
Automati
 Learning of ProofMethods in Proof PlanningMATEJA JAMNIK, University of Cambridge Computer Laboratory,J.J. Thomson Avenue, Cambridge CB3 0FD, England, UK.www.
l.
am.a
.uk/~mj201MANFRED KERBER, S
hool of Computer S
ien
e, The University ofBirmingham, Birmingham B15 2TT, England, UK.www.
s.bham.a
.uk/~mmkMARTIN POLLET, Fa
hberei
h Informatik, Universit�at desSaarlandes, 66041 Saarbr�u
ken, Germany.www.ags.uni-sb.de/~polletCHRISTOPH BENZM�ULLER, Fa
hberei
h Informatik, Universit�at desSaarlandes, 66041 Saarbr�u
ken, Germany.www.ags.uni-sb.de/~
hrisAbstra
tIn this paper we present an approa
h to automated learning within mathemati
al reasoning systems.In parti
ular, the approa
h enables proof planning systems to automati
ally learn new proof methodsfrom well-
hosen examples of proofs whi
h use a similar reasoning pattern to prove related theorems.Our approa
h
onsists of an abstra
t representation for methods and a ma
hine learning te
hniquewhi
h
an learn methods using this representation formalism. We present an implementation of theapproa
h within the
mega proof planning system, whi
h we
all Learn
mati
. We also presentthe results of the experiments that we ran on this implementation in order to evaluate if and how itimproves the power of proof planning systems.Keywords: automated reasoning, theorem proving, proof planning, knowledge a
quisition, ma
hinelearning1 Introdu
tionProof planning [3℄ is an approa
h to theorem proving whi
h uses so-
alled proofmethods rather than low-level logi
al inferen
e rules to �nd a proof of a theorem athand. A proof method spe
i�es a general reasoning pattern that
an be used in aproof, and typi
ally expands to a number of individual inferen
e rules. For example,an indu
tion strategy
an be en
oded as a proof method. Proof planners sear
h for aproof plan of a theorem whi
h
onsists of appli
ations of several methods. An obje
t-level logi
al proof may be generated from a su

essful proof plan. Proof planning is apowerful te
hnique be
ause it often dramati
ally redu
es the sear
h spa
e, sin
e thesear
h is done on the level of abstra
t methods rather than on the level of several1L. J. of the IGPL, Vol. 0 No. 0, pp. 1{28 0000

 Oxford University Press

2 Automati
 Learning of Proof Methods in Proof Planninginferen
e rules that make up a method [4, 20℄. The advantage is that sear
h withmethods
an be mu
h better stru
tured a

ording to the parti
ular requirements ofmathemati
al domains.Proof planning also allows reuse of the same proof methods for di�erent proofs, and,moreover, generates proofs where the reasoning patterns of proofs are transparent.When methods are designed appropriately, the level of proof plans
an
apture thelevel of
ommuni
ation of proofs amongst mathemati
ians. Hen
e proof plans
ano�er an intuitive appeal to a human mathemati
ian.One of the ways to extend the power of a proof planning system is to enlarge the setof available proof methods. This is parti
ularly bene�
ial when a
lass of theorems
an be proved in a similar way, hen
e a new proof method
an en
apsulate the generalreasoning pattern of a proof for su
h theorems. Methods are typi
ally implementedand added by the developer of a system. The development and en
oding of proofmethods by hand, however, is a laborious task. In this work, we show how a system
anlearn new methods automati
ally given a number of well-
hosen (positive) examplesof related proofs of theorems. This is a signi�
ant improvement, sin
e examples (e.g.,in the form of
lassroom example proofs) exist typi
ally in abundan
e, while theextra
tion of methods from these examples
an be
onsidered as a major bottlene
kof the proof planning methodology.1 In this paper we therefore present a hybridproof planning system Learn
mati
 [14℄, whi
h
ombines the existing proof planner
mega [1℄ with our own ma
hine learning system [13℄. This enhan
es the
megasystem with an automated
apability to learn new proof methods.Automated learning by reasoning systems is a diÆ
ult and ambitious problem. Ourwork demonstrates one way of starting to address this problem, and by doing so, itpresents several
ontributions to the �eld.1. Although ma
hine learning te
hniques have been around for a while, they havebeen relatively little used in reasoning systems. Making a reasoning system learnproof patterns from examples, mu
h like students learn to solve problems fromexamples demonstrated to them by the tea
her, is hard. Our work makes animportant step in a spe
ialised domain towards a proof planning system that
anreason and learn.2. Proof methods have
omplex stru
tures, and are hen
e very hard to learn by theexisting ma
hine learning te
hniques. We approa
h this problem by abstra
tingas mu
h information from the proof method representation as needed, so that thema
hine learning te
hniques
an ta
kle it. Later, after the reasoning pattern islearnt, the abstra
ted information is restored as mu
h as possible.3. Unlike in some of the existing related work (see Se
tion 5), we are not aiming toimprove ways of dire
ting proof sear
h within a �xed set of primitives. Rather, weaim to learn the primitives themselves, and to investigate whether this improvesthe framework and redu
es the sear
h spa
e within the proof planning environ-ment. Instead of sear
hing amongst numerous low-level proof methods, a proofplanner
an now sear
h with a newly learnt proof method whi
h en
apsulatesseveral of these low-level primitive methods.1Note that in this paper, we do not provide a systemati
 and automated way of
hoosing good examples {in our system, this is still the user's task, whi
h does require some expert knowledge. Choosing good examplesautomati
ally is dis
ussed as future work in Se
tion 6.

