Can a Higher-Order and a First-Order Theorem
Prover Cooperate?*

Christoph Benzmiiller! ~ Volker Sorge> Mateja Jamnik® Manfred Kerber?

!Fachbereich Informatik, Universitit des Saarlandes
66041 Saarbriicken, Germany (www.ags.uni-sb.de/”chris)

2School of Computer Science, The University of Birmingham
Birmingham B15 2TT, England, UK (www.cs.bham.ac.uk/"vxs| mmk)

3University of Cambridge Computer Laboratory
Cambridge CB3 0FD, England, UK (www.cl.cam.ac.uk/"mj201)

Abstract. State-of-the-art first-order automated theorem proving sys-
tems have reached considerable strength over recent years. However, in
many areas of mathematics they are still a long way from reliably prov-
ing theorems that would be considered relatively simple by humans. For
example, when reasoning about sets, relations, or functions, first-order
systems still exhibit serious weaknesses. While it has been shown in the
past that higher-order reasoning systems can solve problems of this kind
automatically, the complexity inherent in their calculi and their ineffi-
ciency in dealing with large numbers of clauses prevent these systems
from solving a whole range of problems.

We present a solution to this challenge by combining a higher-order and a
first-order automated theorem prover, both based on the resolution prin-
ciple, in a flexible and distributed environment. By this we can exploit
concise problem formulations without forgoing efficient reasoning on first-
order subproblems. We demonstrate the effectiveness of our approach on
a set of problems still considered non-trivial for many first-order theorem
provers.

1 Introduction

When dealing with problems containing higher-order concepts, such as sets, func-
tions, or relations, today’s state-of-the-art first-order automated theorem provers
(ATPs) still exhibit weaknesses on problems considered relatively simple by hu-
mans (cf. [14]). One reason is that the problem formulations use an encoding
in a first-order set theory, which makes it particularly challenging when trying
to prove theorems from first principles, that is, basic axioms. Therefore, to aid
ATPs in finding proofs, problems are often enriched by hand-picked additional
lemmata, or axioms of the selected set theory are dropped leaving the theory

* This work was supported by EPSRC grant GR/M22031 and DFG-SFB 378 (first
author), EU Marie-Curie-Fellowship HPMF-CT-2002-01701 (second author), and
EPSRC Advanced Research Fellowship GR/R76783 (third author).



incomplete. This has recently motivated extensions of state-of-the-art first-order
calculi and systems, as for example presented in [14] for the SATURATE system.
The extended SATURATE system can solve some problems from the SET domain
in the TPTP [24] which VAMPIRE [21] and E-SETHEO’s [23] cannot solve.

While it has already been shown in [6,2] that many problems of this nature
can be easily proved from first principles using a concise higher-order represen-
tation and the higher-order resolution ATP LEO, the combinatorial explosion
inherent in LEO’s calculus prevents the prover from solving a whole range of
possible problems with one universal strategy. Often higher-order problems re-
quire only relatively few but essential steps of higher-order reasoning, while the
overwhelming part of the reasoning is first-order or even propositional level. This
suggests that LEO’s performance could be improved when combining it with a
first-order ATP to search efficiently for a possible refutation in the subset of
those clauses that are essentially first-order.

The advantages of such a combination — further discussed in Sec. 2 — are
not only that many problems can still be efficiently shown from first principles
in a general purpose approach, but also that problems can be expressed in a
very concise way. For instance, we present 45 problems from the SET domain
of the TPTP-v3.0.1, together with their entire formalisation in less than two
pages in this paper, which is difficult to achieve within a framework that does
not provide A-abstraction. We use this problem set, which is an extension of the
problems considered in [14], in Sec. 4 to show the effectiveness of our approach.
While many of the considered problems can be proved by LEO alone with some
strategy, the combination of LEO with the first-order ATP BLIKSEM [11] is not
only able to show more problems, but also needs only a single strategy to solve
them. Several of our problems are considered very challenging by the first-order
community and five of them (of which LEO can solve four) have a TPTP rating
of 1.00, saying that they cannot be solved by any TPTP prover to date.

Technically, the combination — described in more detail in Sec. 3 — has been
realised in the concurrent reasoning system OANTS [22, 8] which enables the co-
operation of hybrid reasoning systems to construct a common proof object. In
our past experiments, OANTS has been successfully employed to check the valid-
ity of set equations using higher-order and first-order ATPs, model generation,
and computer algebra [5]. While this already enabled a cooperation between
LEO and a first-order ATP, the proposed solution could not be classified as a
general purpose approach. A major shortcoming was that all communication of
partial results had to be conducted via the common proof object, which was
very inefficient for hard examples. Thus, the solved examples from set theory
were considered too trivial, albeit they were often similar to those still consid-
ered challenging in the TPTP in the first-order context. In this paper we now
present a novel approach to the cooperation between LEO and BLIKSEM inside
OANTS by decentralising communication. This leads not only to a higher overall
efficiency — Sec. 4 details our results — but also to a general purpose approach
based on a single strategy in LEO.



2 Why Linking Higher-Order and First-Order?

Existing higher-order ATPs generally exhibit deficits in efficiently reasoning with
first-order problems for several reasons. Unlike in the case of first-order provers,
for which sophisticated calculi and strategies, as well as advanced implementa-
tion techniques, such as term indexing [19], have been developed, fully mech-
anisable higher-order calculi are still at a comparably early stage of develop-
ment. Some problems are much harder in higher-order, for instance, unification
is undecidable, strong constraining term- and literal-orderings are not available,
extensionality reasoning and set variable instantiation has to be addressed. Nev-
ertheless, for some mathematical problem domains, such as naive set theory, for
instance, automated higher-order reasoning performs very well.

We motivate the need for linking higher-order and first-order ATPs with some
examples from Table 1. It contains a range of challenging problems taken from
the TPTP, against which we will evaluate our system in Sec. 4. The problems are
given by the identifiers used in the SET domain of the TPTP, and are formalised
in a variant of Church’s simply typed A-calculus with prefix polymorphism. In
classical type theory terms and all their sub-terms are typed. Polymorphism
allows the introduction of type variables such that statements can be made for
all types. For instance, in problem SET014+4 the universally quantified variable
X,q denotes a mapping from objects of type a to objects of type 0. We use
Church’s notation oa, which stands for the functional type a — o. The reader is
referred to [1] for a more detailed introduction. In the remainder, o will denote
the type of truth values, and small Greek letters will denote arbitrary types.
Thus, X,, (resp. its n-longform Ay,.Xy) is actually a characteristic function
denoting the set of elements of type «, for which the predicate associated with
X holds. As further notational convention, we use capital letter variables to
denote sets, functions, or relations, while lower case letters denote individuals.
Types are usually only given in the first occurrence of a variable and omitted if
inferable from the context.

