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t. State-of-the-art �rst-order automated theorem proving sys-tems have rea
hed 
onsiderable strength over re
ent years. However, inmany areas of mathemati
s they are still a long way from reliably prov-ing theorems that would be 
onsidered relatively simple by humans. Forexample, when reasoning about sets, relations, or fun
tions, �rst-ordersystems still exhibit serious weaknesses. While it has been shown in thepast that higher-order reasoning systems 
an solve problems of this kindautomati
ally, the 
omplexity inherent in their 
al
uli and their ineÆ-
ien
y in dealing with large numbers of 
lauses prevent these systemsfrom solving a whole range of problems.We present a solution to this 
hallenge by 
ombining a higher-order and a�rst-order automated theorem prover, both based on the resolution prin-
iple, in a 
exible and distributed environment. By this we 
an exploit
on
ise problem formulations without forgoing eÆ
ient reasoning on �rst-order subproblems. We demonstrate the e�e
tiveness of our approa
h ona set of problems still 
onsidered non-trivial for many �rst-order theoremprovers.1 Introdu
tionWhen dealing with problems 
ontaining higher-order 
on
epts, su
h as sets, fun
-tions, or relations, today's state-of-the-art �rst-order automated theorem provers(ATPs) still exhibit weaknesses on problems 
onsidered relatively simple by hu-mans (
f. [14℄). One reason is that the problem formulations use an en
odingin a �rst-order set theory, whi
h makes it parti
ularly 
hallenging when tryingto prove theorems from �rst prin
iples, that is, basi
 axioms. Therefore, to aidATPs in �nding proofs, problems are often enri
hed by hand-pi
ked additionallemmata, or axioms of the sele
ted set theory are dropped leaving the theory? This work was supported by EPSRC grant GR/M22031 and DFG-SFB 378 (�rstauthor), EU Marie-Curie-Fellowship HPMF-CT-2002-01701 (se
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in
omplete. This has re
ently motivated extensions of state-of-the-art �rst-order
al
uli and systems, as for example presented in [14℄ for the Saturate system.The extended Saturate system 
an solve some problems from the SET domainin the TPTP [24℄ whi
h Vampire [21℄ and E-Setheo's [23℄ 
annot solve.While it has already been shown in [6, 2℄ that many problems of this nature
an be easily proved from �rst prin
iples using a 
on
ise higher-order represen-tation and the higher-order resolution ATP Leo, the 
ombinatorial explosioninherent in Leo's 
al
ulus prevents the prover from solving a whole range ofpossible problems with one universal strategy. Often higher-order problems re-quire only relatively few but essential steps of higher-order reasoning, while theoverwhelming part of the reasoning is �rst-order or even propositional level. Thissuggests that Leo's performan
e 
ould be improved when 
ombining it with a�rst-order ATP to sear
h eÆ
iently for a possible refutation in the subset ofthose 
lauses that are essentially �rst-order.The advantages of su
h a 
ombination | further dis
ussed in Se
. 2 | arenot only that many problems 
an still be eÆ
iently shown from �rst prin
iplesin a general purpose approa
h, but also that problems 
an be expressed in avery 
on
ise way. For instan
e, we present 45 problems from the SET domainof the TPTP-v3.0.1, together with their entire formalisation in less than twopages in this paper, whi
h is diÆ
ult to a
hieve within a framework that doesnot provide �-abstra
tion. We use this problem set, whi
h is an extension of theproblems 
onsidered in [14℄, in Se
. 4 to show the e�e
tiveness of our approa
h.While many of the 
onsidered problems 
an be proved by Leo alone with somestrategy, the 
ombination of Leo with the �rst-order ATP Bliksem [11℄ is notonly able to show more problems, but also needs only a single strategy to solvethem. Several of our problems are 
onsidered very 
hallenging by the �rst-order
ommunity and �ve of them (of whi
h Leo 
an solve four) have a TPTP ratingof 1.00, saying that they 
annot be solved by any TPTP prover to date.Te
hni
ally, the 
ombination | des
ribed in more detail in Se
. 3 | has beenrealised in the 
on
urrent reasoning system Oants [22, 8℄ whi
h enables the 
o-operation of hybrid reasoning systems to 
onstru
t a 
ommon proof obje
t. Inour past experiments, Oants has been su

essfully employed to 
he
k the valid-ity of set equations using higher-order and �rst-order ATPs, model generation,and 
omputer algebra [5℄. While this already enabled a 
ooperation betweenLeo and a �rst-order ATP, the proposed solution 
ould not be 
lassi�ed as ageneral purpose approa
h. A major short
oming was that all 
ommuni
ation ofpartial results had to be 
ondu
ted via the 
ommon proof obje
t, whi
h wasvery ineÆ
ient for hard examples. Thus, the solved examples from set theorywere 
onsidered too trivial, albeit they were often similar to those still 
onsid-ered 
hallenging in the TPTP in the �rst-order 
ontext. In this paper we nowpresent a novel approa
h to the 
ooperation between Leo and Bliksem insideOants by de
entralising 
ommuni
ation. This leads not only to a higher overalleÆ
ien
y | Se
. 4 details our results | but also to a general purpose approa
hbased on a single strategy in Leo.



2 Why Linking Higher-Order and First-Order?Existing higher-order ATPs generally exhibit de�
its in eÆ
iently reasoning with�rst-order problems for several reasons. Unlike in the 
ase of �rst-order provers,for whi
h sophisti
ated 
al
uli and strategies, as well as advan
ed implementa-tion te
hniques, su
h as term indexing [19℄, have been developed, fully me
h-anisable higher-order 
al
uli are still at a 
omparably early stage of develop-ment. Some problems are mu
h harder in higher-order, for instan
e, uni�
ationis unde
idable, strong 
onstraining term- and literal-orderings are not available,extensionality reasoning and set variable instantiation has to be addressed. Nev-ertheless, for some mathemati
al problem domains, su
h as naive set theory, forinstan
e, automated higher-order reasoning performs very well.We motivate the need for linking higher-order and �rst-order ATPs with someexamples from Table 1. It 
ontains a range of 
hallenging problems taken fromthe TPTP, against whi
h we will evaluate our system in Se
. 4. The problems aregiven by the identi�ers used in the SET domain of the TPTP, and are formalisedin a variant of Chur
h's simply typed �-
al
ulus with pre�x polymorphism. In
lassi
al type theory terms and all their sub-terms are typed. Polymorphismallows the introdu
tion of type variables su
h that statements 
an be made forall types. For instan
e, in problem SET014+4 the universally quanti�ed variableXo� denotes a mapping from obje
ts of type � to obje
ts of type o. We useChur
h's notation o�, whi
h stands for the fun
tional type �! o. The reader isreferred to [1℄ for a more detailed introdu
tion. In the remainder, o will denotethe type of truth values, and small Greek letters will denote arbitrary types.Thus, Xo� (resp. its �-longform �y� Xy) is a
tually a 
hara
teristi
 fun
tiondenoting the set of elements of type �, for whi
h the predi
ate asso
iated withX holds. As further notational 
onvention, we use 
apital letter variables todenote sets, fun
tions, or relations, while lower 
ase letters denote individuals.Types are usually only given in the �rst o