Automati
 Learning of Proof Methods in Proof Planning 3
Sequences of

Examples Proofs of other

Common rep. of all

method specifiers

of proof theorems

method

examples - method outlines

Newly learnt

learn

abstract apply

create

Fig. 1. Approa
h to learning proof methods.Figure 1 gives the stru
ture of our approa
h to learning proof methods, and hen
ean outline of the rest of this paper. In Se
tion 2 we examine what needs to be learntand give some examples of proofs that use a similar reasoning pattern. Then, inSe
tion 3, we present the entire learning pro
ess. First, in Se
tion 3.1, we simplifythe method representation to ease the learning task. Se
ond, we present our ma
hinelearning algorithm in Se
tion 3.2. Third, in Se
tion 3.3 we revisit our method repre-sentation and enri
h it so that the newly learnt methods
an be used in the
megaproof planner for proofs of other theorems. In order to assess the su

ess of our ap-proa
h, we go on in Se
tion 4 to present some results of the evaluation tests that weran on Learn
mati
. Finally, we relate our work to that of others in Se
tion 5, and
on
lude with some future dire
tions in Se
tion 6.2 Motivation with ExamplesA proof method in proof planning
onsists of a triple { pre
onditions, post
onditionsand a ta
ti
.2 A ta
ti
 is a program whi
h given that the pre
onditions are satis�ed,transforms an expression representing a subgoal in a way that the post
onditions aresatis�ed by the transformed subgoal. If no method on an appropriate level is availablein a given planning state, then a number of lower-level methods (with inferen
e rules
orresponding to the lowest-level methods) have to be applied in order to prove agiven theorem. It often happens that a pattern of lower-level methods is applied timeand time again in proofs of di�erent problems. In this
ase it is sensible and usefulto en
apsulate this reasoning pattern in a new proof method. Su
h a higher-levelproof method based on lower-level methods
an be implemented and added to thesystem either by the user or by the developer of the system. However, this is a veryknowledge intensive task. Hen
e, we present an alternative, namely a framework inwhi
h these methods
an be learnt by the system automati
ally.2This is an idealised view of a proof method. In pra
tise, post
onditions of proof methods are typi
ally determinedby exe
uting the ta
ti
 part of the methods. So, when we speak of post
onditions, it would be more appropriateand pre
ise to speak of the e�e
ts of a method.

4 Automati
 Learning of Proof Methods in Proof PlanningThe idea is that the system starts with learning simple proof methods. As thedatabase of available proof methods grows, the system
an learn more
omplex proofmethods. Inferen
e rules
an be treated as methods by assigning to them pre- andpost
onditions. Thus, from a learning perspe
tive we
an have a uni�ed view ofinferen
e rules and methods as given sequen
es of primitives from whi
h the systemis learning a pattern. We will refer to all the existing methods available for the
onstru
tion of proofs as primitive methods. As new methods are learnt from primitivemethods, these too be
ome primitive methods from whi
h yet more new methods
anbe learnt. Clearly, there is a trade-o� between the in
reased sear
h spa
e due to alarger number of methods, and in
reasingly better dire
ted sear
h possibilities forsubproofs
overed by the learnt methods. Namely, on the one hand, if there aremore methods, then the sear
h spa
e is potentially larger. On the other hand, theorganisation of a planning sear
h spa
e
an be arranged so that the newly learnt,more
omplex methods are sear
hed with �rst. If a learnt method is found to beappli
able, then instead of a number of planning steps (that
orrespond to the lower-level methods en
apsulated by the learnt method), a proof planner needs to make onestep only. On the other hand, if a learnt method is appli
able only seldom, then thismay have negative e�e
ts on some performan
e
riteria of the system (e.g., run timebehaviour), but may not negatively a�e
t others (e.g., even in the worst
ase, whena learnt method is not appli
able or does not lead to a valid proof plan, the length ofthe generated proof plan does not in
rease, but remains un
hanged). Generally, proofplans
onsisting of higher-level methods will be shorter than their
orresponding plansthat
onsist of lower-level methods. Hen
e, the sear
h for a
omplete proof plan
anbe expe
ted to be performed in a shallower, but also bushier sear
h spa
e. In order tomeasure this trade-o� between the in
reased sear
h spa
e and better dire
ted sear
h,an empiri
al study was
arried out and is reported in Se
tion 4. Typi
ally, shorterproofs have a general advantage, sin
e they are better suited for a user-adaptivepresentation. We dis
uss this in Se
tion 4.5.The methods that Learn
mati
 learns are on a higher-level than the existingones. Hen
e, the proofs
onstru
ted using them are not overwhelmed with unintuitivelow-level proof steps, and
an therefore be presented at a more abstra
t level. In thissense, su
h proofs re
e
t a higher-level idea of the proof, and
an therefore be viewedas more human-oriented.We demonstrate our ideas with examples that we used to develop and test Learn
-mati
. Most of the example
onje
tures
an be automati
ally planned for in
megawith theMulti proof planner [19℄. However, they demonstrate our approa
h, namely,they show how a proof planner
an learn new methods automati
ally.2.1 Group theory examplesThe proofs of our �rst set of examples
onsist of simplifying an expression using anumber of primitive simpli�
ation methods su
h as both (left and right) axioms ofidentity, both axioms of inverse, and the axioms of asso
iativity (where e is the iden-tity element, i is the inverse fun
tion, and LHS) RHS stands for rewriting LHS toRHS).