The problems in Table 1 employ defined concepts that are specified in a
knowledge base of hierarchical theories that LEO has access to. All concepts
necessary for defining our problems in Table 1 are given in Table 2. Concepts are
defined in terms of A-expressions and they may contain other, already specified
concepts. For presentation purposes, we use customary mathematical symbols
U, N, etc., for some concepts like union, intersection, etc., and we also use infix
notation. For instance, the definition of union on sets can be easily read in
its more common mathematical representation AU B := {z|x € AV x € B}.
Before proving a problem, LEO always expands — recursively, if necessary — all
occurring concepts. This straightforward expansion to first principles is realised
by an automated preprocess in our current approach.

SET171+43 We first discuss example SET171+3 to contrast our formalisation to
astandard first-order one. After recursively expanding the input problem, that is,
completely reducing it to first principles, LEO turns it into a negated unit clause.
Since this initial clause is not in normal form, LEO first normalises it with explicit



SET |Problem Formalisation

01444V X e, Yoo, Aoas[[X CAAY C Al = (X UY) C 4]

017+1|VZ o, Ya, zan[UnOrderedPair(z, y) = UnOrderedPair(z,z) = y = z]
066+1|VZq, Yyau[UnOrderedPair(z,y) = UnOrderedPair(y, z)

067+1|VZa, Yau[UnOrderedPair(z,z) C UnOrderedPair(z,y)]

0764+1|VZ o, yanVZoanz € Z ANy € Z = UnOrderedPair(z,y) C Z

08641 |VzouIyanly € Singleton(z)]

0964+1|VXoq, yan[X C Singleton(y) = [X = 0V X = Singleton(y)]]

14343V X oo, You, Zoan[ (X NY)NZ =X N(Y N Z)]

17143V X o0, Yoa, Zoas[X U(Y NZ)=(XUY)N (X U Z)]

58043 |VXoa, Yoa, uas[u € EzclUnion(X,Y) & [u€ X & u ¢ Y]]
60143|VaXoa, Yoo, Zoa[(XNY)U((Y NZ)U(ZN X)) =(XUY)N({(YUZ)N(ZUX))]
60643|VX o0, Yous [ X\(X NY) = X\V]

607+3|VXoa, Youu [ X U (Y\X) = X UY]

60943|VX o0, Yoo, Zoas[X\(Y\Z) = (X\Y) U (X N Z)]

61143V Xoa, Your[X NY = 0 & X\Y = X]

61243|VXoa, Yoa, Zoan[X\(Y U Z) = (X\Y) N (X\Z)]

61443|VXoa, Yoa, Zoas[(X\Y)\Z = X\(Y U Z)]

61543|VXoa, You, Zoas[(X UY)\Z = (X\Z) U (Y\Z)]

623+3|VXoa, Yoa, Zoas|ExclUnion(EzclUnion(X,Y), Z) = EzclUnion(X, ExclUnion(Y, Z))]
624+3|VXoa, Yoa, Zoan[Meets(X, (Y U Z)) & [Meets(X,Y) V Meets(X, Z)]]
6304+3|VXoq, Yoan[Misses(X NY, EzclUnion(X,Y))]

64043| VRoga, Qogas[Subrel(R, Q) = Subrel(R, (AuasT) X (AvgsT))]

646+43| Ve o, ygs[Subrel( Pair(z,y), (AuasT) X (AvgaT))]

647+3|VRoga s Xoan[(RDom(R) C X) = Subrel(R, X x RCodom(R))]
648+3|VRoga, Yopu[(RCodom(R) C Y) = Subrel(R, RDom(R) X Y)]
649+3|VRoga: Xoa, Yopu[[RDom(R) C X A RCodom(R) C Y] = Subrel(R, X X Y)]
651+3|VRogan[RDom(R) C Aya = Subrel(R, A X (AugsT))]
657+3|VRogas|Field(R) C (Mia=T) U (AvgaT))]

669+3| VRoqan[Subrel(Id(AuanT), R) = [(Auas T) C RDom(R) A (Auas T) = RCodom(R)]]
670+3|VZoa, Rogas Xoa Yopu[IsRelOn(R, X,Y) = IsRelOn(RestrictRDom(R, Z), Z,Y)]
6714+3|VZoa, Ropas Xoa: Yopu[[IsRelOn(R, X, Y) A X C Z] = RestrictRDom(R,Z) = R]
67243|VZ.3, Roga, Xoa Yop=[IsRelOn(R, X,Y) = IsRelOn(RestrictRCodom(R, Z), X, Z)]
67343|VZ.3, Roga; Xoa, Yopu[[IsRelOn(R, X,Y) AY C Z] = RestrictRCodom(R, Z) = R]
68043| VRoga, Xoa: Yogs[IsRelOn(R, X,Y) =

[Vugeu € X = [u € RDom(R) < Jvgav € Y A R(u, v)]]]

683+3| YRoga, Xoa, Yoge[IsRelOn(R, X, Y) =

[Vvgsv €Y = [v € RCodom(R) = Juasu € X Au € RDom(R)]]]
684+4-3|VP,54, Royg, Ta, 2ys[RelComp(P, R)zz < Jyg« Pzy A Ryz|

686+3|VZoa, Royp, Tan|z € InverselmageR(R, Z) < JyanRay A a € Z]

71644|VFga, Gypnl[Ing(F) A Inj(G)] = Inj(G o F)]

72444|VFgo,Gy3, Hyga[[F 0 G = F o H A Surj(F)] = G = H]

T4144|VFsa, Gyp, Hays|[Ing((F o G) o H) A Surj((G o H) o F) A Surj((H o F) o G)] = Bij(H)]
TAT+4 VFBQ7G73,<1(1,QQ7qiﬂﬁ74377-[[1ncrea5ingF(F,<117<12) A DecreasingF (G, <%, <*)] =
DecreasingF (F o G, <", <®)]

752+4+4| VX oo, Yoa, Fgas[ImageF(F, X UY) = ImageF(F, X) U ImageF(F,Y)]

75344\ VX, Yoo, Faas[ImageF(F, X NY) C ImageF(F, X) N ImageF (F,Y)]
764+4|VFgas[InverseImageF (F,0) = 0]

T70+4|VRoga, Qopas|[FquivRel(R) A EquivRel(Q)] =

[EquivClasses(R) = EquivClasses(Q) V Disjoint(EquivClasses(R), EquivClasses(Q))]]

Table 1. Problems from TPTP for the evaluation of OANTS.

clause normalisation rules to reach some proper initial clauses. In our concrete
case, this normalisation process leads to the following unit clause consisting of a
(syntactically not solvable) unification constraint (here Byq, Con; Doa are Skolem
constants and Bz is obtained from expansion of x € B):