urren
e of a variable and omitted ifinferable from the 
ontext.The problems in Table 1 employ de�ned 
on
epts that are spe
i�ed in aknowledge base of hierar
hi
al theories that Leo has a

ess to. All 
on
eptsne
essary for de�ning our problems in Table 1 are given in Table 2. Con
epts arede�ned in terms of �-expressions and they may 
ontain other, already spe
i�ed
on
epts. For presentation purposes, we use 
ustomary mathemati
al symbols[;\, et
., for some 
on
epts like union, interse
tion, et
., and we also use in�xnotation. For instan
e, the de�nition of union on sets 
an be easily read inits more 
ommon mathemati
al representation A [ B := fxjx 2 A _ x 2 Bg.Before proving a problem, Leo always expands | re
ursively, if ne
essary | allo

urring 
on
epts. This straightforward expansion to �rst prin
iples is realisedby an automated prepro
ess in our 
urrent approa
h.SET171+3We �rst dis
uss example SET171+3 to 
ontrast our formalisation toa standard �rst-order one. After re
ursively expanding the input problem, that is,
ompletely redu
ing it to �rst prin
iples, Leo turns it into a negated unit 
lause.Sin
e this initial 
lause is not in normal form, Leo �rst normalises it with expli
it



SET Problem Formalisation014+4 8Xo�; Yo�; Ao� [[X � A ^ Y � A℄) (X [ Y ) � A℄017+1 8x�; y�; z� [UnOrderedPair(x; y) = UnOrderedPair(x; z)) y = z℄066+1 8x�; y� [UnOrderedPair(x; y) = UnOrderedPair(y; x)067+1 8x�; y� [UnOrderedPair(x; x) � UnOrderedPair(x; y)℄076+1 8x�; y� 8Zo� x 2 Z ^ y 2 Z ) UnOrderedPair(x; y) � Z086+1 8x� 9y� [y 2 Singleton(x)℄096+1 8Xo�; y� [X � Singleton(y)) [X = ; _X = Singleton(y)℄℄143+3 8Xo�; Yo�; Zo� [(X \ Y ) \ Z = X \ (Y \ Z)℄171+3 8Xo�; Yo�; Zo� [X [ (Y \ Z) = (X [ Y ) \ (X [ Z)℄580+3 8Xo�; Yo�; u� [u 2 Ex
lUnion(X;Y ), [u 2 X , u 62 Y ℄℄601+3 8 Xo�; Yo�; Zo�[(X \ Y ) [ ((Y \ Z) [ (Z \X)) = (X [ Y ) \ ((Y [ Z) \ (Z [X))℄606+3 8Xo�; Yo� [Xn(X \ Y ) = XnY ℄607+3 8Xo�; Yo� [X [ (Y nX) = X [ Y ℄609+3 8Xo�; Yo�; Zo� [Xn(Y nZ) = (XnY ) [ (X \ Z)℄611+3 8Xo�; Yo� [X \ Y = ; , XnY = X℄612+3 8Xo�; Yo�; Zo� [Xn(Y [ Z) = (XnY ) \ (XnZ)℄614+3 8Xo�; Yo�; Zo� [(XnY )nZ = Xn(Y [ Z)℄615+3 8Xo�; Yo�; Zo� [(X [ Y )nZ = (XnZ) [ (Y nZ)℄623+3 8Xo�; Yo�; Zo� [Ex
lUnion(Ex
lUnion(X; Y ); Z) = Ex
lUnion(X;Ex
lUnion(Y;Z))℄624+3 8Xo�; Yo�; Zo� [Meets(X; (Y [ Z)), [Meets(X;Y ) _Meets(X;Z)℄℄630+3 8Xo�; Yo� [Misses(X \ Y;Ex
lUnion(X; Y ))℄640+3 8Ro��; Qo�� [Subrel(R;Q)) Subrel(R; (�u� >)� (�v� >))℄646+3 8x�; y� [Subrel(Pair(x; y); (�u� >)� (�v� >)) ℄647+3 8Ro��;Xo� [(RDom(R) � X)) Subrel(R;X �RCodom(R))℄648+3 8Ro��; Yo� [(RCodom(R) � Y )) Subrel(R;RDom(R)� Y )℄649+3 8Ro��;Xo�; Yo� [[RDom(R) � X ^RCodom(R) � Y ℄) Subrel(R;X � Y )℄651+3 8Ro�� [RDom(R) � Ao� ) Subrel(R;A� (�u� >))℄657+3 8Ro�� [Field(R) � ((�u� >) [ (�v� >))℄669+3 8Ro�� [Subrel(Id(�u� >); R)) [(�u� >) � RDom(R) ^ (�u� >) = RCodom(R)℄℄670+3 8Zo�; Ro��;Xo�Yo� [IsRelOn(R;X; Y )) IsRelOn(Restri
tRDom(R;Z); Z; Y )℄671+3 8Zo�; Ro��;Xo�; Yo� [[IsRelOn(R;X; Y ) ^X � Z℄) Restri
tRDom(R;Z) = R℄672+3 8Zo�; Ro��;Xo�Yo� [IsRelOn(R;X; Y )) IsRelOn(Restri
tRCodom(R;Z);X; Z)℄673+3 8Zo�; Ro��;Xo�; Yo� [[IsRelOn(R;X; Y ) ^ Y � Z℄) Restri
tRCodom(R;Z) = R℄680+3 8Ro��;Xo�; Yo� [IsRelOn(R;X; Y ))[8u� u 2 X ) [u 2 RDom(R), 9v� v 2 Y ^R(u; v)℄℄℄683+3 8Ro��;Xo�; Yo� [IsRelOn(R;X; Y ))[8v� v 2 Y ) [v 2 RCodom(R)) 9u� u 2 X ^ u 2 RDom(R)℄℄℄684+3 8Po��; Ro
� ; x�; z
 [RelComp(P;R)xz , 9y� Pxy ^Ryz℄686+3 8Zo�; Ro
� ; x� [x 2 InverseImageR(R;Z), 9y� Rxy ^ x 2 Z℄716+4 8F��; G
� [[Inj (F ) ^ Inj (G)℄) Inj (G Æ F )℄724+4 8F��; G
�;H
� [[F ÆG = F ÆH ^ Surj (F )℄) G = H℄741+4 8F��; G
�;H�
 [[Inj ((F ÆG) ÆH) ^ Surj ((G ÆH) Æ F ) ^ Surj ((H Æ F ) ÆG)℄) Bij (H)℄747+4 8F��; G
�; /1o��; /2o�� ; /3o

