to generalise. This will be further explained
in "f-Homogeneous Proof".

54

where for each n, .A(n) is a step case consisting of
sequence of applications of some operations and B(1)
is a base case for n = 1. Alternatively, we seek this
recursive reformulation:

proof(n -9 1) .A(n -9 I) proof(n)
proof(l) B(1)

A further issue that we are investigating currently is
to relax the requirement for a particular ordering of
operations in formulating example proofs. Sets with
partial ordering could be used as an alternative.

Generalisation

Given some example proofs DIAMOND needs to gener-
alise from them, so that the final diagrammatic proof is
not only for the cases of specific n’s, but holds for all n.
Such a schematic proof consists of a general sequence
of applications of some operations, where the number
of application of each operation is dependent on n or
is a constant.

DIAMOND distinguishes between two types of
example proofs: destructive, i.e., the example proofs
which are formulated so that the base case operations
are performed last (in a sense the initial diagram is
"destructed" by the application of operations down to
a trivial diagram, forming the proof along in this way);
and constructive, i.e., the base case operations are per-
formed first followed by the step case operations.

The proofs that have the same structure for all n are
called 1-homogeneous proofs. Proofs can be c-homo-
geneous; then there are c cases of the proof. We say
that if all concrete instances of the proof (for instances
of numbers that "equal modulo c") have the same
structure and can be generalised, then the proof is c-
homogeneous. If there are c cases, then there are c
different generalised proofs, one for each case. The
following theorem can be proved:

Theorem 1: If a proof is c-homogeneous, then it
is also (kc)-homogeneous for every natural number
k>O.

The immediate consequence of Theorem 1 is:

Corollary 1: If a proof is not c-homogeneous, then
it is also not f-homogeneous for every factor f of c.

In a c-homogeneous proof we will denote by Br a base
case for a branch of numbers which give remainder
r when divided by c. /3r is actually a proof for the
smallest natural number that gives remainder r when
divided by c. A special case is a class of numbers divis-
ible by c, where a base case is going to be Be, which is
a proof for n = c.

The general representation of the destructive proof
is formalised as follows - let:

¯ n=kc+r

¯ where c -- number of cases and r < c

¯ and i > 1.

Then the recursive definition of a general proof is:

for re 0:
proof(it + r) .A.(ic + r) proof((/- l)e

proof(r) = Br(r)

for r= 0:

proof(ie) = .Ao(ie) proof((/-
proof(c) Be(c)

where A~ is a step case and B~ is a base case for a class
of proofs where n =_ r(mod c). The formalisation of
generalised proof for constructive proofs is symmetric
to the one given above.

Generalising For All Linear Functions As men-
tioned above, we aim to recognise the particular recurs-
ive structure of the given example proofs. More pre-
cisely, we want to extract the step case A and the base
case B of the proof and then generalise them for all n.
The general methodology employed for doing this can
be demonstrated as:

given]1=4 /1~3

?
XY Y ~ Y=A(3)Z :" ¯""

[Xl =A(4)

The first step of the generalisation algorithm is to
extract the difference between the two given example
proofs for nl and n2 (hi > n2), where e = nl - n2,
in the hope that this, when generalised, will be the
step case ..4 of the proof. This is done by associat-
ive matching which detects and returns the difference
between the two example proofs. Now we have a con-
crete step case of the proof. This difference consists of
a few operations opk each applied zk,,h times for some
natural k.

To make a step case general, we need to find the
dependency function between every zk,nl and nl. This
demands identifying a function of nl, which would give
a specific xk,nl, i.e., fk(nl) = xk,,~ for some k and
nl. DIAMOND assumes that the dependency is linear:
an+/). Thus, let us write for each opk a linear equation
an1 + b = zk,,h, where nl and x~,, h are known.

The subsequent stage of the generalisation is to
extract the next step case from the rest of the example
proof for the corresponding new n (i.e., n2). If success-
ful, continue extracting step cases for the correspond-
ing n’s from the rest of the proof until only the base
case is left.