[(AZaa Bz V (Cx A Dx)) =" (A2a(Bz V Cx) A (Bz V Dz))]

Note that negated primitive equations are generally automatically converted
by LEO into unification constraints. This is why [(Aza.Bz V (Cz A Dz)) =°



Defined Notions in Theory Typed Set
L€ - = Ao, Aoan|[Az]
0 = [Azanl]
_C . = Moo, Boas[Vzarz € A= 2z € B
_U_ = Mya,Boas[Azasz € AV 2 € B]
_N_ = Moo, Boas[Azawz € ANz € B]
- = Moan[Azawz ¢ A]
A= = Moo, Boas[Azanz € ANz ¢ B]
EzclUnion(-,-) := AAga, Boas[(A\B)U (B\A)]
Disjoint(-,-) := AAoa,Boas|[ANB =10
Meets(-,-) = AAoa, Boan[Fzanz € ANz € B]
Misses(-,-) = MAoa, Boas["3zanz € ANz € B]
Defined Notions in Theory Relation
UnOrderedPair(-,-) ‘= AZa,Yar|[ Mot =z V u=y|
Singleton(-) = Azan[Augnu = x|
Pair(-,2) = AZa,yYge[Aua,vgeu =2 Av =]
_X _ = Mg, Boge[Aua,vgu € AANv € B]
RDom(-) := ARogas[AZas3yssRay]
RCodom(-) := ARogas[AygsIzesRay]
Subrel(-,_) := ARoga;Qogan[VEZasVyanRzy = Quy]
Id(0) = Moas[AZa,Yasz € ANz = Y]
Field(-) := ARogas[RDom(B) U RCodom(R)]
IsRelOn(-,-,-) = ARoga,AcasABogs|[V2a,ypsRay = (z € ANz € B)]
RestrictRCodom(_,_) := ARoga,Acan[A2a,ysez € A A Ray|
RelComp(-,-) := ARoga;Qoyps[Aa,zyaIygaRzy A Ryz]
InverseImageR(-,-) := ARopa,Bogs[AzasIyssy € B A Ray]
Reflezive(-) := ARogas[VZasRza]
Symmetric(-) = ARogas[VZanVyanRzy = Ryz]
Transitive(.) = ARogas[VZanVyarVzauRzy A Ryz = Ruaz]
EquivRel(_) := ARogan|[Reflexive(R) A Symmetric(R) A Transitive(R)]
EquivClasses(.) := ARoaan[AAoanTuastt € A AVVanv € A & Ruv]
Defined Notions in Theory Function
Inj() = AFpas[Vaa,ysaF(z) = F(y) = z = y]
Surj(2) = AFgqas[Vygs3Izasy = F(2)]
Bij(.) := AFgo=Surj(F) A Inj(F)
ImageF(_,_) := AFga,Acan[AygeIzanz € ANy = F(z)]
InverseImageF (_,_) := AFga, Bogu[AzonIygay € BAy = F(z)]
_o_ = MFga,Gypa[AzanG(F(2))]
IncreasingF'(_, _,_) = /\Fgﬂ,qiaa,qiﬁﬂ.[Vzmya.z <y = F(z) <®> F(y)]
DecreasingF (-, _,-) = AFﬁa,diaa,dgﬁﬁ-[VaEm Yoz <ty = F(y) <% F(2)]

Table 2. Defined concepts occurring in problems from Table 1.

(Azos(Bz V Cx) A (Bz V Dx))] is generated, and not [(Azq. Bz V (Cx A Dx)) =
(Azo« (BzVCx) A (BxV Dx))]F . Observe, that we write [.]7 and [.]F for positive
and negative literals, respectively. LEO then applies its goal directed functional
and Boolean extensionality rules which replace this unification constraint by the
negative literal (where = is a Skolem constant):

[(Bz V (Cz A Dz)) & ((Bz V Cz) A (Bz V Dx))]"

This unit clause is again not normal; normalisation, factorisation and subsump-
tion yield the following set of clauses:

[Bx)F [Bx]T v [Cx]T [Bx]T v [Dz]T [Cz])F v [Dz]¥

This set is essentially of propositional logic character and trivially refutable. LEO
needs 0.56 seconds for solving the problem and generates a total of 36 clauses.



Assumptions: VB,C,z[z € (BUC) < z € BV z e (] (1)
VB,C,z.[z € (BNC)ozxz e BAz e ()] (2)
VB,C.[B=C & BCCACC B (3)
VB,C.[BUC = C U B] (4)
VB,C.[BNC =CnNB] (5)
VB,C.[BCC & Vr.x € B=z € ()] (6)
VB,C.[B=C & Vz.x € B& ¢ € ()] (7)

Proof Goal: VB,C,D.[BU(CND)=(BUC)N(BUD)] (8)

Table 3. TPTP problem SET1714+3 — distributivity of U over N.

Let us consider now this same example SET171+3 in its first-order formula-
tion from the TPTP (see Table 3). We can observe that the assumptions provide
only a partial axiomatisation of naive set theory. On the other hand, the specifi-
cation introduces lemmata that are useful for solving the problem. In particular,
assumption (7) is trivially derivable from (3) with (6). Obviously, clausal normal-
isation of this first-order problem description yields a much larger and more diffi-
cult set of clauses. Furthermore, definitions of concepts are not directly expanded
as in LEO. It is therefore not surprising that most first-order ATPs still fail to
prove this problem. In fact, very few TPTP provers were successful in proving
SET1714+3. Amongst them are MUSCADET 2.4. [20], VAMPIRE 7.0, and SATU-
RATE. The natural deduction system MUSCADET uses special inference rules for
sets and needs 0.2 seconds to prove this problem. VAMPIRE needs 108 seconds.
The SATURATE system [14] (which extends VAMPIRE with Boolean extension-
ality rules that are a one-to-one correspondence to LEO’s rules for Extensional
Higher-Order Paramodulation [3]) can solve the problem in 2.9 seconds while
generating 159 clauses. The significance of such comparisons is clearly limited
since different systems are optimised to a different degree. One noted difference
between the experiments with first-order provers listed above, and the experi-
ments with LEO and LEO-BLIKSEM is that first-order systems often use a case
tailored problem representation (e.g., by avoiding some base axioms of the ad-
dressed theory), while LEO and LEO-BLIKSEM have a harder task of dealing with
a general (not specifically tailored) representation.