 [[In
reasingF (F; /1; /2) ^De
reasingF(G; /2; /3)℄)De
reasingF(F ÆG; /1; /3)℄752+4 8Xo�; Yo�; F�� [ImageF(F;X [ Y ) = ImageF(F;X) [ ImageF(F; Y )℄753+4 8Xo�; Yo�; F�� [ImageF(F;X \ Y ) � ImageF (F;X) \ ImageF(F; Y )℄764+4 8F�� [InverseImageF(F; ;) = ;℄770+4 8Ro��; Qo�� [[EquivRel(R) ^ EquivRel(Q)℄)[EquivClasses(R) = EquivClasses(Q) _Disjoint (EquivClasses(R);EquivClasses(Q))℄℄Table 1. Problems from TPTP for the evaluation of Oants.
lause normalisation rules to rea
h some proper initial 
lauses. In our 
on
rete
ase, this normalisation pro
ess leads to the following unit 
lause 
onsisting of a(synta
ti
ally not solvable) uni�
ation 
onstraint (here Bo�; Co�; Do� are Skolem
onstants and Bx is obtained from expansion of x 2 B):[(�x� Bx _ (Cx ^Dx)) =? (�x� (Bx _ Cx) ^ (Bx _Dx))℄Note that negated primitive equations are generally automati
ally 
onvertedby Leo into uni�
ation 
onstraints. This is why [(�x� Bx _ (Cx ^ Dx)) =?



De�ned Notions in Theory Typed Set2 := �x�; Ao� [Ax℄; := [�x� ?℄� := �Ao�; Bo� [8x� x 2 A) x 2 B℄[ := �Ao�; Bo� [�x� x 2 A _ x 2 B℄\ := �Ao�; Bo� [�x� x 2 A ^ x 2 B℄:= �Ao� [�x� x =2 A℄n := �Ao�; Bo� [�x� x 2 A ^ x =2 B℄Ex
lUnion( ; ) := �Ao�; Bo� [(AnB) [ (BnA)℄Disjoint ( ; ) := �Ao�; Bo� [A \B = ;℄Meets( ; ) := �Ao�; Bo� [9x� x 2 A ^ x 2 B℄Misses( ; ) := �Ao�; Bo� [:9x� x 2 A ^ x 2 B℄De�ned Notions in Theory RelationUnOrderedPair( ; ) := �x�; y� [�u� u = x _ u = y℄Singleton( ) := �x� [�u� u = x℄Pair( ; ) := �x�; y� [�u�; v� u = x ^ v = y℄� := �Ao�; Bo� [�u�; v� u 2 A ^ v 2 B℄RDom( ) := �Ro�� [�x� 9y� Rxy℄RCodom( ) := �Ro�� [�y� 9x� Rxy℄Subrel( ; ) := �Ro��; Qo�� [8x� 8y� Rxy ) Qxy℄Id( ) := �Ao� [�x�; y� x 2 A ^ x = y℄Field( ) := �Ro�� [RDom(B) [RCodom(R)℄IsRelOn( ; ; ) := �Ro��; Ao� �Bo� [8x�; y� Rxy ) (x 2 A ^ x 2 B)℄Restri
tRCodom( ; ) := �Ro��; Ao� [�x�; y� x 2 A ^Rxy℄RelComp( ; ) := �Ro��; Qo
� [�x�; z
 9y� Rxy ^Ryz℄InverseImageR( ; ) := �Ro��; Bo� [�x� 9y� y 2 B ^Rxy℄Reflexive( ) := �Ro�� [8x� Rxx℄Symmetri
( ) := �Ro�� [8x� 8y� Rxy ) Ryx℄Transitive( ) := �Ro�� [8x� 8y� 8z� Rxy ^Ryz ) Rxz℄EquivRel( ) := �Ro�� [Reflexive(R) ^ Symmetri
(R) ^ Transitive(R)℄EquivClasses( ) := �Ro�� [�Ao� 9u� u 2 A ^ 8v� v 2 A, Ruv℄De�ned Notions in Theory Fun
tionInj ( ) := �F�� [8x�; y� F (x) = F (y)) x = y℄Surj ( ) := �F�� [8y� 9x� y = F (x)℄Bij ( ) := �F�� Surj (F ) ^ Inj (F )ImageF( ; ) := �F��; Ao� [�y� 9x� x 2 A ^ y = F (x)℄InverseImageF( ; ) := �F��; Bo� [�x� 9y� y 2 B ^ y = F (x)℄Æ := �F��; G
� [�x� G(F (x))℄In
reasingF ( ; ; ) := �F��; /1o��; /2o�� [8x�; y� x /1 y ) F (x) /2 F (y)℄De
reasingF( ; ; ) := �F��; /1o��; /2o�� [8x�; y� x /1 y ) F (y) /2 F (x)℄Table 2. De�ned 
on
epts o

urring in problems from Table 1.(�x� (Bx _ Cx) ^ (Bx _Dx))℄ is generated, and not [(�x� Bx _ (Cx ^Dx)) =(�x� (Bx_Cx)^ (Bx_Dx))℄F . Observe, that we write [:℄T and [:℄F for positiveand negative literals, respe
tively. Leo then applies its goal dire
ted fun
tionaland Boolean extensionality rules whi
h repla
e this uni�
ation 
onstraint by thenegative literal (where x is a Skolem 
onstant):[(Bx _ (Cx ^Dx)), ((Bx _ Cx) ^ (Bx _Dx))℄FThis unit 
lause is again not normal; normalisation, fa
torisation and subsump-tion yield the following set of 
lauses:[Bx℄F [Bx℄T _ [Cx℄T [Bx℄T _ [Dx℄T [Cx℄F _ [Dx℄FThis set is essentially of propositional logi
 
hara
ter and trivially refutable. Leoneeds 0.56 se
onds for solving the problem and generates a total of 36 
lauses.



Assumptions: 8B;C; x [x 2 (B [ C), x 2 B _ x 2 C℄ (1)8B;C; x [x 2 (B \ C), x 2 B ^ x 2 C℄ (2)8B;C [B = C , B � C ^ C � B℄ (3)8B;C [B [ C = C [B℄ (4)8B;C [B \ C = C \B℄ (5)8B;C [B � C , 8x x 2 B ) x 2 C℄ (6)8B;C [B = C , 8x x 2 B , x 2 C℄ (7)Proof Goal: 8B;C;D [B [ (C \D) = (B [ C) \ (B [D)℄ (8)Table 3. TPTP problem SET171+3 | distributivity of [ over \.Let us 
onsider now this same example SET171+3 in its �rst-order formula-tion from the TPTP (see Table 3). We 
an observe that the assumptions provideonly a partial axiomatisation of naive set theory. On the other hand, the spe
i�-
ation introdu
es lemmata that are useful for solving the problem. In parti
ular,assumption (7) is trivially derivable from (3) with (6). Obviously, 
lausal normal-isation of this �rst-order problem des
ription yields a mu
h larger and more diÆ-
ult set of 
lauses. Furthermore, de�nitions of 
on
epts are not dire
tly expandedas in Leo. It is therefore not surprising that most �rst-order ATPs still fail toprove this problem. In fa
t, very few TPTP provers were su

