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inomplete. This has reently motivated extensions of state-of-the-art �rst-orderaluli and systems, as for example presented in [14℄ for the Saturate system.The extended Saturate system an solve some problems from the SET domainin the TPTP [24℄ whih Vampire [21℄ and E-Setheo's [23℄ annot solve.While it has already been shown in [6, 2℄ that many problems of this naturean be easily proved from �rst priniples using a onise higher-order represen-tation and the higher-order resolution ATP Leo, the ombinatorial explosioninherent in Leo's alulus prevents the prover from solving a whole range ofpossible problems with one universal strategy. Often higher-order problems re-quire only relatively few but essential steps of higher-order reasoning, while theoverwhelming part of the reasoning is �rst-order or even propositional level. Thissuggests that Leo's performane ould be improved when ombining it with a�rst-order ATP to searh eÆiently for a possible refutation in the subset ofthose lauses that are essentially �rst-order.The advantages of suh a ombination | further disussed in Se. 2 | arenot only that many problems an still be eÆiently shown from �rst priniplesin a general purpose approah, but also that problems an be expressed in avery onise way. For instane, we present 45 problems from the SET domainof the TPTP-v3.0.1, together with their entire formalisation in less than twopages in this paper, whih is diÆult to ahieve within a framework that doesnot provide �-abstration. We use this problem set, whih is an extension of theproblems onsidered in [14℄, in Se. 4 to show the e�etiveness of our approah.While many of the onsidered problems an be proved by Leo alone with somestrategy, the ombination of Leo with the �rst-order ATP Bliksem [11℄ is notonly able to show more problems, but also needs only a single strategy to solvethem. Several of our problems are onsidered very hallenging by the �rst-orderommunity and �ve of them (of whih Leo an solve four) have a TPTP ratingof 1.00, saying that they annot be solved by any TPTP prover to date.Tehnially, the ombination | desribed in more detail in Se. 3 | has beenrealised in the onurrent reasoning system Oants [22, 8℄ whih enables the o-operation of hybrid reasoning systems to onstrut a ommon proof objet. Inour past experiments, Oants has been suessfully employed to hek the valid-ity of set equations using higher-order and �rst-order ATPs, model generation,and omputer algebra [5℄. While this already enabled a ooperation betweenLeo and a �rst-order ATP, the proposed solution ould not be lassi�ed as ageneral purpose approah. A major shortoming was that all ommuniation ofpartial results had to be onduted via the ommon proof objet, whih wasvery ineÆient for hard examples. Thus, the solved examples from set theorywere onsidered too trivial, albeit they were often similar to those still onsid-ered hallenging in the TPTP in the �rst-order ontext. In this paper we nowpresent a novel approah to the ooperation between Leo and Bliksem insideOants by deentralising ommuniation. This leads not only to a higher overalleÆieny | Se. 4 details our results | but also to a general purpose approahbased on a single strategy in Leo.



2 Why Linking Higher-Order and First-Order?Existing higher-order ATPs generally exhibit de�its in eÆiently reasoning with�rst-order problems for several reasons. Unlike in the ase of �rst-order provers,for whih sophistiated aluli and strategies, as well as advaned implementa-tion tehniques, suh as term indexing [19℄, have been developed, fully meh-anisable higher-order aluli are still at a omparably early stage of develop-ment. Some problems are muh harder in higher-order, for instane, uni�ationis undeidable, strong onstraining term- and literal-orderings are not available,extensionality reasoning and set variable instantiation has to be addressed. Nev-ertheless, for some mathematial problem domains, suh as naive set theory, forinstane, automated higher-order reasoning performs very well.We motivate the need for linking higher-order and �rst-order ATPs with someexamples from Table 1. It ontains a range of hallenging problems taken fromthe TPTP, against whih we will evaluate our system in Se. 4. The problems aregiven by the identi�ers used in the SET domain of the TPTP, and are formalisedin a variant of Churh's simply typed �-alulus with pre�x polymorphism. Inlassial type theory terms and all their sub-terms are typed. Polymorphismallows the introdution of type variables suh that statements an be made forall types. For instane, in problem SET014+4 the universally quanti�ed variableXo� denotes a mapping from objets of type � to objets of type o. We useChurh's notation o�, whih stands for the funtional type �! o. The reader isreferred to [1℄ for a more detailed introdution. In the remainder, o will denotethe type of truth values, and