For the experiments with LEO and the cooperation of LEO with the first-order
theorem prover BLIKSEM, A-abstraction as well as the extensionality treatment
inherent in LEO’s calculus [4] is used. This enables a theoretically! Henkin-
complete proof system for set theory. In the above example SET171+43, LEO gen-
erally uses the application of functional extensionality to push extensional unifi-
cation constraints down to base type level, and then eventually applies Boolean
extensionality to generate clauses from them. These are typically much simpler

! For pragmatic reasons, such as efficiency, most of LEO’s tactics are incomplete. LEO’s
philosophy is to rely on a theoretically complete calculus, but to practically provide
a set of complimentary strategies so that these cover a broad range of theorems.



and often even propositional-like or first-order-like (FO-like, for short), that is,
they do not contain any ‘real’ higher-order subterms (such as a A-abstraction or
embedded equations), and are therefore suitable for treatment by a first-order
ATP or even a propositional logic decision procedure.

SET624+3 Sometimes, extensionality treatment is not required and the origi-
nally higher-order problem is immediately reduced to only FO-like clauses. For
example, after expanding the definitions, problem SET624+3 yields the following
clause (where Boq, Con; Doo are again Skolem constants):

[(3xas(Bz A (Cx V Dx)) ¢ ((3z0e Bx A Cx) V (320 Bx A Dz))]F

Normalisation results in 26 FO-like clauses, which present a hard problem for
LEO: it needs approx. 35 seconds (see Sec. 4) to find a refutation, whereas first-
order ATPs only need a fraction of a second.

SET646+ 3 Sometimes, problems are immediately refuted after the initial clause
normalisation. For example, after definition expansion in problem SET646+43 we
get the following clause (where By, Coa, T, are again Skolem constants):

[Az = (Vyg. By = (VuaVog(u =z Av=y) = ((=L) A (=L)))N]F

Normalisation in LEO immediately generates a basic refutation (i.e., a clause
[1]T v [L]T) without even starting proof search.

SET611+3 The examples discussed so far all essentially apply extensionality
treatment and normalisation to the input problem in order to immediately gen-
erate a set of inconsistent FO-like clauses. Problem SET611+43 is more compli-
cated as it requires several reasoning steps in LEO before the initially consistent
set of available FO-like clauses grows into an inconsistent one. After definition
expansion, LEO is first given the input clause:

[VAoas Boas (AMas (A A Bz)) = (A2ax L)) € (AZae(Az A =Bz)) = (A\zaeAz)]"
which it normalises into:

[(AZae(Az A Bz)) =7 (AZan L)V [(A2ae (A2 A =Bz)) = (Az0eAz)]  (9)
[(AZas (A2 A Bz)) = (ATar L)]T V [(AMas (Az A =B2)) = (A\za. Az)]T  (10)

As mentioned before, the unification constraint (9) corresponds to:
[(AZo-(Az A Bz)) = Azae L)]F V [(A2o- (Az A =Bz)) = (Azo-Az)]F (11)

LEo has to apply to each of these clauses and to each of their literals appro-
priate extensionality rules. Thus, several rounds of LEO’s set-of-support-based
reasoning procedure are required, so that all necessary extensionality reasoning
steps are performed, and sufficiently many FO-like clauses are generated which
can be refuted by BLIKSEM.



In summary, each of the examples discussed in this section exposes a motiva-
tion for our higher-order/first-order cooperative approach to theorem proving.
In particular, they show that:

— Higher-order formulations allow for a concise problem representation which
often allows easier and faster proof search than first-order formulations.

— Higher-order problems can often be reduced to a set of first-order clauses

that can be more efficiently handled by a first-order ATP.

Some problems are trivially refutable after clause normalisation.

Some problems require in-depth higher-order reasoning before a refutable

first-order clause set can be extracted.

3 Higher-Order/First-Order Cooperation via OANTS

The cooperation between higher-oder and first-order reasoners, which we inves-
tigate in this paper, is realised in the concurrent hierarchical blackboard archi-
tecture OANTS [7]. We first describe in Sec. 3.1 the existing OANTS architecture.
In order to overcome some of its problems, in particular efficiency problems, we
devised within OANTS a new and improved cooperation method for the higher-
order ATP LEO and first-order provers (in particular, BLIKSEM) — we describe
this in Sec. 3.2. We address the question of how to generate the necessary clauses
in Sec. 3.3, and discuss soundness and completeness of our implementation of
the higher-order/first-order cooperation in Sec. 3.4.

3.1 OANTS

OANTS was originally conceived to support interactive theorem proving but was
later extended to a fully automated proving system [22, 8]. Its basic idea is to
compose a central proof object by generating, in each proof situation, a ranked
list of potentially applicable inference steps. In this process, all inference rules,
such as calculus rules or tactics, are uniformly viewed with respect to three
sets: premises, conclusions, and additional parameters. The elements of these
three sets are called arguments of the inference rule and they usually depend
on each other. An inference rule is applicable if at least some of its arguments
can be instantiated with respect to the given proof context. The task of the
OANTS architecture is now to determine the applicability of inference rules by
computing instantiations for their arguments.

The architecture consists of two layers. On the lower layer, possible instanti-
ations of the arguments of individual inference rules are computed. In particular,
each inference rule is associated with its own blackboard and concurrent pro-
cesses, one for each argument of the inference rule. The role of every process is
to compute possible instantiations for its designated argument of the inference
rule, and to record these on the blackboard. The computations are carried out
with respect to the given proof context and by exploiting information already
present on the blackboard, that is, argument instantiations computed by other



processes. On the upper layer, the information from the lower layer is used for
computing and heuristically ranking the inference rules that are applicable in
the current proof state. The most promising rule is then applied to the central
proof object and the data on the blackboards is cleared for the next round of
computations.

OANTS employs resource reasoning to guide search.? This enables the con-
trolled integration (e.g., by specifying time-outs) of full-fledged external rea-
soning systems such as automated theorem provers, computer algebra systems,
or model generators into the architecture. The use of the external systems is
modelled by inference rules, usually one for each system. Their corresponding
computations are encapsulated in one of the independent processes in the ar-
chitecture. For example, an inference rule modelling the application of an ATP
has its conclusion argument set to be an open goal. A process can then place
an open goal on the blackboard, where it is picked up by a process that applies
the prover to it. Any computed proof or partial-proof from the external system
is again written to the blackboard from where it is subsequently inserted into
the proof object when the inference rule is applied. While this setup enables
proof construction by a collaborative effort of diverse reasoning systems, the co-
operation can only be achieved via the central proof object. This means that all
partial results have to be translated back and forth between the syntaxes of the
integrated systems and the language of the proof object. Since there are many
types of integrated systems, the language of the proof object — a higher-order
language even richer than LEO’s, together with a natural deduction calculus —
is expressive but also cumbersome. This leads not only to a large communication
overhead, but also means that complex proof objects have to be created (large
clause sets need to be transformed into large single formulae to represent them in
the proof object; the support for this in OANTS to date is inefficient), even if the
reasoning of all systems involved is clause-based. Consequently, the cooperation
between external systems is typically rather inefficient [5].