essful in provingSET171+3. Amongst them are Mus
adet 2.4. [20℄, Vampire 7.0, and Satu-rate. The natural dedu
tion system Mus
adet uses spe
ial inferen
e rules forsets and needs 0:2 se
onds to prove this problem. Vampire needs 108 se
onds.The Saturate system [14℄ (whi
h extends Vampire with Boolean extension-ality rules that are a one-to-one 
orresponden
e to Leo's rules for ExtensionalHigher-Order Paramodulation [3℄) 
an solve the problem in 2:9 se
onds whilegenerating 159 
lauses. The signi�
an
e of su
h 
omparisons is 
learly limitedsin
e di�erent systems are optimised to a di�erent degree. One noted di�eren
ebetween the experiments with �rst-order provers listed above, and the experi-ments with Leo and Leo-Bliksem is that �rst-order systems often use a 
asetailored problem representation (e.g., by avoiding some base axioms of the ad-dressed theory), while Leo and Leo-Bliksem have a harder task of dealing witha general (not spe
i�
ally tailored) representation.For the experiments with Leo and the 
ooperation of Leo with the �rst-ordertheorem prover Bliksem, �-abstra
tion as well as the extensionality treatmentinherent in Leo's 
al
ulus [4℄ is used. This enables a theoreti
ally1 Henkin-
omplete proof system for set theory. In the above example SET171+3, Leo gen-erally uses the appli
ation of fun
tional extensionality to push extensional uni�-
ation 
onstraints down to base type level, and then eventually applies Booleanextensionality to generate 
lauses from them. These are typi
ally mu
h simpler1 For pragmati
 reasons, su
h as eÆ
ien
y, most of Leo's ta
ti
s are in
omplete. Leo'sphilosophy is to rely on a theoreti
ally 
omplete 
al
ulus, but to pra
ti
ally providea set of 
omplimentary strategies so that these 
over a broad range of theorems.



and often even propositional-like or �rst-order-like (FO-like, for short), that is,they do not 
ontain any `real' higher-order subterms (su
h as a �-abstra
tion orembedded equations), and are therefore suitable for treatment by a �rst-orderATP or even a propositional logi
 de
ision pro
edure.SET624+3 Sometimes, extensionality treatment is not required and the origi-nally higher-order problem is immediately redu
ed to only FO-like 
lauses. Forexample, after expanding the de�nitions, problem SET624+3 yields the following
lause (where Bo�; Co�; Do� are again Skolem 
onstants):[(9x� (Bx ^ (Cx _Dx)), ((9x� Bx ^ Cx) _ (9x� Bx ^Dx))℄FNormalisation results in 26 FO-like 
lauses, whi
h present a hard problem forLeo: it needs approx. 35 se
onds (see Se
. 4) to �nd a refutation, whereas �rst-order ATPs only need a fra
tion of a se
ond.SET646+3 Sometimes, problems are immediately refuted after the initial 
lausenormalisation. For example, after de�nition expansion in problem SET646+3 weget the following 
lause (where Bo�; Co�; x� are again Skolem 
onstants):[Ax) (8y� By ) (8u� 8v� (u = x ^ v = y)) ((:?) ^ (:?))))℄FNormalisation in Leo immediately generates a basi
 refutation (i.e., a 
lause[?℄T _ [?℄T ) without even starting proof sear
h.SET611+3 The examples dis
ussed so far all essentially apply extensionalitytreatment and normalisation to the input problem in order to immediately gen-erate a set of in
onsistent FO-like 
lauses. Problem SET611+3 is more 
ompli-
ated as it requires several reasoning steps in Leo before the initially 
onsistentset of available FO-like 
lauses grows into an in
onsistent one. After de�nitionexpansion, Leo is �rst given the input 
lause:[8Ao�; Bo� (�x� (Ax ^ Bx)) = (�x� ?)), (�x� (Ax ^ :Bx)) = (�x� Ax)℄Fwhi
h it normalises into:[(�x� (Ax ^ Bx)) =? (�x� ?)℄ _ [(�x� (Ax ^ :Bx)) =? (�x� Ax)℄ (9)[(�x� (Ax ^ Bx)) = (�x� ?)℄T _ [(�x� (Ax ^ :Bx)) = (�x� Ax)℄T (10)As mentioned before, the uni�
ation 
onstraint (9) 
orresponds to:[(�x� (Ax ^Bx)) = (�x� ?)℄F _ [(�x� (Ax ^ :Bx)) = (�x� Ax)℄F (11)Leo has to apply to ea
h of these 
lauses and to ea
h of their literals appro-priate extensionality rules. Thus, several rounds of Leo's set-of-support-basedreasoning pro
edure are required, so that all ne
essary extensionality reasoningsteps are performed, and suÆ
iently many FO-like 
lauses are generated whi
h
an be refuted by Bliksem.



In summary, ea
h of the examples dis
ussed in this se
tion exposes a motiva-tion for our higher-order/�rst-order 
ooperative approa
h to theorem proving.In parti
ular, they show that:{ Higher-order formulations allow for a 
on
ise problem representation whi
hoften allows easier and faster proof sear
h than �rst-order formulations.{ Higher-order problems 
an often be redu
ed to a set of �rst-order 
lausesthat 
an be more eÆ
iently handled by a �rst-order ATP.{ Some problems are trivially refutable after 
lause normalisation.{ Some problems require in-depth higher-order reasoning before a refutable�rst-order 
lause set 
an be extra
ted.3 Higher-Order/First-Order Cooperation via OantsThe 
ooperation between higher-oder and �rst-order reasoners, whi
h we inves-tigate in this paper, is realised in the 
on
urrent hierar
hi
al bla
kboard ar
hi-te
ture Oants [7℄. We �rst des
ribe in Se
. 3.1 the existing Oants ar
hite
ture.In order to over
ome some of its problems, in parti
ular eÆ
ien
y problems, wedevised within Oants a new and improved 
ooperation method for the higher-order ATP Leo and �rst-order provers (in parti
ular, Bliksem) { we des
ribethis in Se
. 3.2. We address the question of how to generate the ne
essary 
lausesin Se
. 3.3, and dis
uss soundness and 
ompleteness of our implementation ofthe higher-order/�rst-order 
ooperation in Se
. 3.4.3.1 OantsOants was originally 
on
eived to support intera
tive theorem proving but waslater extended to a fully automated proving system [22, 8℄. Its basi
 idea is to
ompose a 
entral proof obje
t by generating, in ea
h proof situation, a rankedlist of potentially appli
able inferen
e steps. In this pro
ess, all inferen
e rules,su
h as 
al
ulus rules or ta
ti
s, are uniformly viewed with respe
t to threesets: premises, 
on
lusions, and additional parameters. The elements of thesethree sets are 
alled arguments of the inferen
e rule and they usually dependon ea
h other. An inferen
e rule is appli
able if at least some of its arguments
an be instantiated with respe
t to the given proof 
ontext. The task of theOants ar
hite
ture is now to determine the appli
ability of inferen
e rules by
omputing instantiations for their arguments.The ar
hite
ture 
onsists of two layers. On the lower layer, possible instanti-ations of the arguments of individual inferen
e rules are 
omputed. In parti
ular,ea
h inferen
e rule is asso
iated with its own bla
kboard and 
on
urrent pro-
esses, one for ea
h argument of the inferen
e rule. The role of every pro
ess isto 
ompute possible instantiations for its designated argument of the inferen
erule, and to re
ord these on the bla
kboard. The 
omputations are 
arried outwith respe
t to the given proof 
ontext and by exploiting information alreadypresent on the bla
kboard, that is, argument instantiations 
omputed by other