Since we are dealing with inductive proofs, it is
expected that every step case of a proof will have the
same structure, i.e., will consist of the same sequence
of application of operations, but a different number of
times. Thus, we could in the same way as above for
every operation opk write a linear equation an2 + b =
zk,,2. However, the number x~,,~ of applications of a
particular operation opk in the next step case is not

F-

55

known. A possible value of xk,n2 is acquired by count-
ing the number z’ of times every operation opk of the
initial step case occurs in the rest of the proof. The
actual value of the number of occurrences of each oper-
ation could be any number from 0 to x’. Thus, we do
branching for all such values and thus we have:

anl q- b = Xk,nl
an2 -J- b = Xk,n2

where nl, n2, Xk,nl and ~k,n2 are known, so the equa-
tions can be solved for a and b, and xk,,~ takes values
from 0 to x’. This results in several possible potential
generalisations of the step case. The aim is to eliminate
those that are impossible. After checking if step cases
for all n down to base case are structurally consistent
one hopes to be left with at least one possible general-
isation of the example proofs. The step case is rejected
when the sequence of operations in the subsequent step
cases is impossible, i.e., the functions were wrong. This
normally occurs when the dependency function gives a
negative number of applications of a particular oper-
ation, when the calculated sequence is not identical
to the rest of the example proof, or when there is no
integer solution to our equations. Usually, there will
be only one possible generalisation of the two given
example proofs.

The example proof for the sum of odd naturals is
generalised into the following step case and base case:

A(n) = {lout(I), stilt_top_row(I), rotateDO(1),
join(l), rem_left_column(n-1),
remove_dot(I)}

B(1) -- {remove_dot(I)}

where the function in parentheses indicates the num-
ber of times that the operations are applied for each
particular n.

f-Homogeneous Proof Assume two example proofs
for the sum of odd naturals (the example proof would
consist of making n louts, and then showing that each
L consists of an odd number of dots). If the user sup-
plies two example proofs for values of n and n q- 1, for
some concrete n, then there is no problem, so DIA-
MOND will generalise normally and determine that the
proof is 1-homogeneous. However, should the user sup-
ply proofs for n and n + 2 for some concrete n, the first
stage of generalisation would determine that the step
case consists of two lcuts. However, a complete recurs-
ive function for generalisation requires a step case to
consist of one lcut only.

DIAMOND checks this by trying to split the step case
into further f structurally the same sequences of oper-
ations, for all factors f of c in order to obtain an f-
homogeneous proof. If the method fails, then there
is no such f-homogeneous further generalisation of the
step case .A(n). If the method succeeds, and DIAMOND
finds a new generalisation of the step case, call this
A’(n), then it also needs to find a new base case B’(r’)
if r’ ¢ 0, or B’(f) if r’ = 0, where the previous r for c

was such that n = kc + r and r < c, and the new r I is
now such that n = kf + r’ and r’ < f.

Correctness of Schematic Proof

The last stage of extracting a diagrammatic proof is
to check that the guessed general schematic proof is
indeed correct. Currently, we are investigating the
possibility of translating a diagrammatic proof into an
algebraic proof, and then carrying out meta-induction
on this translation3 to prove the correctness of a schem-
atic proof.

In particular, we need to show in the meta-theory
that proof(n) proves P(n) for all n, i.e. it gives a
prooftree with P(n) at its root, and axioms at its
leaves.

In order to translate a diagrammatic proof into its
corresponding algebraic proof it is necessary to trans-
late the geometric operations on the diagram into
algebraic rewrite rules. For example, an lcut takes a
square of size n, and returns a square of size (n - 1)
and an ell of size n:

square(n) lout square(n -- 1) (9 ell(n)

where (9 is an operator on multisets of diagrams that
is right associative, such that

diagram1 (9 diagram2 (9 ¯ "- (9 diagrarn~

denotes the "existence" of several (n) diagrams that
are available for manipulation at any one time. Algeb-
raically, (9 is isomorphic to the usual + operator.

Next, we translate diagrams into their algebraic
equivalent representation, so square(n) translates into

¯ n2, ell(n) translates into (2(n - 1) + 1), etc. Therefore,
a diagrammatic operation lcut corresponds in algebra
to the following rewrite rule:

n2 => (n - 1)2 + (2(n - 1) +

Finally, we apply these rewrite rules as indicated by
the schematic proof to the statement of the theorem.
If we arrive at equality, then the schematic proof is
indeed correct.