3.2 Cooperation via a single inference rule

In order to overcome the problem of the communication bottleneck described
above, we devised a new method for the cooperation between a higher-order
and a first-order theorem prover within OANTS. Rather than modelling each
theorem prover as a separate inference rule (and hence needing to translate
the communication via the language of the central proof object), we model the
cooperation between a higher-order (concretely, LEO) and a first-order theorem
prover (in our case study BLIKSEM) in OANTS as a single inference rule. The
cooperation between these two theorem provers is carried out directly and not via
the central proof object. This avoids translating clause sets into single formulae
and back. While in our previous approach the cooperation between LEO and
an FO-ATP was modelled at the upper layer of the OANTS architecture, our

2 OANTS provides facilities to define and modify the processes at run-time. But notice
that we do not use these advanced features in the case study presented in this paper.



new approach presented in this paper models their cooperation by exploiting the
lower layer of the OANTS blackboard architecture. This is not an ad hoc solution,
but rather, it demonstrates OANTS’s flexibility in modelling the integration of
cooperative reasoning systems.

Concretely, the single inference rule modelling the cooperation between LEO
and a first-order theorem prover needs four arguments to be applicable: (1) an
open proof goal, (2) a partial LEO proof, (3) a set of FO-like clauses in the
partial proof, (4) a first-order refutation proof for the set of FO-like clauses.
Each of these arguments is computed, that is, its instantiation is found, by
an independent process. The first process finds open goals in the central proof
object and posts them on the blackboard associated with the new rule. The
second process starts an instance of the LEO theorem prover for each new open
goal on the blackboard. Each LEO instance maintains its own set of FO-like
clauses. The third process monitors these clauses, and as soon as it detects a
change in this set, that is, if new FO-like clauses are added by LEO, it writes
the entire set of clauses to the blackboard. Once FO-like clauses are posted, the
fourth process first translates each of the clauses directly into a corresponding
one in the format of the first-order theorem prover, and then starts the first-order
theorem prover on them. Note that writing FO-like clauses on the blackboard is
by far not as time consuming as generating higher-order proof objects. As soon
as either LEO or the first-order prover finds a refutation, the second process
reports LEO’s proof or partial proof to the blackboard, that is, it instantiates
argument (2). Once all four arguments of our inference rule are instantiated, the
rule can be applied and the open proof goal can be closed in the central proof
object. That is, the open goal can be proved by the cooperation between LEO
and a first-order theorem prover. When computing applicability of the inference
rule, the second and the fourth process concurrently spawn processes running
LEO or a first-order prover on a different set of FO-like clauses. Thus, when
actually applying the inference rule, all these instances of provers working on
the same open subgoal are stopped.

The cooperation can be carried out between any first-order theorem prover
and LEO instantiated with any strategy, thus resulting in different instantiations
of the inference rule discussed above. While several first-order provers are inte-
grated in OANTS and could be used, BLIKSEM was sufficient for the case study
reported in this paper (see Sec. 4). In most cases, more than one BLIKSEM pro-
cess was necessary. But as the problems were always concerned with only one
subgoal, only one LEO process had to be started.

Our approach to the cooperation between a higher-order and a first-order
theorem prover has many advantages. The main one is that the communication
is restricted to the transmission of clauses, and thus it avoids intermediate trans-
lation into the language of the central proof object. This significantly reduces
the communication overhead and makes effective proving of more involved theo-
rems feasible. A disadvantage of this approach is that we cannot easily translate
and integrate the two proof objects produced by LEO and BLIKSEM into the
central proof object maintained by OANTS, as is possible when applying only



one prover per open subgoal. Providing such translation remains future work.
The repercussions will be discussed in more detail in Sec. 3.4.

3.3 Extracting FO-like clauses from LEO

Crucial to a successful cooperation between LEO and a first-order ATP is obvi-
ously the generation of FO-like clauses. LEO always maintains a heap of FO-like
clauses. In the current LEO system this heap remains rather small since LEO’s
standard calculus intrinsically avoids primitive equality and instead provides
a rule that replaces occurrences of primitive equality with their corresponding
Leibniz definitions which are higher-order. The Leibniz principle defines equal-
ity as follows =,00:= AZas AYa= [V Poas Pz = Py]. LEO also provides a rule which
replaces syntactically non-unifiable unification constraints between terms of non-
Boolean base type by their respective representations that use Leibniz equality.
While the clauses resulting from these rules are still refutable in LEO, they are
not refutable by BLIKSEM without adding set theory axioms. We illustrate the
effect by the following simple example, where a,, b,, and f,, are constants:

a=0b= f(a) = f(b)

Depending on whether we work with primitive equality or Leibniz equality this
problem is reduced to the clause sets in either (12) or (13) respectively (in the
latter P, is a new free variable, and @,, is a new Skolem constant):

[a=0)" [f(a) =" (b)) (12)
[Pa)™ v [P5]" [Q(f(a))]” [Q(F ()" (13)

While the former is obviously refutable in BLIKSEM, the latter is not. LEO, how-
ever, still finds a refutation for the latter and generates the crucial substitution
P + Az,.Q(f(x)) by higher-order pre-unification.

To circumvent this problem, we adapted the relevant rules in LEO. Instead
of immediately constructing Leibniz representation of clauses, an intermediate
representation containing primitive equality is generated and dumped on the
heap of FO-like clauses. As a consequence, additional useful FO-like clauses are
accumulated and the heap can become quite large, in particular, since we do
not apply any subsumption to the set of FO-like clauses (this is generally done
more efficiently by a first-order ATP anyway). Recent research has shown that
Leibniz equality is generally very bad for automating higher-order proof search.
Thus, future work in LEO includes providing support for full primitive equality
and avoiding Leibniz equations.

3.4 Soundness and completeness of the cooperation

Clearly, soundness and completeness properties depend on the corresponding
properties of the systems involved, in our case, of LEO and BLIKSEM.



Soundness: The general philosophy of OANTS is to ensure the correctness of
proofs by the generation of explicit proof objects, which can be checked inde-
pendently from the proof generation. In particular, reasoning steps of ATPs have
to be translated into OANTS’s natural deduction calculus via the TRAMP proof
transformation system [17] to be machine-checkable. Since the cooperative proof
result of LEO-BLIKSEM cannot yet be directly inserted into the centralised proof
object, the generation of a machine-checkable proof object is not yet supported.
One possible solution is to insert BLIKSEM proofs into LEO proofs at the right
places. Then, the modified LEO proofs can be inserted into the centralised proof
object, and hence, explicit proof objects can be generated by OANTS. In princi-
ple, there is no problem with this, however, it is not yet implemented.