pro
esses. On the upper layer, the information from the lower layer is used for
omputing and heuristi
ally ranking the inferen
e rules that are appli
able inthe 
urrent proof state. The most promising rule is then applied to the 
entralproof obje
t and the data on the bla
kboards is 
leared for the next round of
omputations.Oants employs resour
e reasoning to guide sear
h.2 This enables the 
on-trolled integration (e.g., by spe
ifying time-outs) of full-
edged external rea-soning systems su
h as automated theorem provers, 
omputer algebra systems,or model generators into the ar
hite
ture. The use of the external systems ismodelled by inferen
e rules, usually one for ea
h system. Their 
orresponding
omputations are en
apsulated in one of the independent pro
esses in the ar-
hite
ture. For example, an inferen
e rule modelling the appli
ation of an ATPhas its 
on
lusion argument set to be an open goal. A pro
ess 
an then pla
ean open goal on the bla
kboard, where it is pi
ked up by a pro
ess that appliesthe prover to it. Any 
omputed proof or partial-proof from the external systemis again written to the bla
kboard from where it is subsequently inserted intothe proof obje
t when the inferen
e rule is applied. While this setup enablesproof 
onstru
tion by a 
ollaborative e�ort of diverse reasoning systems, the 
o-operation 
an only be a
hieved via the 
entral proof obje
t. This means that allpartial results have to be translated ba
k and forth between the syntaxes of theintegrated systems and the language of the proof obje
t. Sin
e there are manytypes of integrated systems, the language of the proof obje
t | a higher-orderlanguage even ri
her than Leo's, together with a natural dedu
tion 
al
ulus |is expressive but also 
umbersome. This leads not only to a large 
ommuni
ationoverhead, but also means that 
omplex proof obje
ts have to be 
reated (large
lause sets need to be transformed into large single formulae to represent them inthe proof obje
t; the support for this in Oants to date is ineÆ
ient), even if thereasoning of all systems involved is 
lause-based. Consequently, the 
ooperationbetween external systems is typi
ally rather ineÆ
ient [5℄.3.2 Cooperation via a single inferen
e ruleIn order to over
ome the problem of the 
ommuni
ation bottlene
k des
ribedabove, we devised a new method for the 
ooperation between a higher-orderand a �rst-order theorem prover within Oants. Rather than modelling ea
htheorem prover as a separate inferen
e rule (and hen
e needing to translatethe 
ommuni
ation via the language of the 
entral proof obje
t), we model the
ooperation between a higher-order (
on
retely, Leo) and a �rst-order theoremprover (in our 
ase study Bliksem) in Oants as a single inferen
e rule. The
ooperation between these two theorem provers is 
arried out dire
tly and not viathe 
entral proof obje
t. This avoids translating 
lause sets into single formulaeand ba
k. While in our previous approa
h the 
ooperation between Leo andan FO-ATP was modelled at the upper layer of the Oants ar
hite
ture, our2 Oants provides fa
ilities to de�ne and modify the pro
esses at run-time. But noti
ethat we do not use these advan
ed features in the 
ase study presented in this paper.



new approa
h presented in this paper models their 
ooperation by exploiting thelower layer of the Oants bla
kboard ar
hite
ture. This is not an ad ho
 solution,but rather, it demonstrates Oants's 
exibility in modelling the integration of
ooperative reasoning systems.Con
retely, the single inferen
e rule modelling the 
ooperation between Leoand a �rst-order theorem prover needs four arguments to be appli
able: (1) anopen proof goal, (2) a partial Leo proof, (3) a set of FO-like 
lauses in thepartial proof, (4) a �rst-order refutation proof for the set of FO-like 
lauses.Ea
h of these arguments is 
omputed, that is, its instantiation is found, byan independent pro
ess. The �rst pro
ess �nds open goals in the 
entral proofobje
t and posts them on the bla
kboard asso
iated with the new rule. These
ond pro
ess starts an instan
e of the Leo theorem prover for ea
h new opengoal on the bla
kboard. Ea
h Leo instan
e maintains its own set of FO-like
lauses. The third pro
ess monitors these 
lauses, and as soon as it dete
ts a
hange in this set, that is, if new FO-like 
lauses are added by Leo, it writesthe entire set of 
lauses to the bla
kboard. On
e FO-like 
lauses are posted, thefourth pro
ess �rst translates ea
h of the 
lauses dire
tly into a 
orrespondingone in the format of the �rst-order theorem prover, and then starts the �rst-ordertheorem prover on them. Note that writing FO-like 
lauses on the bla
kboard isby far not as time 
onsuming as generating higher-order proof obje
ts. As soonas either Leo or the �rst-order prover �nds a refutation, the se
ond pro
essreports Leo's proof or partial proof to the bla
kboard, that is, it instantiatesargument (2). On
e all four arguments of our inferen
e rule are instantiated, therule 
an be applied and the open proof goal 
an be 
losed in the 
entral proofobje
t. That is, the open goal 
an be proved by the 
ooperation between Leoand a �rst-order theorem prover. When 
omputing appli
ability of the inferen
erule, the se
ond and the fourth pro
ess 
on
urrently spawn pro
esses runningLeo or a �rst-order prover on a di�erent set of FO-like 
lauses. Thus, whena
tually applying the inferen
e rule, all these instan
es of provers working onthe same open subgoal are stopped.The 
ooperation 
an be 
arried out between any �rst-order theorem proverand Leo instantiated with any strategy, thus resulting in di�erent instantiationsof the inferen
e rule dis
ussed above. While several �rst-order provers are inte-grated in Oants and 
ould be used, Bliksem was suÆ
ient for the 
ase studyreported in this paper (see Se
. 4). In most 
ases, more than one Bliksem pro-
ess was ne
essary. But as the problems were always 
on
erned with only onesubgoal, only one Leo pro
ess had to be started.Our approa
h to the 
ooperation between a higher-order and a �rst-ordertheorem prover has many advantages. The main one is that the 
ommuni
ationis restri
ted to the transmission of 
lauses, and thus it avoids intermediate trans-lation into the language of the 
entral proof obje
t. This signi�
antly redu
esthe 
ommuni
ation overhead and makes e�e
tive proving of more involved theo-rems feasible. A disadvantage of this approa
h is that we 
annot easily translateand integrate the two proof obje
ts produ
ed by Leo and Bliksem into the
entral proof obje
t maintained by Oants, as is possible when applying only