small Greek letters will denote arbitrary types.Thus, Xo� (resp. its �-longform �y� Xy) is atually a harateristi funtiondenoting the set of elements of type �, for whih the prediate assoiated withX holds. As further notational onvention, we use apital letter variables todenote sets, funtions, or relations, while lower ase letters denote individuals.Types are usually only given in the �rst ourrene of a variable and omitted ifinferable from the ontext.The problems in Table 1 employ de�ned onepts that are spei�ed in aknowledge base of hierarhial theories that Leo has aess to. All oneptsneessary for de�ning our problems in Table 1 are given in Table 2. Conepts arede�ned in terms of �-expressions and they may ontain other, already spei�edonepts. For presentation purposes, we use ustomary mathematial symbols[;\, et., for some onepts like union, intersetion, et., and we also use in�xnotation. For instane, the de�nition of union on sets an be easily read inits more ommon mathematial representation A [ B := fxjx 2 A _ x 2 Bg.Before proving a problem, Leo always expands | reursively, if neessary | allourring onepts. This straightforward expansion to �rst priniples is realisedby an automated preproess in our urrent approah.SET171+3We �rst disuss example SET171+3 to ontrast our formalisation toa standard �rst-order one. After reursively expanding the input problem, that is,ompletely reduing it to �rst priniples, Leo turns it into a negated unit lause.Sine this initial lause is not in normal form, Leo �rst normalises it with expliit



SET Problem Formalisation014+4 8Xo�; Yo�; Ao� [[X � A ^ Y � A℄) (X [ Y ) � A℄017+1 8x�; y�; z� [UnOrderedPair(x; y) = UnOrderedPair(x; z)) y = z℄066+1 8x�; y� [UnOrderedPair(x; y) = UnOrderedPair(y; x)067+1 8x�; y� [UnOrderedPair(x; x) � UnOrderedPair(x; y)℄076+1 8x�; y� 8Zo� x 2 Z ^ y 2 Z ) UnOrderedPair(x; y) � Z086+1 8x� 9y� [y 2 Singleton(x)℄096+1 8Xo�; y� [X � Singleton(y)) [X = ; _X = Singleton(y)℄℄143+3 8Xo�; Yo�; Zo� [(X \ Y ) \ Z = X \ (Y \ Z)℄171+3 8Xo�; Yo�; Zo� [X [ (Y \ Z) = (X [ Y ) \ (X [ Z)℄580+3 8Xo�; Yo�; u� [u 2 ExlUnion(X;Y ), [u 2 X , u 62 Y ℄℄601+3 8 Xo�; Yo�; Zo�[(X \ Y ) [ ((Y \ Z) [ (Z \X)) = (X [ Y ) \ ((Y [ Z) \ (Z [X))℄606+3 8Xo�; Yo� [Xn(X \ Y ) = XnY ℄607+3 8Xo�; Yo� [X [ (Y nX) = X [ Y ℄609+3 8Xo�; Yo�; Zo� [Xn(Y nZ) = (XnY ) [ (X \ Z)℄611+3 8Xo�; Yo� [X \ Y = ; , XnY = X℄612+3 8Xo�; Yo�; Zo� [Xn(Y [ Z) = (XnY ) \ (XnZ)℄614+3 8Xo�; Yo�; Zo� [(XnY )nZ = Xn(Y [ Z)℄615+3 8Xo�; Yo�; Zo� [(X [ Y )nZ = (XnZ) [ (Y nZ)℄623+3 8Xo�; Yo�; Zo� [ExlUnion(ExlUnion(X; Y ); Z) = ExlUnion(X;ExlUnion(Y;Z))℄624+3 8Xo�; Yo�; Zo� [Meets(X; (Y [ Z)), [Meets(X;Y ) _Meets(X;Z)℄℄630+3 8Xo�; Yo� [Misses(X \ Y;ExlUnion(X; Y ))℄640+3 8Ro��; Qo�� [Subrel(R;Q)) Subrel(R; (�u� >)� (�v� >))℄646+3 8x�; y� [Subrel(Pair(x; y); (�u� >)� (�v� >)) ℄647+3 8Ro��;Xo� [(RDom(R) � X)) Subrel(R;X �RCodom(R))℄648+3 8Ro��; Yo� [(RCodom(R) � Y )) Subrel(R;RDom(R)� Y )℄649+3 8Ro��;Xo�; Yo� [[RDom(R) � X ^RCodom(R) � Y ℄) Subrel(R;X � Y )℄651+3 8Ro�� [RDom(R) � Ao� ) Subrel(R;A� (�u� >))℄657+3 8Ro�� [Field(R) � ((�u� >) [ (�v� >))℄669+3 8Ro�� [Subrel(Id(�u� >); R)) [(�u� >) � RDom(R) ^ (�u� >) = RCodom(R)℄℄670+3 8Zo�; Ro��;Xo�Yo� [IsRelOn(R;X; Y )) IsRelOn(RestritRDom(R;Z); Z; Y )℄671+3 8Zo�; Ro��;Xo�; Yo� [[IsRelOn(R;X; Y ) ^X � Z℄) RestritRDom(R;Z) = R℄672+3 8Zo�; Ro��;Xo�Yo� [IsRelOn(R;X; Y )) IsRelOn(RestritRCodom(R;Z);X; Z)℄673+3 8Zo�; Ro��;Xo�; Yo� [[IsRelOn(R;X; Y ) ^ Y � Z℄) RestritRCodom(R;Z) = R℄680+3 8Ro��;Xo�; Yo� [IsRelOn(R;X; Y ))[8u� u 2 X ) [u 2 RDom(R), 9v� v 2 Y ^R(u; v)℄℄℄683+3 8Ro��;Xo�; Yo� [IsRelOn(R;X; Y ))[8v� v 2 Y ) [v 2 RCodom(R)) 9u� u 2 X ^ u 2 RDom(R)℄℄℄684+3 8Po��; Ro� ; x�; z [RelComp(P;R)xz , 9y� Pxy ^Ryz℄686+3 8Zo�; Ro� ; x� [x 2 InverseImageR(R;Z), 9y� Rxy ^ x 2 Z℄716+4 8F��; G� [[Inj (F ) ^ Inj (G)℄) Inj (G Æ F )℄724+4 8F��; G�;H� [[F ÆG = F ÆH ^ Surj (F )℄) G = H℄741+4 8F��; G�;H� [[Inj ((F ÆG) ÆH) ^ Surj ((G ÆH) Æ F ) ^ Surj ((H Æ F ) ÆG)℄) Bij (H)℄747+4 8F��; G�; /1o��; /2o�� ; /3o [[InreasingF (F; /1; /2) ^DereasingF(G; /2; /3)℄)DereasingF(F ÆG; /1; /3)℄752+4 8Xo�; Yo�; F�� [ImageF(F;X [ Y ) = ImageF(F;X) [ ImageF(F; Y )℄753+4 8Xo�; Yo�; F�� [ImageF(F;X \ Y ) � ImageF (F;X) \ ImageF(F; Y )℄764+4 8F�� [InverseImageF(F; ;) = ;℄770+4 8Ro��; Qo�� [[EquivRel(R) ^ EquivRel(Q)℄)[EquivClasses(R) = EquivClasses(Q) _Disjoint (EquivClasses(R);EquivClasses(Q))℄℄Table 1. Problems from TPTP for the evaluation of Oants.lause normalisation rules to reah some proper initial lauses. In our onretease, this normalisation proess leads to the following unit lause onsisting of a(syntatially not solvable) uni�ation onstraint (here Bo�; Co�; Do� are Skolemonstants and Bx is obtained from expansion of x 2 B):[(�x� Bx _ (Cx ^Dx)) =? (�x� (Bx _ Cx) ^ (Bx _Dx))℄Note that negated primitive equations are generally automatially onvertedby Leo into uni�ation onstraints. This is why [(�x� Bx _ (Cx ^ Dx)) =?