Automati
 Learning of Proof Methods in Proof Planning 5(X Æ Y) Æ Z) X Æ (Y Æ Z) (asso
-r)X Æ (Y Æ Z)) (X Æ Y) Æ Z (asso
-l)e ÆX) X (id-l) X Æ e) X (id-r)X ÆX i) e (inv-r)X i ÆX) e (inv-l)Here are two examples of proof steps whi
h simplify given expressions and the infer-en
es that are used:a Æ ((ai Æ
) Æ b)+ (asso
-l)(a Æ (ai Æ
)) Æ b+ (asso
-l)((a Æ ai) Æ
) Æ b+ (inv-r)(e Æ
) Æ b+ (id-l)
 Æ b
ai Æ (a Æ b)+ (asso
-l)(ai Æ a) Æ b+ (inv-l)e Æ b+ (id-l)bOther examples in
lude proofs for theorems su
h as (a Æ (((ai Æ b) Æ (
 Æ d)) Æ f)) =(bÆ (
Æd))Æf . These three examples
an be summarised in the following proof tra
eswhi
h are lists of method identi�ers:1. [asso
-l,asso
-l,inv-r,id-l ℄,2. [asso
-l,inv-l,id-l ℄,3. [asso
-l,asso
-l,asso
-l,inv-r,id-l ℄.It is
lear that all three examples have a similar stru
ture whi
h
ould be
apturedin a new simpli�
ation method. Informally, one appli
ation of su
h a simpli�
ationmethod
ould be des
ribed as follows:Pre
ondition: There are subterms in the initial term that are inverses of ea
h other,and that are not separated by other subterms, but only by bra
kets.Ta
ti
:1. Apply asso
iativity (asso
-l) for as many times as ne
essary (in
luding 0 times)to bring the subterms whi
h are inverses of ea
h other together, and then2. apply inverse inferen
e rule (inv-r) or (inv-l) to redu
e the expression, and then3. apply the identity inferen
e rule (id-l).Post
ondition: The initial term is redu
ed, i.e., it
onsists of fewer subterms.The formal representation of the learnt method in our framework will be presentedin Se
tion 3.2.1.Note that this is not the most general simpli�
ation method, be
ause it does notuse methods su
h as (asso
-r) and (id-r), but it is the one that is the least generalgeneralisation of the given examples above. Note also that the appli
ation of thismethod may fail if the pre
ondition is not strong enough. For instan
e, two terms

6 Automati
 Learning of Proof Methods in Proof Planningmay have to be brought together by the appli
ation of the (asso
-r) rule, whi
h isnot
overed by the learnt method, sin
e no example of this type has been provided.Also, should we want our system to learn a repeated appli
ation of this simpli�
ationmethod, then this
an be a
hieved in another round of learning with suitable examplesand methods. Alternatively, our set of initial examples that the system is learningfrom needs to in
lude proofs of theorems su
h as (
Æ(bÆ(aiÆ(aÆbi))))Æ(((dÆa)Æai)Æf) =
 Æ (d Æ f) whi
h applies the above des
ribed simpli�
ation method three times.2.2 Residue
lasses
onje
turesThere is a large
lass of residue
lass theorems in group theory that
an be provedusing the same pattern of reasoning. Their use is well do
umented in [18℄. Here areexamples of three residue
lass theorems: (where ZZi is the residue
lass of integersmodulo i)1.
ommutative-under(ZZ2;+)2. asso
iative-under(ZZ3;�)3.
ommutative-under(ZZ3;+)The pattern of reasoning to prove them is as follows. First, the de�nitions (e.g.,
ommutative-under, asso
iative-under,) are expanded (defn-exp), and quanti�ers elim-inated (8i-sort). Then, all of the statements on residue
lasses are rewritten into
orresponding statements on integers by transferring the residue
lass set into a setof
orresponding integers (
onvert-res
lass-to-num). Then, the proofs diverge: if thestatements are universally quanti�ed an exhaustive
ase analysis over all elements ofthe set is
arried out (using a
ombination of elimination of disjun
ts (or-e-re
), sim-pli�
ation (simp-num-exp), and re
exivity (re
ex)). If the statements are existentiallyquanti�ed, then all elements of the set are examined until one is found for whi
hthe statements hold (using a
ombination of disjun
tion introdu
tion from left orright (ori-r, ori-l), simpli�
ation and re
exivity; see
hoose method in Se
tion 3.2.1).Note that the three example theorems above are all universally quanti�ed, but theset of theorems used in the evaluation tests (see Se
tion 4)
ontains the existentiallyquanti�ed theorems as well.The proof tra
e for the above three theorems
onsist of a list of method identi�ersused in the proof plans:1. [defn-exp, 8i-sort, 8i-sort,
onvert-res
lass-to-num, or-e-re
, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, re
ex, re
ex, re
ex, re
ex℄2. [defn-exp, 8i-sort, 8i-sort, 8i-sort,
onvert-res
lass-to-num, or-e-re
, simp-num-exp,simp-num-exp, re
ex, . . . , re
ex℄3. [defn-exp, 8i-sort, 8i-sort,
onvert-res
lass-to-num, defn-exp, or-e-re
, simp-num-exp,simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, re
ex, re
ex, re
ex, re
ex, re
ex, re
ex,re
ex, re
ex, re
ex℄