one prover per open subgoal. Providing su
h translation remains future work.The reper
ussions will be dis
ussed in more detail in Se
. 3.4.3.3 Extra
ting FO-like 
lauses from LeoCru
ial to a su

essful 
ooperation between Leo and a �rst-order ATP is obvi-ously the generation of FO-like 
lauses. Leo always maintains a heap of FO-like
lauses. In the 
urrent Leo system this heap remains rather small sin
e Leo'sstandard 
al
ulus intrinsi
ally avoids primitive equality and instead providesa rule that repla
es o

urren
es of primitive equality with their 
orrespondingLeibniz de�nitions whi
h are higher-order. The Leibniz prin
iple de�nes equal-ity as follows =o��:= �x� �y� [8Po� Px) Py℄. Leo also provides a rule whi
hrepla
es synta
ti
ally non-uni�able uni�
ation 
onstraints between terms of non-Boolean base type by their respe
tive representations that use Leibniz equality.While the 
lauses resulting from these rules are still refutable in Leo, they arenot refutable by Bliksem without adding set theory axioms. We illustrate thee�e
t by the following simple example, where a�, b�, and f�� are 
onstants:a = b) f(a) = f(b)Depending on whether we work with primitive equality or Leibniz equality thisproblem is redu
ed to the 
lause sets in either (12) or (13) respe
tively (in thelatter Po� is a new free variable, and Qo� is a new Skolem 
onstant):[a = b℄T [f(a) =? f(b)℄ (12)[Pa℄F _ [Pb℄T [Q(f(a))℄T [Q(f(b))℄F (13)While the former is obviously refutable in Bliksem, the latter is not. Leo, how-ever, still �nds a refutation for the latter and generates the 
ru
ial substitutionP �x� Q(f(x)) by higher-order pre-uni�
ation.To 
ir
umvent this problem, we adapted the relevant rules in Leo. Insteadof immediately 
onstru
ting Leibniz representation of 
lauses, an intermediaterepresentation 
ontaining primitive equality is generated and dumped on theheap of FO-like 
lauses. As a 
onsequen
e, additional useful FO-like 
lauses area

umulated and the heap 
an be
ome quite large, in parti
ular, sin
e we donot apply any subsumption to the set of FO-like 
lauses (this is generally donemore eÆ
iently by a �rst-order ATP anyway). Re
ent resear
h has shown thatLeibniz equality is generally very bad for automating higher-order proof sear
h.Thus, future work in Leo in
ludes providing support for full primitive equalityand avoiding Leibniz equations.3.4 Soundness and 
ompleteness of the 
ooperationClearly, soundness and 
ompleteness properties depend on the 
orrespondingproperties of the systems involved, in our 
ase, of Leo and Bliksem.



Soundness: The general philosophy of Oants is to ensure the 
orre
tness ofproofs by the generation of expli
it proof obje
ts, whi
h 
an be 
he
ked inde-pendently from the proof generation. In parti
ular, reasoning steps of ATPs haveto be translated into Oants's natural dedu
tion 
al
ulus via the Tramp prooftransformation system [17℄ to be ma
hine-
he
kable. Sin
e the 
ooperative proofresult of Leo-Bliksem 
annot yet be dire
tly inserted into the 
entralised proofobje
t, the generation of a ma
hine-
he
kable proof obje
t is not yet supported.One possible solution is to insert Bliksem proofs into Leo proofs at the rightpla
es. Then, the modi�ed Leo proofs 
an be inserted into the 
entralised proofobje
t, and hen
e, expli
it proof obje
ts 
an be generated by Oants. In prin
i-ple, there is no problem with this, however, it is not yet implemented.While there are many advantages in guaranteeing 
orre
tness of proofs by
he
king them, it is worth noting that the 
ombination of Leo and Bliksemis sound under the assumption that the two systems are sound. Namely, toprove a theorem it is suÆ
ient to show that a subset of 
lauses generated inthe proof is in
onsistent. If Leo generates an in
onsistent set of 
lauses, thenit does so 
orre
tly by assumption, be it a FO-like set or not. Assuming thatthe translation from FO-like 
lauses to truly �rst-order 
lauses preserves 
onsis-ten
y/in
onsisten
y, then a set of 
lauses that is given to Bliksem is in
onsistentonly if Leo generated an in
onsistent set of 
lauses in the �rst pla
e. By the as-sumption that Bliksem is sound follows that Bliksem will only generate theempty 
lause when the original 
lause set was in
onsistent.Thus, soundness of our 
ooperative approa
h 
riti
ally relies only on thesoundness of the sele
ted transformational mapping from FO-like 
lauses toproper �rst-order 
lauses. We use the mapping from Tramp, whi
h has beenpreviously shown to be sound and is based on [16℄. Essentially, it inje
tively mapsexpressions su
h as P (f(a)) to expressions su
h as �1pred(P;�1fun(f; a)), wherethe � are new �rst-order operators des
ribing fun
tion and predi
ate appli
a-tion for parti
ular types and arities. The inje
tivity of the mapping guaranteessoundness, sin
e it allows ea
h proof step to be mapped ba
k from �rst-order tohigher-order. Hen
e, our higher-order/�rst-order 
ooperative approa
h betweenLeo and Bliksem is sound.Completeness: Completeness (in the sense of Henkin 
ompleteness) 
an in prin-
iple be a
hieved in higher-order systems, but pra
ti
ally, the strategies usedare typi
ally not 
omplete for eÆ
ien
y reasons. Let us assume that we use a
omplete strategy in Leo. All that our pro
edure does is pass FO-like 
lausesto Bliksem. Hen
e, no proofs 
an be lost in this pro
ess. That is, 
ompletenessfollows trivially from the 
ompleteness of Leo.The more interesting question is whether parti
ular 
ooperation strategieswill be 
omplete as well. For instan
e, in Leo we may want to give higherpreferen
e to real higher-order steps whi
h guarantee the generation of �rst-order 
lauses.