De�ned Notions in Theory Typed Set2 := �x�; Ao� [Ax℄; := [�x� ?℄� := �Ao�; Bo� [8x� x 2 A) x 2 B℄[ := �Ao�; Bo� [�x� x 2 A _ x 2 B℄\ := �Ao�; Bo� [�x� x 2 A ^ x 2 B℄:= �Ao� [�x� x =2 A℄n := �Ao�; Bo� [�x� x 2 A ^ x =2 B℄ExlUnion( ; ) := �Ao�; Bo� [(AnB) [ (BnA)℄Disjoint ( ; ) := �Ao�; Bo� [A \B = ;℄Meets( ; ) := �Ao�; Bo� [9x� x 2 A ^ x 2 B℄Misses( ; ) := �Ao�; Bo� [:9x� x 2 A ^ x 2 B℄De�ned Notions in Theory RelationUnOrderedPair( ; ) := �x�; y� [�u� u = x _ u = y℄Singleton( ) := �x� [�u� u = x℄Pair( ; ) := �x�; y� [�u�; v� u = x ^ v = y℄� := �Ao�; Bo� [�u�; v� u 2 A ^ v 2 B℄RDom( ) := �Ro�� [�x� 9y� Rxy℄RCodom( ) := �Ro�� [�y� 9x� Rxy℄Subrel( ; ) := �Ro��; Qo�� [8x� 8y� Rxy ) Qxy℄Id( ) := �Ao� [�x�; y� x 2 A ^ x = y℄Field( ) := �Ro�� [RDom(B) [RCodom(R)℄IsRelOn( ; ; ) := �Ro��; Ao� �Bo� [8x�; y� Rxy ) (x 2 A ^ x 2 B)℄RestritRCodom( ; ) := �Ro��; Ao� [�x�; y� x 2 A ^Rxy℄RelComp( ; ) := �Ro��; Qo� [�x�; z 9y� Rxy ^Ryz℄InverseImageR( ; ) := �Ro��; Bo� [�x� 9y� y 2 B ^Rxy℄Reflexive( ) := �Ro�� [8x� Rxx℄Symmetri( ) := �Ro�� [8x� 8y� Rxy ) Ryx℄Transitive( ) := �Ro�� [8x� 8y� 8z� Rxy ^Ryz ) Rxz℄EquivRel( ) := �Ro�� [Reflexive(R) ^ Symmetri(R) ^ Transitive(R)℄EquivClasses( ) := �Ro�� [�Ao� 9u� u 2 A ^ 8v� v 2 A, Ruv℄De�ned Notions in Theory FuntionInj ( ) := �F�� [8x�; y� F (x) = F (y)) x = y℄Surj ( ) := �F�� [8y� 9x� y = F (x)℄Bij ( ) := �F�� Surj (F ) ^ Inj (F )ImageF( ; ) := �F��; Ao� [�y� 9x� x 2 A ^ y = F (x)℄InverseImageF( ; ) := �F��; Bo� [�x� 9y� y 2 B ^ y = F (x)℄Æ := �F��; G� [�x� G(F (x))℄InreasingF ( ; ; ) := �F��; /1o��; /2o�� [8x�; y� x /1 y ) F (x) /2 F (y)℄DereasingF( ; ; ) := �F��; /1o��; /2o�� [8x�; y� x /1 y ) F (y) /2 F (x)℄Table 2. De�ned onepts ourring in problems from Table 1.(�x� (Bx _ Cx) ^ (Bx _Dx))℄ is generated, and not [(�x� Bx _ (Cx ^Dx)) =(�x� (Bx_Cx)^ (Bx_Dx))℄F . Observe, that we write [:℄T and [:℄F for positiveand negative literals, respetively. Leo then applies its goal direted funtionaland Boolean extensionality rules whih replae this uni�ation onstraint by thenegative literal (where x is a Skolem onstant):[(Bx _ (Cx ^Dx)), ((Bx _ Cx) ^ (Bx _Dx))℄FThis unit lause is again not normal; normalisation, fatorisation and subsump-tion yield the following set of lauses:[Bx℄F [Bx℄T _ [Cx℄T [Bx℄T _ [Dx℄T [Cx℄F _ [Dx℄FThis set is essentially of propositional logi harater and trivially refutable. Leoneeds 0.56 seonds for solving the problem and generates a total of 36 lauses.