While there are many advantages in guaranteeing correctness of proofs by
checking them, it is worth noting that the combination of LEO and BLIKSEM
is sound under the assumption that the two systems are sound. Namely, to
prove a theorem it is sufficient to show that a subset of clauses generated in
the proof is inconsistent. If LEO generates an inconsistent set of clauses, then
it does so correctly by assumption, be it a FO-like set or not. Assuming that
the translation from FO-like clauses to truly first-order clauses preserves consis-
tency/inconsistency, then a set of clauses that is given to BLIKSEM is inconsistent
only if LEO generated an inconsistent set of clauses in the first place. By the as-
sumption that BLIKSEM is sound follows that BLIKSEM will only generate the
empty clause when the original clause set was inconsistent.

Thus, soundness of our cooperative approach critically relies only on the
soundness of the selected transformational mapping from FO-like clauses to
proper first-order clauses. We use the mapping from TRAMP, which has been
previously shown to be sound and is based on [16]. Essentially, it injectively maps
expressions such as P(f(a)) to expressions such as @\ (P, @ (f,a)), where
the @ are new first-order operators describing function and predicate applica-
tion for particular types and arities. The injectivity of the mapping guarantees
soundness, since it allows each proof step to be mapped back from first-order to
higher-order. Hence, our higher-order/first-order cooperative approach between

LEO and BLIKSEM is sound.

Completeness: Completeness (in the sense of Henkin completeness) can in prin-
ciple be achieved in higher-order systems, but practically, the strategies used
are typically not complete for efficiency reasons. Let us assume that we use a
complete strategy in LEO. All that our procedure does is pass FO-like clauses
to BLIKSEM. Hence, no proofs can be lost in this process. That is, completeness
follows trivially from the completeness of LEO.

The more interesting question is whether particular cooperation strategies
will be complete as well. For instance, in LEO we may want to give higher
preference to real higher-order steps which guarantee the generation of first-
order clauses.



4 Experiments and Results

We conducted several experiments to evaluate our hybrid reasoning approach.
In particular, we concentrated on problems given in Table 1. We investigated
several LEO strategies in order to compare LEO’s individual performance with
the performance of the LEO-BLIKSEM cooperation. Our example set differs from
the one in [14] in that it contains some additional problems, and it also omits
an entry for problem SET108+1. This problem addresses the universal class and
can therefore not be formalised in type theory in the same concise way as the
other examples, but only in a way very similar to the one given in TPTP.

Table 4 presents the results of our experiments. All timings given in the
table are in seconds. The first column contains the TPTP identifier of the prob-
lem. The second column relates some of the problems to their counterparts in the
Journal of Formalized Mathematics (JFM; see mizar.org/JFM) where they orig-
inally stem from. This eases the comparison with the results in [6, 2], where the
problems from the JFM article Boolean Properties of Sets were already solved:
the problems are named with prefix ‘B:’. Prefix ‘RS1:" stands for the JFM arti-
cle Relations Defined on Sets. The third column lists the TPTP (v3.0.1 as of 20
January 2005, see http://www.tptp.org) difficulty rating of the problem, which
indicates how hard the problem is for first-order ATPs (difficulty rating 1.00
indicates that no TPTP prover can solve the problem).

The fourth, fifth and sixth columns list whether SATURATE, MUSCADET
(v2.4) and E-SETHEO (csp04), respectively, can (+) or cannot () solve a prob-
lem. The seventh column lists the timing results for VAMPIRE (v7). The results
for SATURATE are taken from [14] (a ‘?’ in Table 4 indicates that the result
was not listed in [14] and is thus unavailable). The results for MUSCADET and
E-SETHEO are taken from the on-line version of the solutions provided with the
TPTP. Since the listed results were obtained from different experiments on dif-
ferent platforms, their run-time comparison would be unfair, and was thus not
carried out. The timings for VAMPIRE, on the other hand, are based on private
communication with A. Voronkov and they were obtained on a computer with a
very similar specification as we used for the LEO-BLIKSEM timings. Note, that
the results for VAMPIRE and E-SETHEO reported in [14] differ for some of the
problems to the ones in TPTP. This is probably due to different versions of the
systems tested, for instance, the TPTP uses VAMPIRE version 7, while the results
reported in [14] are based on version 5. The results in columns four through to
seven show that some problems are still very hard for first-order ATPs, as well
as for the special purpose theorem prover MUSCADET. Column eight and nine
in Table 4 list the results for LEO alone and LEO-BLIKSEM, respectively. Each
of these two columns is further divided into sub-columns to allow for a detailed
comparison.

All our experiments (for the values of LEO and LEO-BLIKSEM) were con-
ducted on a 2.4 GHz Xenon machine with 1GB of memory and an overall time
limit of 100 seconds. For our experiments with LEO alone in column eight in
Table 4 we tested four different strategies. Mainly, they differ in their treat-
ment of equality and extensionality. This ranges from immediate expansion of