Automati
 Learning of Proof Methods in Proof Planning 7The learnt generalisations for these proof tra
es are presented in Se
tion 3.2.1.2.3 Set theory
onje
turesAnother problem domain that we experimented with in
ludes some theorems andnon-theorems from set theory:1. 8x; y; z (x [y) \ z = (x \ z) [(y \ z)2. 8x; y; z (x [y) \ z = (x [z) \ (y [z)3. 8x; y; z (x \ y) \ z = xn(y [z)Although these problems are not very hard for automated theorem provers if a suitablerepresentation is
hosen, they may be hard to prove or disprove for existing automatedtheorem provers if attempted in a naive way. Their proofs
onsist of eliminating (in-trodu
ing, in ba
kwards reasoning) the universal quanti�ers (8i), then applying setextensionality (set-ex) and de�nition expansions (defni) in order to get propositionalor �rst order
lauses (i.e., transforming statements about sets to statements aboutelements of sets), and then proving (with the Otter theorem prover, atp-otter) or dis-proving (with the Sat
hmo model generator,
ounterex-sat
hmo) these
lauses. Hereare the abstra
ted lists of method identi�ers that des
ribe these proofs:1. [8i;8i;8i; set-ext;8i; defni; defni; atp-otter℄2. [8i;8i;8i; set-ext;8i; defni; defni;
ounterex-sat
hmo℄3. [8i;8i;8i; set-ext;8i; defni; defni; defni;
ounterex-sat
hmo℄The learnt generalisations for these proof tra
es are presented in Se
tion 3.2.1.3 LearningThe representation of a problem is of
ru
ial importan
e for the ability to solve it {a good representation of a problem often renders the sear
h for its solution easy [25℄.The diÆ
ulty is in �nding a good representation. Our problem is to devise a me
ha-nism for learning methods. Hen
e, the representation of a method is important andshould make the learning pro
ess easy enough that we
an learn useful information.We start by presenting in Se
tion 3.1 a simple representation formalism whi
habstra
ts away some detailed information in order to ease the learning pro
ess. Then,in Se
tion 3.2 we des
ribe the learning algorithm. Finally, we show in Se
tion 3.3 howthe ne
essary information is restored as mu
h as possible so that the proof planner
an use the newly learnt method. Some information may be irre
overably lost. Inthis
ase, extra sear
h in the appli
ation of the newly learnt methods will typi
allybe ne
essary.3.1 Method outline representationThe methods we aim to learn are
omplex and are beyond the
omplexity that
antypi
ally be ta
kled in the �eld of ma
hine learning. Therefore, we �rst simplify theproblem and aim to learn (using a variation of an existing learning te
hnique) the

8 Automati
 Learning of Proof Methods in Proof Planningso-
alled method outlines, and se
ond, we re
onstru
t the full information as far aspossible. Method outlines are expressed in the language that we des
ribe here.Let us de�ne the following language L, where P is a set of known identi�ers ofprimitive methods used in a method that is being learnt:� for any p 2 P , let p 2 L,� for any l1; l2 2 L, let [l1; l2℄ 2 L,� for any l1; l2 2 L, let [l1jl2℄ 2 L,� for any l 2 L, let l� 2 L,� for any l 2 L and n 2 N, let ln 2 L,� for list = (l1; : : : ; lk) su
h that li 2 L and 1 < i � k, let T (list) 2 L.\[" and \℄" are auxiliary symbols used to separate subexpressions, \," denotes asequen
e, \j" denotes a disjun
tion, \�" denotes a repetition of a subexpression anynumber of times (in
luding 0), n a �xed number of times, and T is a
onstru
tor fora bran
hing point (list is a list of bran
hes), i.e., for proofs whi
h are not sequen
esbut bran
h into a tree.3 Let the set of primitives P be fasso
-l, asso
-r, inv-l, inv-r,id-l, id-rg. Using this language, the ta
ti
 of our simpli�
ation method des
ribed bythe three group theory examples above
an be expressed as:simplify � �asso
-l�; [inv-rjinv-l ℄; id-l �:We refer to expressions in language L whi
h des
ribe
ompound methods as methodoutlines. simplify is a typi
al method outline that we aim our system to learn auto-mati
ally.3.2 Ma
hine learning algorithmMethod outlines are abstra
t methods whi
h have a simple representation that isamenable to learning. We now present an algorithm whi
h
an learn method out-lines from a set of well-
hosen examples. The algorithm is based on least generalgeneralisation [23, 24℄, and on the generalisation of the simultaneous
ompression ofwell-
hosen examples.As with
ompression algorithms in general, we have to
ompromise the expressivepower of the language used for
ompression with the time and spa
e eÆ
ien
y of the
ompression pro
ess. Optimal
ompression { in the sense of Kolmogorov
omplexity {
an be a
hieved by using a Turing-
omplete programming language. However, optimal
ompression is not
omputable in general, that is, there is no algorithm whi
h �ndsthe shortest program to represent any parti
ular string. As a
ompromise we sele
tedregular expressions with expli
it exponents and bran
hing points, whi
h seem to o�era framework that is on the one hand, general enough for our purpose, and on the other3Note the di�eren
e between the disjun
tion and the tree
onstru
tors: for disjun
tion the proofs
overed by themethod outline
onsist of applying either the left or the right disjun
t { this is
ommonly known as the OR bran
h.However, with the tree
onstru
tor every proof bran
hes at that parti
ular node to all the bran
hes in the list {this is
ommonly known as the AND bran
h.Note also, that there is no need for an empty primitive as it
an be en
oded with the use of existing language. E.g.,let � be an empty primitive and we want to express [a; b; [�j
℄; d℄. Then an equivalent representation without theempty primitive is [a; [bj[b;
℄℄; d℄. We avoid using the empty primitive as it introdu
es a large number of unwantedgeneralisation possibilities.