Assumptions: 8B;C; x [x 2 (B [ C), x 2 B _ x 2 C℄ (1)8B;C; x [x 2 (B \ C), x 2 B ^ x 2 C℄ (2)8B;C [B = C , B � C ^ C � B℄ (3)8B;C [B [ C = C [B℄ (4)8B;C [B \ C = C \B℄ (5)8B;C [B � C , 8x x 2 B ) x 2 C℄ (6)8B;C [B = C , 8x x 2 B , x 2 C℄ (7)Proof Goal: 8B;C;D [B [ (C \D) = (B [ C) \ (B [D)℄ (8)Table 3. TPTP problem SET171+3 | distributivity of [ over \.Let us onsider now this same example SET171+3 in its �rst-order formula-tion from the TPTP (see Table 3). We an observe that the assumptions provideonly a partial axiomatisation of naive set theory. On the other hand, the spei�-ation introdues lemmata that are useful for solving the problem. In partiular,assumption (7) is trivially derivable from (3) with (6). Obviously, lausal normal-isation of this �rst-order problem desription yields a muh larger and more diÆ-ult set of lauses. Furthermore, de�nitions of onepts are not diretly expandedas in Leo. It is therefore not surprising that most �rst-order ATPs still fail toprove this problem. In fat, very few TPTP provers were suessful in provingSET171+3. Amongst them are Musadet 2.4. [20℄, Vampire 7.0, and Satu-rate. The natural dedution system Musadet uses speial inferene rules forsets and needs 0:2 seonds to prove this problem. Vampire needs 108 seonds.The Saturate system [14℄ (whih extends Vampire with Boolean extension-ality rules that are a one-to-one orrespondene to Leo's rules for ExtensionalHigher-Order Paramodulation [3℄) an solve the problem in 2:9 seonds whilegenerating 159 lauses. The signi�ane of suh omparisons is learly limitedsine di�erent systems are optimised to a di�erent degree. One noted di�erenebetween the experiments with �rst-order provers listed above, and the experi-ments with Leo and Leo-Bliksem is that �rst-order systems often use a asetailored problem representation (e.g., by avoiding some base axioms of the ad-dressed theory), while Leo and Leo-Bliksem have a harder task of dealing witha general (not spei�ally tailored) representation.For the experiments with Leo and the ooperation of Leo with the �rst-ordertheorem prover Bliksem, �-abstration as well as the extensionality treatmentinherent in Leo's alulus [4℄ is used. This enables a theoretially1 Henkin-omplete proof system for set theory. In the above example SET171+3, Leo gen-erally uses the appliation of funtional extensionality to push extensional uni�-ation onstraints down to base type level, and then eventually applies Booleanextensionality to generate lauses from them. These are typially muh simpler1 For pragmati reasons, suh as eÆieny, most of Leo's tatis are inomplete. Leo'sphilosophy is to rely on a theoretially omplete alulus, but to pratially providea set of omplimentary strategies so that these over a broad range of theorems.



and often even propositional-like or �rst-order-like (FO-like, for short), that is,they do not ontain any `real' higher-order subterms (suh as a �-abstration orembedded equations), and are therefore suitable for treatment by a �rst-orderATP or even a propositional logi deision proedure.SET624+3 Sometimes, extensionality treatment is not required and the origi-nally higher-order problem is immediately redued to only FO-like lauses. Forexample, after expanding the de�nitions, problem SET624+3 yields the followinglause (where Bo�; Co�; Do� are again Skolem onstants):[(9x� (Bx ^ (Cx _Dx)), ((9x� Bx ^ Cx) _ (9x� Bx ^Dx))℄FNormalisation results in 26 FO-like lauses, whih present a hard problem forLeo: it needs approx. 35 seonds (see Se. 4) to �nd a refutation, whereas �rst-order ATPs only need a fration of a seond.SET646+3 Sometimes, problems are immediately refuted after the initial lausenormalisation. For example, after de�nition expansion in problem SET646+3 weget the following lause (where Bo�; Co�; x� are again Skolem onstants):[Ax) (8y� By ) (8u� 8v� (u = x ^ v = y)) ((:?) ^ (:?))))℄FNormalisation in Leo immediately generates a basi refutation (i.e., a lause[?℄T _ [?℄T ) without even starting proof searh.SET611+3 The examples disussed so far all essentially apply extensionalitytreatment and normalisation to the input problem in order to immediately gen-erate a set of inonsistent FO-like lauses. Problem SET611+3 is more ompli-ated as it requires several reasoning steps in Leo before the initially onsistentset of available FO-like lauses grows into an inonsistent one. After de�nitionexpansion, Leo is �rst given the input lause:[8Ao�; Bo� (�x� (Ax ^ Bx)) = (�x� ?)), (�x� (Ax ^ :Bx)) = (�x� Ax)℄Fwhih it normalises into:[(�x� (Ax ^ Bx)) =? (�x� ?)℄ _ [(�x� (Ax ^ :Bx)) =? (�x� Ax)℄ (9)[(�x� (Ax ^ Bx)) = (�x� ?)℄T _ [(�x� (Ax ^ :Bx)) = (�x� Ax)℄T (10)As mentioned before, the uni�ation onstraint (9) orresponds to:[(�x� (Ax ^Bx)) = (�x� ?)℄F _ [(�x� (Ax ^ :Bx)) = (�x� Ax)℄F (11)Leo has to apply to eah of these lauses and to eah of their literals appro-priate extensionality rules. Thus, several rounds of Leo's set-of-support-basedreasoning proedure are required, so that all neessary extensionality reasoningsteps are performed, and suÆiently many FO-like lauses are generated whihan be refuted by Bliksem.