TPTP- Mizar || Diffi-||Satu- || Mus || E-Se-||Vamp- LEO LEO-BLIKSEM
Problem |Problem||culty|| rate ||cadet|| theo || ire 7 [[Strat.|Cl. |Time||Cl.|Time |[FOcl|FOtm|GnCl
SET014+4 .67 + + + .01 ST |41 .16 34 (6.76 |19 .01 7
SETO017+1 .56 - - + .03 ||EXT [3906(57.52(|25 8.54 (16 |.01 74
SET066+1 1.00 ? - - - - - - 26 (6.80 |20 10 56
SETO067+1 .56 + + + .04 ST |6 .02 13 |.32 16 .01 12
SETO076+1 .67 + - + .00 ||- - - 10 |.47 |18 |.01 35
SET086+1 22 || + + .04 |[ST |4 |01 |[4 |01 |N/A|N/A [N/A
SET096+1 .56 + - + .03 - - - 27 (7.99 |14 .01 25
SET143+3|B:67 .67 + + + 68.71 ||EIR |37 .38 33 |7.93 |18 .01 19
SET171+3|B:71 .67 + + - 108.31||EIR |36 .56 25 |4.75 |19 .01 20
SET580+3|B:23 .44 + + + 14.71 {|EIR |25 .19 6 [2.73 (8 01 13
SET601+3|B:72 .22 + + + ||168.40||EIR (145 (2.20 (|55 [4.96 (8 01 13
SET606+3|B:77 .78 + - + 62.02 ||EIR |21 .33 17 110.8 (15 01 5
SET607+3|B:79 .67 + + + 65.57 ||EIR |22 .31 17 |7.79 (15 01 6
SET609+3|B:81 .89 + + - 161.78 ||EIR |37 .60 26 [6.50 |19 10 17
SET611+3|B:84 .44 + - + 60.20 ||EIR |996 [12.69(|72 [32.14(38 01 101
SET612+3|B:85 .89 + - - ||113.33||EIR (41 [.54 18 |3.95 |6 01 7
SET614+3|B:88 .67 + + - 157.88 ||EIR |38 .46 19 |4.34 |16 01 17
SET615+3|B:89 .67 + + - 109.01 [|EIR |38 57 17 13.59 |6 01 9
SET623+3|B:99 1.00 ? - - - EXT |43 8.84 (|23 [9.54 (10 01 14
SET624+3|B:100 .67 + - + 04 ST |4942(34.71(|54 [9.61 (46 01 212
SET630+3|B:112 44 + - + 60.39 ||EIR (11 07 6 |.08 |8 10 4
SET640+3|RS1:2 || .22 || + || - + || 70.41 ||EIR |2 o1 |2 |01 |N/A|N/A |N/A
SET646+3|RS1:8 || .56 || + || - + || 59.63 ||[EIR |2 |.01 |[2 |01 |N/A|N/A |N/A
SET647+3|RS1:9 .56 + - + 64.21 ||EIR |26 .15 13 |.30 13 01 15
SET648+3|RS1:10 || .56 + - + 64.22 ||EIR |26 .15 14 |.30 13 01 16
SET649+3|RS1:11 || .33 - - + 63.77 ||EIR (45 |[.30 29 |5.49 |12 01 16
SET651+3|RS1:13 || .44 - - + 63.88 ||EIR |20 .10 11 |.16 10 10 11
SET657+3|RS1:19 || .67 || + || - + || 144 |[EIR |2 |01 |[2 |01 |N/A|N/A |N/A
SET669+3|RS1:19 || .22 || - -+ 34 ||[ET |35 |.22 ||35|.23 |N/A|N/A [N/A
SET670+3|RS1:33 [[1.00|| 7 - - - EXT |15 [.17 17 .36 |16 01 6
SET671+3|RS1:34 || .78 - - + 218.02||EIR |78 .64 7 [2.71 |10 01 14
SET672+3|RS1:35 ||1.00 ? - - - EXT |27 A4 30 |.70 |21 01 11
SET673+3|RS1:36 || .78 - - + 47.86 ||EIR |78 .65 14 15.66 (14 01 16
SET680+3|RS1:47 || .33 + - + 07 ||ST |185 |.88 29 |4.61 |18 01 24
SET683+3|RS1:50 || .22 + - + 06 |[[ST |46 20 35 (8.90 |18 |10 24
SET684+3|RS1:51 || .78 - - + 33 ST |275 |2.45 ||46 [5.95 |26 01 47
SET686+3|RS1:53 || .56 - - + 11 ST |274 |2.36 ||46 |5.37 |26 01 46
SET716+4 .89 + + - - ST |39 45 18 |3.81 |18 01 118
SET724+4 .89 + + - - EXT|154 [2.75 |18 [7.21 |15 10 23
SET741+4 1.00 ? - - - - - - - |- - - -
SET747+4 .89 - + - - ST |34 46 25 (1.11 |18 10 10
SET752+4 .89 ? + - - - - - 50 |6.60 |48 01 4363
SET753+4 .89 ? + - - - - 15 13.07 (12 10 19
SET764+4 .56 + + + 02 |(|[EI |9 05 8 |.04 |N/A|N/A [N/A
SET770+4 .89 + + - - - - - - |- - - -

Table 4. Experimental data for the benchmark problems given in Table 1.

primitive equality with Leibniz equality and limited extensionality reasoning,
STANDARD (ST), to immediate expansion of primitive equality and moderate
extensionality reasoning, EXT, to delayed expansion of primitive equality and
moderate extensionality reasoning, EXT-INPUT (EI), and finally to delayed ex-
pansion of primitive equality and advanced recursive extensionality reasoning,
EXT-INPUT-RECURSIVE (EIR). Column eight in Table 4 presents the fastest
strategy for a respective problem (Strat.), the number of clauses generated by
Lo (Cl.), and the total runtime (Time). While occasionally there were more
than one LEO strategy that could solve a problem, it should be noted that none
of the strategies was successful for all the problems solved by LEO.

In contrast to the experiments with LEO alone, we used only the EXT-INPUT
strategy for our experiments with the LEO-BLIKSEM cooperation. Column nine in



Table 4 presents the number of clauses generated by LEo (Cl.) together with the
time (Time), and in addition, the number of first-order clauses sent to BLIKSEM
(FOcl), the time used by BLIKSEM (FOtm), and the number of clauses generated
by BLIKSEM (GnCl). Note, that we give the data only for the first instance that
BLIKSEM actually succeeded in solving the problem. This time also includes
the time needed to write and process input and output files over the network.
While LEO and instances of BLIKSEM were running in separate threads (each
run of BLIKSEM was given a 50 second time limit), the figures given in the
‘Time’ column reflect the overall time needed for a successful proof. That is,
it contains the time needed by all concurrent processes: LEO’s own process as
well as those processes administering the various instances of BLIKSEM. Since
all these processes ran on a single processor, there is potential to ameliorate the
overall runtimes by using real multiprocessing.

Note also, that the number of clauses in LEO’s search space is typically low
since subsumption is enabled. Subsumption, however, was not enabled for the
accumulation of FO-like clauses in LEO’s bag of FO-like clauses. This is why
there are usually more clauses in this bag (which is sent to BLIKSEM) than there
are available in LEO’s search space. Finally, observe that for some problems a
refutation was found after LEO’s clausal normalisation, and therefore BLIKSEM
was not applicable (N/A).

While LEO itself can solve a majority of the considered problems with some
strategy, the LEO-BLIKSEM cooperation can solve more problems and, moreover,
needs only a single LEO strategy. We can also observe that for many problems
that appear to be relatively hard for LEO alone (e.g., SET017+1, SET611+3,
SET624+3), the LEO-BLIKSEM cooperation solves them not only more quickly,
but also it sometimes reduces the problems to relatively small higher-order pre-
processing steps with subsequent easy first-order proofs, as for instance, in the
case of SET017+1.

From a mathematical viewpoint the investigated problems are trivial and,
hence, they should ideally be reliably and very efficiently solvable within a
proof assistant. This has been achieved for the examples in Table 4 (except for
SET74144 and SET770+4) by our hybrid approach. While some of the proof
attempts now require slightly more time than when using LEO alone with a spe-
cialised strategy, they are, in most cases, still faster than when proving with a
first-order system.