Automati
 Learning of Proof Methods in Proof Planning 9hand, (augmented with appropriate heuristi
s) suÆ
iently eÆ
ient.4 There are somedisadvantages to our te
hnique, mostly related to the run time speed of the algorithmrelative to the length of the examples
onsidered for learning. The algorithm
andeal with relatively small examples su
h as those we presented without the use of anyheuristi
.Our learning te
hnique
onsiders some number of positive examples5 whi
h arerepresented in terms of lists of identi�ers for primitive methods, and generalises themso that the learnt pattern is in language L. The pattern is of smallest size with respe
tto this de�ned measure of size, whi
h essentially
ounts the number of primitives inan expression (where l1; l2; p 2 L, p 2 P , n 2 N for some �nite n, len is length of alist fun
tion, and list is a list of expressions from L).size([l1; l2℄) = size(l1) + size(l2)size([l1jl2℄) = size(l1) + size(l2)size(T (list)) = Plen(list)i=1 size(li) where li2 listsize(ln1) = size(l1)size(p) = 1size(l�1) = size(l1)This is a heuristi
 measure of size and the intuition for it is that a good generalisationis one that redu
es the sequen
es of method identi�ers to the smallest number ofprimitives (e.g., [a2℄ is better than [a; a℄).The pattern is also most spe
i�
 (or equivalently, least general) with respe
t to thede�nition of spe
i�
ity spe
 whi
h is measured in terms of the number of nestings forea
h part of the generalisation.spe
([l1; l2℄) = 1 + spe
(l1) + spe
(l2)spe
([l1jl2℄) = 1 + spe
(l1) + spe
(l2)spe
(T (list)) = 1 +Plen(list)i=1 spe
(li) where li2 listspe
(ln1) = 1 + spe
(l1)spe
(p) = 0spe
(l�1) = 1 + spe
(l1)Again, this is a heuristi
 measure. The intuition for this measure is that we givenested generalisations a priority sin
e they are more spe
i�
 and hen
e less likely toovergeneralise.In our experiments, we take both, the size �rst (
hoose smallest size), and thespe
i�
ity se
ond (
hoose highest spe
i�
ity) into a

ount when
hoosing the gen-eralisation. If the generalisations
onsidered have the same rating a

ording to the4Our
hosen language L (see Se
tion 3.1)
annot express all method outlines. For example, we
annot expressan outline that a method m1 (e.g., de�nition unfolding) should be applied as often as possible, then a di�erentmethod m2 should be applied, and �nally a third method m3 (e.g., de�nition folding) should be applied exa
tlyas often as the �rst method m1. In our language we would have to overgeneralise this to [m�1 ; m2;m�3 ℄ (unless weknow the number of method appli
ations expli
itly and this stays the same in all example proofs).5We use positive examples only, be
ause these are readily available. Negative examples are useful only if theyare \near-misses" of proof attempts whi
h un
over important features of the proof. Constru
ting and
hoosinginformative negative examples is non-trivial, requires a lot of analysis and reasoning, and detra
ts from the maingoal of our resear
h. However, it would be an interesting topi
 for future resear
h.