4 Experiments and ResultsWe 
ondu
ted several experiments to evaluate our hybrid reasoning approa
h.In parti
ular, we 
on
entrated on problems given in Table 1. We investigatedseveral Leo strategies in order to 
ompare Leo's individual performan
e withthe performan
e of the Leo-Bliksem 
ooperation. Our example set di�ers fromthe one in [14℄ in that it 
ontains some additional problems, and it also omitsan entry for problem SET108+1. This problem addresses the universal 
lass and
an therefore not be formalised in type theory in the same 
on
ise way as theother examples, but only in a way very similar to the one given in TPTP.Table 4 presents the results of our experiments. All timings given in thetable are in se
onds. The �rst 
olumn 
ontains the TPTP identi�er of the prob-lem. The se
ond 
olumn relates some of the problems to their 
ounterparts in theJournal of Formalized Mathemati
s (JFM; see mizar.org/JFM) where they orig-inally stem from. This eases the 
omparison with the results in [6, 2℄, where theproblems from the JFM arti
le Boolean Properties of Sets were already solved:the problems are named with pre�x `B:'. Pre�x `RS1:' stands for the JFM arti-
le Relations De�ned on Sets. The third 
olumn lists the TPTP (v3.0.1 as of 20January 2005, see http://www.tptp.org) diÆ
ulty rating of the problem, whi
hindi
ates how hard the problem is for �rst-order ATPs (diÆ
ulty rating 1.00indi
ates that no TPTP prover 
an solve the problem).The fourth, �fth and sixth 
olumns list whether Saturate, Mus
adet(v2.4) and E-Setheo (
sp04), respe
tively, 
an (+) or 
annot ({) solve a prob-lem. The seventh 
olumn lists the timing results for Vampire (v7). The resultsfor Saturate are taken from [14℄ (a `?' in Table 4 indi
ates that the resultwas not listed in [14℄ and is thus unavailable). The results for Mus
adet andE-Setheo are taken from the on-line version of the solutions provided with theTPTP. Sin
e the listed results were obtained from di�erent experiments on dif-ferent platforms, their run-time 
omparison would be unfair, and was thus not
arried out. The timings for Vampire, on the other hand, are based on private
ommuni
ation with A. Voronkov and they were obtained on a 
omputer with avery similar spe
i�
ation as we used for the Leo-Bliksem timings. Note, thatthe results for Vampire and E-Setheo reported in [14℄ di�er for some of theproblems to the ones in TPTP. This is probably due to di�erent versions of thesystems tested, for instan
e, the TPTP usesVampire version 7, while the resultsreported in [14℄ are based on version 5. The results in 
olumns four through toseven show that some problems are still very hard for �rst-order ATPs, as wellas for the spe
ial purpose theorem prover Mus
adet. Column eight and ninein Table 4 list the results for Leo alone and Leo-Bliksem, respe
tively. Ea
hof these two 
olumns is further divided into sub-
olumns to allow for a detailed
omparison.All our experiments (for the values of Leo and Leo-Bliksem) were 
on-du
ted on a 2.4 GHz Xenon ma
hine with 1GB of memory and an overall timelimit of 100 se
onds. For our experiments with Leo alone in 
olumn eight inTable 4 we tested four di�erent strategies. Mainly, they di�er in their treat-ment of equality and extensionality. This ranges from immediate expansion of



TPTP- Mizar Diffi- Satu- Mus E-Se- Vamp- LEO LEO-BliksemProblem Problem 
ulty rate 
adet theo ire 7 Strat. Cl. Time Cl. Time FO
l FOtm GnClSET014+4 .67 + + + .01 ST 41 .16 34 6.76 19 .01 7SET017+1 .56 { { + .03 EXT 3906 57.52 25 8.54 16 .01 74SET066+1 1.00 ? { { { { { { 26 6.80 20 10 56SET067+1 .56 + + + .04 ST 6 .02 13 .32 16 .01 12SET076+1 .67 + { + .00 { { { 10 .47 18 .01 35SET086+1 .22 + { + .04 ST 4 .01 4 .01 N/A N/A N/ASET096+1 .56 + { + .03 { { { 27 7.99 14 .01 25SET143+3 B:67 .67 + + + 68.71 EIR 37 .38 33 7.93 18 .01 19SET171+3 B:71 .67 + + { 108.31 EIR 36 .56 25 4.75 19 .01 20SET580+3 B:23 .44 + + + 14.71 EIR 25 .19 6 2.73 8 .01 13SET601+3 B:72 .22 + + + 168.40 EIR 145 2.20 55 4.96 8 .01 13SET606+3 B:77 .78 + { + 62.02 EIR 21 .33 17 10.8 15 .01 5SET607+3 B:79 .67 + + + 65.57 EIR 22 .31 17 7.79 15 .01 6SET609+3 B:81 .89 + + { 161.78 EIR 37 .60 26 6.50 19 10 17SET611+3 B:84 .44 + { + 60.20 EIR 996 12.69 72 32.14 38 .01 101SET612+3 B:85 .89 + { { 113.33 EIR 41 .54 18 3.95 6 .01 7SET614+3 B:88 .67 + + { 157.88 EIR 38 .46 19 4.34 16 .01 17SET615+3 B:89 .67 + + { 109.01 EIR 38 .57 17 3.59 6 .01 9SET623+3 B:99 1.00 ? { { { EXT 43 8.84 23 9.54 10 .01 14SET624+3 B:100 .67 + { + .04 ST 4942 34.71 54 9.61 46 .01 212SET630+3 B:112 .44 + { + 60.39 EIR 11 .07 6 .08 8 10 4SET640+3 RS1:2 .22 + { + 70.41 EIR 2 .01 2 .01 N/A N/A N/ASET646+3 RS1:8 .56 + { + 59.63 EIR 2 .01 2 .01 N/A N/A N/ASET647+3 RS1:9 .56 + { + 64.21 EIR 26 .15 13 .30 13 .01 15SET648+3 RS1:10 .56 + { + 64.22 EIR 26 .15 14 .30 13 .01 16SET649+3 RS1:11 .33 { { + 63.77 EIR 45 .30 29 5.49 12 .01 16SET651+3 RS1:13 .44 { { + 63.88 EIR 20 .10 11 .16 10 10 11SET657+3 RS1:19 .67 + { + 1.44 EIR 2 .01 2 .01 N/A N/A N/ASET669+3 RS1:19 .22 { { + .34 EI 35 .22 35 .23 N/A N/A N/ASET670+3 RS1:33 1.00 ? { { { EXT 15 .17 17 .36 16 .01 6SET671+3 RS1:34 .78 { { + 218.02 EIR 78 .64 7 2.71 10 .01 14SET672+3 RS1:35 1.00 ? { { { EXT 27 .4 30 .70 21 .01 11SET673+3 RS1:36 .78 { { + 47.86 EIR 78 .65 14 5.66 14 .01 16SET680+3 RS1:47 .33 + { + .07 ST 185 .88 29 4.61 18 .01 24SET683+3 RS1:50 .22 + { + .06 ST 46 .20 35 8.90 18 10 24SET684+3 RS1:51 .78 { { + .33 ST 275 2.45 46 5.95 26 .01 47SET686+3 RS1:53 .56 { { + .11 ST 274 2.36 46 5.37 26 .01 46SET716+4 .89 + + { { ST 39 .45 18 3.81 18 .01 118SET724+4 .89 + + { { EXT 154 2.75 18 7.21 15 10 23SET741+4 1.00 ? { { { { { { { { { { {SET747+4 .89 { + { { ST 34 .46 25 1.11 18 10 10SET752+4 .89 ? + { { { { { 50 6.60 48 .01 4363SET753+4 .89 ? + { { { { { 15 3.07 12 10 19SET764+4 .56 + + + .02 EI 9 .05 8 .04 N/A N/A N/ASET770+4 .89 + + { { { { { { { { { {Table 4. Experimental data for the ben
hmark problems given in Table 1.primitive equality with Leibniz equality and limited extensionality reasoning,STANDARD (ST), to immediate expansion of primitive equality and moderateextensionality reasoning, EXT, to delayed expansion of primitive equality andmoderate extensionality reasoning, EXT-INPUT (EI), and �nally to delayed ex-pansion of primitive equality and advan
ed re
ursive extensionality reasoning,EXT-INPUT-RECURSIVE (EIR). Column eight in Table 4 presents the fasteststrategy for a respe
tive problem (Strat.), the number of 
lauses generated byLeo (Cl.), and the total runtime (Time). While o