In summary, eah of the examples disussed in this setion exposes a motiva-tion for our higher-order/�rst-order ooperative approah to theorem proving.In partiular, they show that:{ Higher-order formulations allow for a onise problem representation whihoften allows easier and faster proof searh than �rst-order formulations.{ Higher-order problems an often be redued to a set of �rst-order lausesthat an be more eÆiently handled by a �rst-order ATP.{ Some problems are trivially refutable after lause normalisation.{ Some problems require in-depth higher-order reasoning before a refutable�rst-order lause set an be extrated.3 Higher-Order/First-Order Cooperation via OantsThe ooperation between higher-oder and �rst-order reasoners, whih we inves-tigate in this paper, is realised in the onurrent hierarhial blakboard arhi-teture Oants [7℄. We �rst desribe in Se. 3.1 the existing Oants arhiteture.In order to overome some of its problems, in partiular eÆieny problems, wedevised within Oants a new and improved ooperation method for the higher-order ATP Leo and �rst-order provers (in partiular, Bliksem) { we desribethis in Se. 3.2. We address the question of how to generate the neessary lausesin Se. 3.3, and disuss soundness and ompleteness of our implementation ofthe higher-order/�rst-order ooperation in Se. 3.4.3.1 OantsOants was originally oneived to support interative theorem proving but waslater extended to a fully automated proving system [22, 8℄. Its basi idea is toompose a entral proof objet by generating, in eah proof situation, a rankedlist of potentially appliable inferene steps. In this proess, all inferene rules,suh as alulus rules or tatis, are uniformly viewed with respet to threesets: premises, onlusions, and additional parameters. The elements of thesethree sets are alled arguments of the inferene rule and they usually dependon eah other. An inferene rule is appliable if at least some of its argumentsan be instantiated with respet to the given proof ontext. The task of theOants arhiteture is now to determine the appliability of inferene rules byomputing instantiations for their arguments.The arhiteture onsists of two layers. On the lower layer, possible instanti-ations of the arguments of individual inferene rules are omputed. In partiular,eah inferene rule is assoiated with its own blakboard and onurrent pro-esses, one for eah argument of the inferene rule. The role of every proess isto ompute possible instantiations for its designated argument of the inferenerule, and to reord these on the blakboard. The omputations are arried outwith respet to the given proof ontext and by exploiting information alreadypresent on the blakboard, that is, argument instantiations omputed by other



proesses. On the upper layer, the information from the lower layer is used foromputing and heuristially ranking the inferene rules that are appliable inthe urrent proof state. The most promising rule is then applied to the entralproof objet and the data on the blakboards is leared for the next round ofomputations.Oants employs resoure reasoning to guide searh.2 This enables the on-trolled integration (e.g., by speifying time-outs) of full-edged external rea-soning systems suh as automated theorem provers, omputer algebra systems,or model generators into the arhiteture. The use of the external systems ismodelled by inferene rules, usually one for eah system. Their orrespondingomputations are enapsulated in one of the independent proesses in the ar-hiteture. For example, an inferene rule modelling the appliation of an ATPhas its onlusion argument set to be an open goal. A proess an then plaean open goal on the blakboard, where it is piked up by a proess that appliesthe prover to it. Any omputed proof or partial-proof from the external systemis again written to the blakboard from where it is subsequently inserted intothe proof objet when the inferene rule is applied. While this setup enablesproof onstrution by a ollaborative e�ort of diverse reasoning systems, the o-operation an only be ahieved via the entral proof objet. This means that allpartial results have to be translated bak and forth between the syntaxes of theintegrated systems and the language of the proof objet. Sine there are manytypes of integrated systems, the language of the proof objet | a higher-orderlanguage even riher than Leo's, together with a natural dedution alulus |is expressive but also umbersome. This leads not only to a large ommuniationoverhead, but also means that omplex proof objets have to be reated (largelause sets need to be transformed into large single formulae to represent them inthe proof objet; the support for this in Oants to date is ineÆient), even if thereasoning of all systems involved is lause-based. Consequently, the ooperationbetween external systems is typially rather ineÆient [5℄.3.2 Cooperation via a single inferene ruleIn order to overome the problem of the ommuniation bottlenek desribedabove, we devised a new method for the ooperation between a higher-orderand a �rst-order theorem prover within Oants. Rather than modelling eahtheorem prover as a separate inferene rule (and hene needing to translatethe ommuniation via the language of the entral proof objet), we model theooperation between a higher-order (onretely, Leo) and a �rst-order theoremprover (in our ase study Bliksem) in Oants as a single inferene rule. Theooperation between these two theorem provers is arried out diretly and not viathe entral proof objet. This avoids translating lause sets into single formulaeand bak. While in our previous approah the ooperation between Leo andan FO-ATP was modelled at the upper layer of the Oants arhiteture, our2 Oants provides failities to de�ne and modify the proesses at run-time. But notiethat we do not use these advaned features in the ase study presented in this paper.