10 Automati
 Learning of Proof Methods in Proof Planningtwo measures, then we return all of them. For example,
onsider two possible gen-eralisations: [[a2℄�℄ and [a�℄. A

ording to size, size([[a2℄�℄) = 1 and size([a�℄) = 1.However, a

ording to spe
i�
ity, spe
([[a2℄�℄) = 2 and spe
([a�℄) = 1. Hen
e, thealgorithm
hooses [[a2℄�℄.Note that there are other ways of sele
ting a generalisation and �nding a di�erent
ompromise between size (keeping learnt expressions small) and spe
i�
ity (keepinglearnt expressions
lose to the examples). For instan
e, one
ould vary the value of thefollowing formula � � size(li) + (1� �) � spe
(li) by
hanging the value of � in order tosele
t a suitable generalisation li. The value of �
ould depend on the degree to whi
hthe generalisation should be
on
ise and general/spe
i�
 (e.g., sometimes it may bebene�
ial to overgeneralise). Moreover, there are other possible heuristi
 measuresto sele
t a generalisation. We de�ned and
hose size and spe
i�
ity that are suitablemeasures in our problem domains and with our set of theorems. In the range betweenspe
i�
ity and generality, we tend to (slightly) overgeneralise, but the test results inSe
tion 4 demonstrate that our
hoi
e is a suitable one.Here is the learning algorithm. Given some number of examples ei (e.g., e1 =[a; a; a; a; b;
℄ and e2 = [a; a; a; b;
℄):1. For every example ei, split it into sublists of all possible lengths plus the rest ofthe list. We get a list of pattern lists pli, ea
h of whi
h
ontains patterns pi.6 E.g.:� for e1: f[[a℄; [a℄; [a℄; [a℄; [b℄; [
℄℄, [[a; a℄; [a; a℄; [b;
℄℄, [[a℄; [a; a℄, [a; b℄, [
℄℄, [[a; a; a℄,[a; b;
℄℄, [[a℄; [a; a; a℄, [b;
℄℄; : : :g� for e2: f[[a℄; [a℄; [a℄; [b℄; [
℄℄, [[a; a℄; [a; b℄; [
℄℄, [[a℄, [a; a℄, [b;
℄℄, [[a; a; a℄, [b;
℄℄, [[a℄,[a; a; b℄; [
℄℄; : : :g2. If there is any bran
hing in the examples, then re
ursively repeat this algorithmon every element of the list of bran
hes.3. For every example ei and for every pattern list pli �nd sequential repetitions of thesame patterns pi in the same example. Using an exponent denoting the numberof repetitions,
ompress them into p
i and hen
e pl
i . E.g.:� pl
1 = f[[a℄4; [b℄; [
℄℄; [[[a; a℄2℄; [b;
℄℄; : : :g� pl
2 = f[[a℄3; [b℄; [
℄℄; [[a℄; [a; a℄; [b;
℄℄; : : :g4. For every
ompressed pattern p
i 2 pl
i of every example ei,
ompare it with p
j inall other examples ej , and �nd mat
hing mk with the same
onstituent pattern,whi
h may o

ur a di�erent number of times. E.g.:� m1 = (pl
11 ; pl
12), due to [a℄4 and [a℄3� m2 = (pl
21 ; pl
22), due to [b;
℄ and [b;
℄, et
.5. If there are no mat
hes mk in the previous step, then generalise the examples byjoining them disjun
tively using the \j"
onstru
tor.6. For every p
i in a mat
hing, generalise di�erent exponents to a \�"
onstru
tor,and the same exponents n to a
onstant n, and hen
e obtain pg. E.g.:7� for m1: [a℄4 and [a℄3 are generalised to pg = [a℄�� for m2: [b;
℄ and [b;
℄ are generalised to pg = [b;
℄6Noti
e that there are n mod m ways of splitting an example of length n into di�erent sublists of length m.Namely, the sublists of length m
an start in positions 1; 2; : : : ; n mod m.7Noti
e that here is a point where our generalisation te
hnique
an overgeneralise. For instan
e, when there is apattern in the exponents, e.g., all exponents are prime numbers, then this is ignored and just a � is sele
ted.

Automati
 Learning of Proof Methods in Proof Planning 117. For every pg of a mat
h, transform the rest of the pattern list on the left and onthe right of pg ba
k to the example list, and re
ursively repeat the algorithm onthem. E.g.:� for m1 in e1: LHS= [℄, pg = [a℄�, repeat on RHS=[b;
℄� for m1 in e2: LHS= [℄, pg = [a℄�, repeat on RHS=[b;
℄� for m2 in e1: repeat on LHS= [a; a; a; a℄, pg = [b;
℄, RHS= [℄� for m2 in e2: repeat on LHS= [a; a; a℄, pg = [b;
℄, RHS= [℄.8. If there is more than one generalisation remaining at the end of the re
ursive steps,then pi
k the ones with the smallest size and among these the ones with the largestspe
i�
ity. E.g.: after the algorithm is repeated on the rest of our examples, thelearnt method outline will be [[a℄�; [b;
℄℄.The learning algorithm is implemented in SML. Its inputs are the sequen
es ofmethod identi�ers from proofs that were
onstru
ted in
mega. Its output aremethod outlines whi
h are passed ba
k to
mega. The algorithm was tested onseveral examples of proofs and it su