asionally there were morethan one Leo strategy that 
ould solve a problem, it should be noted that noneof the strategies was su

essful for all the problems solved by Leo.In 
ontrast to the experiments with Leo alone, we used only the EXT-INPUTstrategy for our experiments with the Leo-Bliksem 
ooperation. Column nine in



Table 4 presents the number of 
lauses generated by Leo (Cl.) together with thetime (Time), and in addition, the number of �rst-order 
lauses sent to Bliksem(FO
l), the time used by Bliksem (FOtm), and the number of 
lauses generatedby Bliksem (GnCl). Note, that we give the data only for the �rst instan
e thatBliksem a
tually su

eeded in solving the problem. This time also in
ludesthe time needed to write and pro
ess input and output �les over the network.While Leo and instan
es of Bliksem were running in separate threads (ea
hrun of Bliksem was given a 50 se
ond time limit), the �gures given in the`Time' 
olumn re
e
t the overall time needed for a su

essful proof. That is,it 
ontains the time needed by all 
on
urrent pro
esses: Leo's own pro
ess aswell as those pro
esses administering the various instan
es of Bliksem. Sin
eall these pro
esses ran on a single pro
essor, there is potential to ameliorate theoverall runtimes by using real multipro
essing.Note also, that the number of 
lauses in Leo's sear
h spa
e is typi
ally lowsin
e subsumption is enabled. Subsumption, however, was not enabled for thea

umulation of FO-like 
lauses in Leo's bag of FO-like 
lauses. This is whythere are usually more 
lauses in this bag (whi
h is sent to Bliksem) than thereare available in Leo's sear
h spa
e. Finally, observe that for some problems arefutation was found after Leo's 
lausal normalisation, and therefore Bliksemwas not appli
able (N/A).While Leo itself 
an solve a majority of the 
onsidered problems with somestrategy, the Leo-Bliksem 
ooperation 
an solve more problems and, moreover,needs only a single Leo strategy. We 
an also observe that for many problemsthat appear to be relatively hard for Leo alone (e.g., SET017+1, SET611+3,SET624+3), the Leo-Bliksem 
ooperation solves them not only more qui
kly,but also it sometimes redu
es the problems to relatively small higher-order pre-pro
essing steps with subsequent easy �rst-order proofs, as for instan
e, in the
ase of SET017+1.From a mathemati
al viewpoint the investigated problems are trivial and,hen
e, they should ideally be reliably and very eÆ
iently solvable within aproof assistant. This has been a
hieved for the examples in Table 4 (ex
ept forSET741+4 and SET770+4) by our hybrid approa
h. While some of the proofattempts now require slightly more time than when using Leo alone with a spe-
ialised strategy, they are, in most 
ases, still faster than when proving with a�rst-order system.5 Related Work and Con
lusionRelated to our approa
h is the Te
hs system [12℄, whi
h realises a 
oopera-tion between a set of heterogeneous �rst-order theorem provers. Similarly to ourapproa
h, partial results in Te
hs are ex
hanged between the di�erent theo-rem provers in form of 
lauses. The main di�eren
e to the work of Denzingeret al. (and other related ar
hite
tures like [13℄) is that our system bridges be-tween higher-order and �rst-order automated theorem proving. Also, unlike inTe
hs, we provide a de
larative spe
i�
ation framework for modelling exter-



nal systems as 
ooperating, 
on
urrent pro
esses that 
an be (re-)
on�gured atrun-time. Related is also the work of Hurd [15℄ whi
h realises a generi
 inter-fa
e between HOL and �rst-order theorem provers. It is similar to the solutionpreviously a
hieved by Tramp [17℄ in Omega, whi
h serves as a basis for thesound integration of ATPs into Oants. Both approa
hes pass essentially �rst-order 
lauses to �rst-order theorem provers and then translate their results ba
kinto HOL resp. Omega. Some further related work on the 
ooperation of Is-abelle with Vampire is presented in [18℄. The main di�eren
e of our work tothe related systems is that while our system 
alls �rst-order provers from withinhigher-order proof sear
h, this is not the 
ase for [15, 17, 18℄.One of the motivations for our work is to show that the 
ooperation of higher-order and �rst-order automated theorem provers 
an be very su

essful and ef-fe
tive. The results of our 
ase study provide eviden
e for this: our non-optimisedsystem outperforms related work on state-of-the-art �rst-order theorem proversand their ad ho
 extensions su
h as Saturate [14℄ on 45 mathemati
al problems
hosen from the TPTP SET 
ategory. Among them are four problems whi
h
annot be solved by any TPTP system to date. In 
ontrast to the �rst-ordersituation, these problems 
an in fa
t be proved in our approa
h reliably from�rst prin
iples, that is, without avoiding relevant base axioms of the underlyingset theory, and moreover, without the need to provide relevant lemmata andde�nitions by hand.The results of our 
ase study motivate further resear
h in the automationof higher-order theorem proving and the experimentation with di�erent higher-order to �rst-order transformation mappings (su
h as the ones used by Hurd)that support our hybrid reasoning approa
h. They also provide further eviden
efor the usefulness of the Oants approa
h as des
ribed in [8, 5℄ for 
exibly mod-elling the 
ooperation of reasoning systems.Our results also motivate the need for a higher-order extension of the TPTPlibrary in whi
h alternative higher-order problem formalisations are linked withtheir �rst-order 
ounterparts so that �rst-order theorem provers 
ould also beevaluated against higher-order systems (and vi
e versa).Future work is to investigate how far our approa
h s
ales up to more 
omplexproblems and more advan
ed mathemati
al theories. In less trivial settings asdis
ussed in this paper, we will fa
e the problem of sele
ting and adding relevantlemmata to avoid immediate redu
tion to �rst prin
iples and to appropriatelyinstantiate set variables. Relevant related work for this setting is Bishop's ap-proa
h to sele
tively expand de�nitions as presented in [9℄ and Brown's PhDthesis on set 
omprehension in Chur
h's type theory [10℄.A
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