new approah presented in this paper models their ooperation by exploiting thelower layer of the Oants blakboard arhiteture. This is not an ad ho solution,but rather, it demonstrates Oants's exibility in modelling the integration ofooperative reasoning systems.Conretely, the single inferene rule modelling the ooperation between Leoand a �rst-order theorem prover needs four arguments to be appliable: (1) anopen proof goal, (2) a partial Leo proof, (3) a set of FO-like lauses in thepartial proof, (4) a �rst-order refutation proof for the set of FO-like lauses.Eah of these arguments is omputed, that is, its instantiation is found, byan independent proess. The �rst proess �nds open goals in the entral proofobjet and posts them on the blakboard assoiated with the new rule. Theseond proess starts an instane of the Leo theorem prover for eah new opengoal on the blakboard. Eah Leo instane maintains its own set of FO-likelauses. The third proess monitors these lauses, and as soon as it detets ahange in this set, that is, if new FO-like lauses are added by Leo, it writesthe entire set of lauses to the blakboard. One FO-like lauses are posted, thefourth proess �rst translates eah of the lauses diretly into a orrespondingone in the format of the �rst-order theorem prover, and then starts the �rst-ordertheorem prover on them. Note that writing FO-like lauses on the blakboard isby far not as time onsuming as generating higher-order proof objets. As soonas either Leo or the �rst-order prover �nds a refutation, the seond proessreports Leo's proof or partial proof to the blakboard, that is, it instantiatesargument (2). One all four arguments of our inferene rule are instantiated, therule an be applied and the open proof goal an be losed in the entral proofobjet. That is, the open goal an be proved by the ooperation between Leoand a �rst-order theorem prover. When omputing appliability of the inferenerule, the seond and the fourth proess onurrently spawn proesses runningLeo or a �rst-order prover on a di�erent set of FO-like lauses. Thus, whenatually applying the inferene rule, all these instanes of provers working onthe same open subgoal are stopped.The ooperation an be arried out between any �rst-order theorem proverand Leo instantiated with any strategy, thus resulting in di�erent instantiationsof the inferene rule disussed above. While several �rst-order provers are inte-grated in Oants and ould be used, Bliksem was suÆient for the ase studyreported in this paper (see Se. 4). In most ases, more than one Bliksem pro-ess was neessary. But as the problems were always onerned with only onesubgoal, only one Leo proess had to be started.Our approah to the ooperation between a higher-order and a �rst-ordertheorem prover has many advantages. The main one is that the ommuniationis restrited to the transmission of lauses, and thus it avoids intermediate trans-lation into the language of the entral proof objet. This signi�antly reduesthe ommuniation overhead and makes e�etive proving of more involved theo-rems feasible. A disadvantage of this approah is that we annot easily translateand integrate the two proof objets produed by Leo and Bliksem into theentral proof objet maintained by Oants, as is possible when applying only



one prover per open subgoal. Providing suh translation remains future work.The reperussions will be disussed in more detail in Se. 3.4.3.3 Extrating FO-like lauses from LeoCruial to a suessful ooperation between Leo and a �rst-order ATP is obvi-ously the generation of FO-like lauses. Leo always maintains a heap of FO-likelauses. In the urrent Leo system this heap remains rather small sine Leo'sstandard alulus intrinsially avoids primitive equality and instead providesa rule that replaes ourrenes of primitive equality with their orrespondingLeibniz de�nitions whih are higher-order. The Leibniz priniple de�nes equal-ity as follows =o��:= �x� �y� [8Po� Px) Py℄. Leo also provides a rule whihreplaes syntatially non-uni�able uni�ation onstraints between terms of non-Boolean base type by their respetive representations that use Leibniz equality.While the lauses resulting from these rules are still refutable in Leo, they arenot refutable by Bliksem without adding set theory axioms. We illustrate thee�et by the following simple example, where a�, b�, and f�� are onstants:a = b) f(a) = f(b)Depending on whether we work with primitive equality or Leibniz equality thisproblem is redued to the lause sets in either (12) or (13) respetively (in thelatter Po� is a new free variable, and Qo� is a new Skolem onstant):[a = b℄T [f(a) =? f(b)℄ (12)[Pa℄F _ [Pb℄T [Q(f(a))℄T [Q(f(b))℄F (13)While the former is obviously refutable in Bliksem, the latter is not. Leo, how-ever, still �nds a refutation for the latter and generates the ruial substitutionP �x� Q(f(x)) by higher-order pre-uni�ation.To irumvent this problem, we adapted the relevant rules in Leo. Insteadof immediately onstruting Leibniz representation of lauses, an intermediaterepresentation ontaining primitive equality is generated and dumped on theheap of FO-like lauses. As a onsequene, additional useful FO-like lauses areaumulated and the heap an beome quite large, in partiular, sine we donot apply any subsumption to the set of FO-like lauses (this is generally donemore eÆiently by a �rst-order ATP anyway). Reent researh has shown thatLeibniz equality is generally very bad for automating higher-order proof searh.Thus, future work in Leo inludes providing support for full primitive equalityand avoiding Leibniz equations.3.4 Soundness and ompleteness of the ooperationClearly, soundness and ompleteness properties depend on the orrespondingproperties of the systems involved, in our ase, of Leo and Bliksem.