essfully produ
ed the required method outlines.3.2.1 Learnt method outlines for the examplesFor the examples introdu
ed in Se
tion 2 our learning algorithm generates the follow-ing method outlines:� Group theory: simplify � �asso
-l�; [inv-rjinv-l ℄; id-l �:� Residue
lasses:tryanderror � �defn-exp; [8i-sort℄�;
onvert-res
lass-to-num;[[or-e-re
℄j[defn-exp, or-e-re
℄℄; simp-num-exp�; re
ex��� Set theory:learnt-set � �[8i℄3; set-ext;8i; defni �; [atp-otterj
ounterex-sat
hmo℄�As mentioned before, the method outline simplify for the group theory examples isnot the most general one, as the examples that it was learnt from did not
ontainthe use of the right identity method, for example. Furthermore, it is only a singleappli
ation of simpli�
ation. However, we tested our learning algorithm also on ex-amples that use this single simplify method several times. As expe
ted, the learningme
hanism learnt a method outline whi
h is a repeated appli
ation of simplify, namelyrep-simplify = simplify�. We also tested the learning me
hanism on examples that usemethods su
h as right identity and right asso
iativity, and altogether learnt �ve newmethod outlines, some of whi
h are repeated appli
ations of others.In the domain of residue
lasses, the learning me
hanism also learnt another methodoutline
alled
hoose. When fully
eshed into an
mega method (see Se
tion 3.3),this method proves a subpart of proofs for theorems of residue
lasses. Namely, givena theorem with an existential quanti�er, statements on integers are
ombined using adisjun
tion in a parti
ular normal form (from the right side). Then, ea
h disjun
t hasto be
he
ked until one is found that is true for the statement. Hen
e, the method

12 Automati
 Learning of Proof Methods in Proof Planning
hoose starts inspe
ting the right disjun
ts until either the right (ori-r) or the left(ori-l) one is true, whi
h is then followed with the rest of the proof, in this
ase withthe appli
ation of re
exivity (re
ex). This proof pattern is learnt and
aptured in themethod outline:
hoose = �defn-exp, ori-r�; [re
ex j [ori-l, re
ex℄℄�The method
orresponding to the third method outline learnt-set, i.e., for set theoryexamples, transforms a higher-order problem into a propositional logi
 one, whi
h ismu
h easier to prove or disprove, sin
e it is a de
idable problem. The method doesnot eliminate sear
h altogether, but makes it, in this
ase, mu
h more tra
table.Noti
e also, that the method outline learnt-set applies the elimination of the universalquanti�er (8i) only three times. This is
onsistent with the examples from whi
h themethod outline was learnt, but in general the quanti�er elimination would be appliedany required number of times, whi
h
ould be denoted with a star
onstru
t in themethod outline. This shows that the quality of a method outline learnt from theexamples depends on the quality of the input examples. Hen
e, it is important to usewell-
hosen examples when learning new methods. Note, however, that sometimes aslight over-generalisation might be bene�
ial. Also note that any learning
an workonly if in the domain there is some stru
ture or regularity whi
h
an be exploited.3.2.2 PropertiesLet us look at some properties of our learning algorithm:Property 3.1Given a number of examples, the algorithm learns a generalisation whi
h is at leastas general as all examples.In order to see this property let a language expression r stand for the set of allexpressions that are just sequen
es of primitive expressions. Then an expression r1 ismore general than another r2 if ea
h primitive expression of the set of sequen
es forr2 is a proper subset of that for r1. In the algorithm only the steps (5) and (6) are
riti
al sin
e all others do not
hange the generality of the expressions. Only steps (5)and (6) perform a generalisation, (5) in form of a disjun
tion, (6) in form of a star.Sin
e a disjun
tion
overs ea
h of its disjun
ts, and a star ea
h of its
omponents aswell, the property follows.Property 3.2The learning algorithm is exponential.In terms of
omputational
omplexity, the algorithm is quadrati
 in step (1)8 andis exponential in step (7), sin
e we try every possible
ombination here. All othersteps are linear. The
omplexity of step (7)
ould be improved by using the initially
omputed information about all sublists of an example list, rather than re
omputingit in every re
ursive step.8An example list of length n is split into all together n2 di�erent sublists: there are n sublists of length 1, n� 1sublists of length 2, n � 2 of length 3, n � k + 1 of length k and so on, and 1 sublist of length n. Hen
e, in total,there are n2 sublists of di�erent �xed lengths. Noti
e that there exist algorithms, e.g., suÆx trees, whi
h run thisstep in linear time.

Automati
 Learning of Proof Methods in Proof Planning 13Sin
e step (7) is exponential, our learning algorithm does not run eÆ
iently forlarge examples.9 In
ase the algorithm needs to be used for very large examples,we implemented some heuristi
 optimisations. These prune the number of generatedmat
hes. Good heuristi
s are those whi
h sele
t mat
hes that make a big impa
ton the size of the �nal generalisations. For example, a good heuristi
 is to pi
k apattern mat
h whose pattern of smallest size forms a maximal sublist of the originalexample. This enables the algorithm to deal with very large examples (e.g., listsof length 2000) whi
h are way beyond the length of examples that we expe
t forlearning our method outlines. Clearly, using su
h heuristi
 learning may miss the bestgeneralisation (a