Results and Further Work
DIAMOND is implemented in Standard ML of New Jer-
sey, Version 109. The code is available upon request
to the first author.

So far, the interactive construction of proofs and
automatic generalisation from example proofs have
been implemented in DIAMOND. We can prove a few
theorems: sum of odd naturals, sum of all naturals,
sum of Fibonacci squares. We are working on more
examples.

sit is not possible to caxry out meta-induction dir-
ectly on the diagrams without the use of abstractions (e.g.
ellipsis), which has already been discussed above to be
problematic.

56

~A

We want to relax the requirement for a particular
formulation of example proofs. Partially ordered sets
could be used. However, this would require recogni-
tion and generalisation of diagrams (as opposed to
sequence of operations).

There is also a possibility of allowing non-linear
dependency functions.

Another issue that will be addressed is whether to
prove automatically that the derived generatisation of
a diagrammatic proof is indeed correct.

Finally, some recognition and generalisation of dia-
grams using abstractions could be an interesting issue
to consider. The difficulty is to keep track of these
abstractions while manipulating the diagram.

Related Work

Several diagrammatic systems such as the Geo-
metry Machine (Gelernter 1963), Diagram Configur-
ation model (Koedinger ~ Anderson 1990), GROVER
(Barker-Plummer & Bailin 1992), and Hyperproof
(Barwise & Etchemendy 1991) have been implemen-
ted in the past and are of relevance to our system.

However, they all use diagrams to model algebraic
statements, and use these models for heuristic guid-
ance while searching for an algebraic proof. In con-
trast, proofs in our system are explicitly constructed
by operations on diagrams.

Closer to our work, but not in the domain
of diagrammatic reasoning, is work done by Siani
Baker (Baker, Ireland, & Smaill 1992) described
Section "Constructive w-Rule", whereby we exploit the
uniform structure of inductive proofs to generalise from
example proofs.

Conclusion

We presented a diagrammatic reasoning system, DIA-
MOND, which supports interactive construction of dia-
grammatic proofs. The system automatically general-
ises from examples to give a general proof for all n.
The hope is that automating the ’informal’ diagram-
matic reasoning of humans will shed light on the issues
of formality, informality, rigour and ’intuitive’ under-
standing of the correctness of diagrammatic proofs.

Acknowledgements

We should like to thank Predrag Jani~i~ for inspir-
ing discussions about some of the work presented here.
The research reported in this paper was supported by
an Artificial Intelligence Dept. studentship, the Uni-
versity of Edinburgh, and a Slovenian Scientific Found-
ation supplementary studentship for the first author,
and by EPSRC grant GR/L/l1724 for the other two
authors.

References

Baker, S.; Ireland, A.; and Smaill, A. 1992. On the
use of the constructive omega rule within automated

deduction. In Voronkov, A., ed., LPAR g2, St. Peters-
burg, Lecture Notes in AI No. 624, 214-225. Springer-
Verlag.

Barker-Plummer, D., and Bailin, S. C. 1992. Proofs
and pictures: Proving the diamond lemma with the
GROVER theorem proving system. In Working Notes
of the AAAI Symposium on Reasoning with Diagram-
matic Representations.
Barwise, J., and Etchemendy, J. 1991. Visual inform-
ation and valid reasoning. In Zimmerman, W., and
Cunningham, S., eds., Visualization in Teaching and
Learning Mathematics. Mathematical Association of
America. 9-24.
Gelernter, H. 1963. Realization of a geometry
theorem-proving machine. In Feigenbaum, E., and
Feldman, J., eds., Computers and Thought. McGraw
Hill. 134-52.
Jamnik, M.; Bundy, A.; and Green, I. 1997. Auto-
mation of diagrammatic proofs in mathematics. In
Kokinov, B., ed., Perspectives on Cognitive Science,
volume 3, 168-175. New Bulgarian University.

Koedinger, K., and Anderson, :I. 1990. Abstract
planning and perceptual chunks. Cognitive Science
14:511-550.

Larkin, J., and Simon, It. 1987. Why a diagram
is (sometimes) worth ten thousand words. Cognitive
Science 11:65-99.
Nelsen, R. B. 1993. Proofs Without Words: Exercises
in Visual Thinking. The Mathematical Association of
America.

T~ -

57