Soundness: The general philosophy of Oants is to ensure the orretness ofproofs by the generation of expliit proof objets, whih an be heked inde-pendently from the proof generation. In partiular, reasoning steps of ATPs haveto be translated into Oants's natural dedution alulus via the Tramp prooftransformation system [17℄ to be mahine-hekable. Sine the ooperative proofresult of Leo-Bliksem annot yet be diretly inserted into the entralised proofobjet, the generation of a mahine-hekable proof objet is not yet supported.One possible solution is to insert Bliksem proofs into Leo proofs at the rightplaes. Then, the modi�ed Leo proofs an be inserted into the entralised proofobjet, and hene, expliit proof objets an be generated by Oants. In prini-ple, there is no problem with this, however, it is not yet implemented.While there are many advantages in guaranteeing orretness of proofs byheking them, it is worth noting that the ombination of Leo and Bliksemis sound under the assumption that the two systems are sound. Namely, toprove a theorem it is suÆient to show that a subset of lauses generated inthe proof is inonsistent. If Leo generates an inonsistent set of lauses, thenit does so orretly by assumption, be it a FO-like set or not. Assuming thatthe translation from FO-like lauses to truly �rst-order lauses preserves onsis-teny/inonsisteny, then a set of lauses that is given to Bliksem is inonsistentonly if Leo generated an inonsistent set of lauses in the �rst plae. By the as-sumption that Bliksem is sound follows that Bliksem will only generate theempty lause when the original lause set was inonsistent.Thus, soundness of our ooperative approah ritially relies only on thesoundness of the seleted transformational mapping from FO-like lauses toproper �rst-order lauses. We use the mapping from Tramp, whih has beenpreviously shown to be sound and is based on [16℄. Essentially, it injetively mapsexpressions suh as P (f(a)) to expressions suh as �1pred(P;�1fun(f; a)), wherethe � are new �rst-order operators desribing funtion and prediate applia-tion for partiular types and arities. The injetivity of the mapping guaranteessoundness, sine it allows eah proof step to be mapped bak from �rst-order tohigher-order. Hene, our higher-order/�rst-order ooperative approah betweenLeo and Bliksem is sound.Completeness: Completeness (in the sense of Henkin ompleteness) an in prin-iple be ahieved in higher-order systems, but pratially, the strategies usedare typially not omplete for eÆieny reasons. Let us assume that we use aomplete strategy in Leo. All that our proedure does is pass FO-like lausesto Bliksem. Hene, no proofs an be lost in this proess. That is, ompletenessfollows trivially from the ompleteness of Leo.The more interesting question is whether partiular ooperation strategieswill be omplete as well. For instane, in Leo we may want to give higherpreferene to real higher-order steps whih guarantee the generation of �rst-order lauses.



4 Experiments and ResultsWe onduted several experiments to evaluate our hybrid reasoning approah.In partiular, we onentrated on problems given in Table 1. We investigatedseveral Leo strategies in order to ompare Leo's individual performane withthe performane of the Leo-Bliksem ooperation. Our example set di�ers fromthe one in [14℄ in that it ontains some additional problems, and it also omitsan entry for problem SET108+1. This problem addresses the universal lass andan therefore not be formalised in type theory in the same onise way as theother examples, but only in a way very similar to the one given in TPTP.Table 4 presents the results of our experiments. All timings given in thetable are in seonds. The �rst olumn ontains the TPTP identi�er of the prob-lem. The seond olumn relates some of the problems to their ounterparts in theJournal of Formalized Mathematis (JFM; see mizar.org/JFM) where they orig-inally stem from. This eases the omparison with the results in [6, 2℄, where theproblems from the JFM artile Boolean Properties of Sets were already solved:the problems are named with pre�x `B:'. Pre�x `RS1:' stands for the JFM arti-le Relations De�ned on Sets. The third olumn lists the TPTP (v3.0.1 as of 20January 2005, see http://www.tptp.org) diÆulty rating of the problem, whihindiates how hard the problem is for �rst-order ATPs (diÆulty rating 1.00indiates that no TPTP prover an solve the problem).The fourth, �fth and sixth olumns list whether Saturate, Musadet(v2.4) and E-Setheo (sp04), respetively, an (+) or annot ({) solve a prob-lem. The seventh olumn lists the timing results for Vampire (v7). The resultsfor Saturate are taken from [14℄ (a `?' in Table 4 indiates that the resultwas not listed in [14℄ and is thus unavailable). The results for Musadet andE-Setheo are taken from the on-line version of the solutions provided with theTPTP. Sine the listed results were obtained from di�erent experiments on dif-ferent platforms, their run-time omparison would be unfair, and was thus notarried out. The timings for Vampire, on the other hand, are based on privateommuniation with A. Voronkov and they were obtained on a omputer with avery similar spei�ation as we used for the Leo-Bliksem timings. Note, thatthe results for Vampire and E-Setheo reported in [14℄ di�er for some of theproblems to the ones in TPTP. This is probably due to di�erent versions of thesystems tested, for instane, the TPTP usesVampire version 7, while the resultsreported in [14℄ are based on version 5. The results in olumns four through toseven show that some problems are still very hard for �rst-order ATPs, as wellas for the speial purpose theorem prover Musadet. Column eight and ninein Table 4 list the results for Leo alone and Leo-Bliksem, respetively. Eahof these two olumns is further divided into sub-olumns to allow for a detailedomparison.All our experiments (for the values of Leo and Leo-Bliksem) were on-duted on a 2.4 GHz Xenon mahine with 1GB of memory and an overall timelimit of 100 seonds. For our experiments with Leo alone in olumn eight inTable 4 we tested four di�erent strategies. Mainly, they di�er in their treat-ment of equality and extensionality. This ranges from immediate expansion of