5 Related Work and Conclusion

Related to our approach is the TECHS system [12], which realises a coopera-
tion between a set of heterogeneous first-order theorem provers. Similarly to our
approach, partial results in TECHS are exchanged between the different theo-
rem provers in form of clauses. The main difference to the work of Denzinger
et al. (and other related architectures like [13]) is that our system bridges be-
tween higher-order and first-order automated theorem proving. Also, unlike in

TeCHS, we provide a declarative specification framework for modelling exter-



nal systems as cooperating, concurrent processes that can be (re-)configured at
run-time. Related is also the work of Hurd [15] which realises a generic inter-
face between HOL and first-order theorem provers. It is similar to the solution
previously achieved by TRAMP [17] in OMEGA, which serves as a basis for the
sound integration of ATPs into OANTS. Both approaches pass essentially first-
order clauses to first-order theorem provers and then translate their results back
into HOL resp. OMEGA. Some further related work on the cooperation of Is-
abelle with VAMPIRE is presented in [18]. The main difference of our work to
the related systems is that while our system calls first-order provers from within
higher-order proof search, this is not the case for [15,17,18].

One of the motivations for our work is to show that the cooperation of higher-
order and first-order automated theorem provers can be very successful and ef-
fective. The results of our case study provide evidence for this: our non-optimised
system outperforms related work on state-of-the-art first-order theorem provers
and their ad hoc extensions such as SATURATE [14] on 45 mathematical problems
chosen from the TPTP SET category. Among them are four problems which
cannot be solved by any TPTP system to date. In contrast to the first-order
situation, these problems can in fact be proved in our approach reliably from
first principles, that is, without avoiding relevant base axioms of the underlying
set theory, and moreover, without the need to provide relevant lemmata and
definitions by hand.

The results of our case study motivate further research in the automation
of higher-order theorem proving and the experimentation with different higher-
order to first-order transformation mappings (such as the ones used by Hurd)
that support our hybrid reasoning approach. They also provide further evidence
for the usefulness of the OANTS approach as described in [8, 5] for flexibly mod-
elling the cooperation of reasoning systems.

Our results also motivate the need for a higher-order extension of the TPTP
library in which alternative higher-order problem formalisations are linked with
their first-order counterparts so that first-order theorem provers could also be
evaluated against higher-order systems (and vice versa).

Future work is to investigate how far our approach scales up to more complex
problems and more advanced mathematical theories. In less trivial settings as
discussed in this paper, we will face the problem of selecting and adding relevant
lemmata to avoid immediate reduction to first principles and to appropriately
instantiate set variables. Relevant related work for this setting is Bishop’s ap-
proach to selectively expand definitions as presented in [9] and Brown’s PhD
thesis on set comprehension in Church’s type theory [10].

Acknowledgements For advice and help we thank Chad Brown, Andreas
Meier, Andrei Voronkov, and Claus-Peter Wirth.

References

1. P. Andrews. An Introduction to mathematical logic and Type Theory: To Truth
through Proof. Number 27 in Applied Logic Series. Kluwer, 2002.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. C. Benzmiiller. FEquality and Eztensionality in Higher-Order Theorem Proving.

PhD thesis, Universitiat des Saarlandes, Germany, 1999.
C. Benzmiiller. Extensional higher-order paramodulation and RUE-resolution.
Proc. of CADE-16, LNAT 1632, p. 399-413. Springer, 1999.

. C. Benzmiiller. Comparing approaches to resolution based higher-order theorem

proving. Synthese, 133(1-2):203-235, 2002.

C. Benzmiiller, M. Jamnik, M. Kerber, and V. Sorge. Experiments with an Agent-
Oriented Reasoning System. Proc. of KI 2001, LNAI2174, p.409--424. Springer, 2001.
C. Benzmiiller and M. Kohlhase. LEO — a higher-order theorem prover. Proc. of
CADE-15, LNAI 1421. Springer, 1998.

C. Benzmiiller and V. Sorge. A Blackboard Architecture for Guiding Interactive
Proofs. Proc. of AIMSA’98, LNAIT 1480, p. 102-114. Springer, 1998.

C. Benzmiiller and V. Sorge. OANTS — An open approach at combining Interactive
and Automated Theorem Proving. Proc. of Calculemus-2000. AK Peters, 2001.
M. Bishop and P. Andrews. Selectively instantiating definitions. Proc. of CADE-
15, LNAT 1421. Springer, 1998.

C. E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, Dept. of
Mathematical Sciences, Carnegie Mellon University, USA, 2004.

H. de Nivelle. The Bliksem Theorem Prover, Version 1.12. Max-Planck-Institut,
Saarbriicken, Germany, 1999. http://www.mpi-sb.mpg.de/ bliksem/manual.ps.
J. Denzinger and D. Fuchs. Cooperation of Heterogeneous Provers. Proc. IJCAI-
16, p. 10-15. Morgan Kaufmann, 1999.

M. Fisher and A. Ireland. Multi-agent proof-planning. CADE-15 Workshop “Using
AT methods in Deduction”, 1998.

H. Ganzinger and J. Stuber. Superposition with equivalence reasoning and delayed
clause normal form transformation. Proc. of CADE-19, LNAI 2741. Springer, 2003.
J. Hurd. An LCF-style interface between HOL and first-order logic. Automated
Deduction — CADE-18, LNAT 2392, p. 134-138. Springer, 2002.

M. Kerber. On the Representation of Mathematical Concepts and their Translation
into First Order Logic. PhD thesis, Universitat Kaiserslautern, Germany, 1992.
A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural Deduction
Proofs at the Assertion Level. Proc. of CADE-17, LNAT 1831. Springer, 2000.

J. Meng and L. C. Paulson. Experiments on supporting interactive proof using
resolution. Proc. of IICAR 2004, LNCS 3097, p. 372—-384. Springer, 2004.

R. Nieuwenhuis, Th. Hillenbrand, A. Riazanov, and A. Voronkov. On the evalua-
tion of indexing techniques for theorem proving. Proc. of IJCAR-01, LNAI 2083,
p. 257-271. Springer, 2001.

D. Pastre. Muscadet2.3 : A knowledge-based theorem prover based on natural
deduction. Proc. of IICAR-01, LNAI 2083, p. 685—689. Springer, 2001.

A. Riazanov and A. Voronkov. Vampire 1.1 (system description). Proc. of IJCAR-
01, LNAT 2083, p. 376-380. Springer, 2001.

V. Sorge. OANTS: A Blackboard Architecture for the Integration of Reasoning Tech-
niques into Proof Planning. PhD thesis, Universitit des Saarlandes, Germany, 2001.
G. Stenz and A. Wolf. E-SETHEO: An Automated® Theorem Prover — System
Abstract. Proc. of the TABLEAUX 2000, LNAT 1847, p. 436—440. Springer, 2000.
G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177-203, 1998.