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Table 4 presents the number of lauses generated by Leo (Cl.) together with thetime (Time), and in addition, the number of �rst-order lauses sent to Bliksem(FOl), the time used by Bliksem (FOtm), and the number of lauses generatedby Bliksem (GnCl). Note, that we give the data only for the �rst instane thatBliksem atually sueeded in solving the problem. This time also inludesthe time needed to write and proess input and output �les over the network.While Leo and instanes of Bliksem were running in separate threads (eahrun of Bliksem was given a 50 seond time limit), the �gures given in the`Time' olumn reet the overall time needed for a suessful proof. That is,it ontains the time needed by all onurrent proesses: Leo's own proess aswell as those proesses administering the various instanes of Bliksem. Sineall these proesses ran on a single proessor, there is potential to ameliorate theoverall runtimes by using real multiproessing.Note also, that the number of lauses in Leo's searh spae is typially lowsine subsumption is enabled. Subsumption, however, was not enabled for theaumulation of FO-like lauses in Leo's bag of FO-like lauses. This is whythere are usually more lauses in this bag (whih is sent to Bliksem) than thereare available in Leo's searh spae. Finally, observe that for some problems arefutation was found after Leo's lausal normalisation, and therefore Bliksemwas not appliable (N/A).While Leo itself an solve a majority of the onsidered problems with somestrategy, the Leo-Bliksem ooperation an solve more problems and, moreover,needs only a single Leo strategy. We an also observe that for many problemsthat appear to be relatively hard for Leo alone (e.g., SET017+1, SET611+3,SET624+3), the Leo-Bliksem ooperation solves them not only more quikly,but also it sometimes redues the problems to relatively small higher-order pre-proessing steps with subsequent easy �rst-order proofs, as for instane, in thease of SET017+1.From a mathematial viewpoint the investigated problems are trivial and,hene, they should ideally be reliably and very eÆiently solvable within aproof assistant. This has been ahieved for the examples in Table 4 (exept forSET741+4 and SET770+4) by our hybrid approah. While some of the proofattempts now require slightly more time than when using Leo alone with a spe-ialised strategy, they are, in most ases, still faster than when proving with a�rst-order system.5 Related Work and ConlusionRelated to our approah is the Tehs system [12℄, whih realises a oopera-tion between a set of heterogeneous �rst-order theorem provers. Similarly to ourapproah, partial results in Tehs are exhanged between the di�erent theo-rem provers in form of lauses. The main di�erene to the work of Denzingeret al. (and other related arhitetures like [13℄) is that our system bridges be-tween higher-order and �rst-order automated theorem proving. Also, unlike inTehs, we provide a delarative spei�ation framework for modelling exter-



nal systems as ooperating, onurrent proesses that an be (re-)on�gured atrun-time. Related is also the work of Hurd [15℄ whih realises a generi inter-fae between HOL and �rst-order theorem provers. It is similar to the solutionpreviously ahieved by Tramp [17℄ in Omega, whih serves as a basis for thesound integration of ATPs into Oants. Both approahes pass essentially �rst-order lauses to �rst-order theorem provers and then translate their results bakinto HOL resp. Omega. Some further related work on the ooperation of Is-abelle with Vampire is presented in [18℄. The main di�erene of our work tothe related systems is that while our system alls �rst-order provers from withinhigher-order proof searh, this is not the ase for [15, 17, 18℄.One of the motivations for our work is to show that the ooperation of higher-order and �rst-order automated theorem provers an be very suessful and ef-fetive. The results of our ase study provide evidene for this: our non-optimisedsystem outperforms related work on state-of-the-art �rst-order theorem proversand their ad ho extensions suh as Saturate [14℄ on 45 mathematial problemshosen from the TPTP SET ategory. Among them are four problems whihannot be solved by any TPTP system to date. In ontrast to the �rst-ordersituation, these problems an in fat be proved in our approah reliably from�rst priniples, that is, without avoiding relevant base axioms of the underlyingset theory, and moreover, without the need to provide relevant lemmata andde�nitions by hand.The results of our ase study motivate further researh in the automationof higher-order theorem proving and the experimentation with di�erent higher-order to �rst-order transformation mappings (suh as the ones used by Hurd)that support our hybrid reasoning approah. They also provide further evidenefor the usefulness of the Oants approah as desribed in [8, 5℄ for exibly mod-elling the ooperation of reasoning systems.Our results also motivate the need for a higher-order extension of the TPTPlibrary in whih alternative higher-order problem formalisations are linked withtheir �rst-order ounterparts so that �rst-order theorem provers ould also beevaluated against higher-order systems (and vie versa).Future work is to investigate how far our approah sales up to more omplexproblems and more advaned mathematial theories. In less trivial settings asdisussed in this paper, we will fae the problem of seleting and adding relevantlemmata to avoid immediate redution to �rst priniples and to appropriatelyinstantiate set variables. Relevant related work for this setting is Bishop's ap-proah to seletively expand de�nitions as presented in [9℄ and Brown's PhDthesis on set omprehension in Churh's type theory [10℄.Aknowledgements For advie and help we thank Chad Brown, AndreasMeier, Andrei Voronkov, and Claus-Peter Wirth.Referenes1. P. Andrews. An Introdution to mathematial logi and Type Theory: To Truththrough Proof. Number 27 in Applied Logi Series. Kluwer, 2002.
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