ording to the measures de�ned above). The user of our Learn
-mati
 system
an
hoose whether to use the heuristi
 optimisations in the learningme
hanism or not. Users
ould also de�ne their own heuristi
s, but this is left forfuture work.3.3 Using learnt methodsMethod outlines that have been learnt so far do not
ontain all the information whi
his needed for the proof planner to use them. For instan
e, they do not spe
ify whatthe pre- and post
onditions of methods are, they also do not spe
ify how the numberof loop appli
ations of methods is instantiated when used to prove a theorem. In ourapproa
h, we restore the missing information by sear
h.In the parti
ular
ase of our implementation in the
mega proof planning system,important information whi
h is needed for the appli
ation of methods { but whi
h islost in the abstra
tion pro
ess { are parameters for the methods that
onstitute thenewly learnt method. Con
retely, the methods whi
h make up the new learnt methodin
mega take some (or no) parameters. These
an be in the form of positioninformation indi
ating where in the expression the method is applied, or a termnaming the
on
ept for whi
h the de�nition should be expanded, or instantiating aterm used by the method, et
. The parameters of a method are supplied by
ontrol-rules to redu
e and to dire
t the sear
h performed by the proof planner. For example,the parameter in the de�nition expansion method defn-exp names the
on
ept thatshould be expanded. The possible relevant
ontrol-rules
an be of the form `Expandonly de�nitions of the
urrent theory' or `Prefer de�nition expansion of the headsymbol of the formula to be proved'.A set of methods together with a set of
ontrol-rules de�nes a planning strategyof
mega's multi-strategy proof planner Multi [19℄. Note that
ontrol-rules of astrategy are used not only for determining the parameters of methods, but also toprefer or reje
t methods a

ording to the
urrent proof situation.For ea
h learnt method outline we automati
ally build a method. The pre
onditionof a learnt method employs sear
h that is guided and stru
tured by the methodoutline; that is, we perform sear
h guided by the method outlines in order to analysewhether the learnt method is appli
able.The post
ondition introdu
es the new open goals and hypotheses resulting fromapplying the methods of the sequen
e to the
urrent goal. We will
all this kind ofmethod a learnt method.9However, we argue that proof methods that are being learnt typi
ally do not
onsist of a large number oflow-level methods. Indeed our algorithm runs eÆ
iently on all the tested examples.

14 Automati
 Learning of Proof Methods in Proof PlanningThe pre
ondition of a learnt method
annot be extra
ted from the pre- and post-
onditions of the uninstantiated methods in the method outline, be
ause the formulaeintrodu
ed by the post
ondition depend on the formulae that ful�l the pre
onditions.We a
tually have to apply a method to produ
e a proof situation for whi
h we
antest the pre
onditions of the subsequent method in the method outline. That is, wehave to perform proof planning guided by the learnt pattern whi
h is
aptured by themethod outline.10In detail, the appli
ability test is realised by the following algorithm:1. Copy the
urrent proof situation. Initialise a sta
k with a pair (P0; ;), where P0is the initial learnt method outline and ; stands for the empty history.2. Take the �rst pair from the sta
k:(a) If this pair is ([[P1jP2℄; P 0℄;H), then put ([P1; P 0℄;H) and ([P2; P 0℄;H) ba
k onthe sta
k. For ([Pn; P 0℄;H) put ([P; Pn�1; P 0℄;H) on the sta
k. In the
ase of([P �; P 0℄;H), return (P 0;H) and ([[P; P �℄; P 0℄;H).11(b) If the pair is ([m;P 0℄;H) where m is a method-name, then test the pre
onditionof m for all open goals (and for all possible instantiations of method parameters,if the method
ontains parameters). Ea
h satis�ed test of pre
onditions resultsin a partial mat
hing �i of m for the
orresponding goal (and parameter). Thepartial mat
hings ([�1; P 0℄;H); : : : ; ([�n; P 0℄;H) are put on the sta
k. If m is notappli
able, then ba
ktra
k the di�eren
e between the
urrent history H and thehistory of the next pair of the sta
k.(
) If the pair is ([�i; P 0℄;H) where �i is a partially instantiated method, then applythe post
onditions of �i to the
opied proof and put (P 0; (�i;H)) on the sta
k.(d) If the pair is ([℄;H) where [℄ denotes the empty outline, an instantiation ofthe learnt outline is found. That means, a parti
ular sequen
e of methods,
orresponding to the method outline, has been su

essfully applied and be foundin H.3. If the sta
k is empty, then it was not possible to apply the learnt method outline;otherwise
ontinue with step (2).Noti
e that the appli
ation of the method introdu
es new open lines and new hy-potheses resulting from the appli
ation of methods in H into the proof.The learnt method may
ontain other learnt methods. That is, the appli
abilitytest in (2)(b) may re
ursively
all this same algorithm again within the appli
abilitytest of an embedded learnt method.Our implementation of the appli
ability test
auses an overhead in the run timebehaviour of the system. This is be
ause the
urrent proof is �rstly
opied in step (1)of the appli
ability test of the learnt method, and se
ondly in
ase of an appli
ation ofthe method the new open goals and hypotheses are
opied ba
k into the original proof.These two
opying steps are
arried out in order to avoid an interferen
e between theplanning pro
ess of Multi in the
urrent proof situation, and the planning pro
ess10One may suggest that our system learns ta
ti
s rather than methods as we have not me
hanised the learning ofpre
onditions. Su
h a suggestion is not entirely
orre
t, sin
e we
an use the learnt methods in proof planning. It istrue, however, that be
ause of the in
reasing
omplexity of methods the originally
lear di�eren
e between ta
ti
sand methods is getting in
reasingly blurred { not only in our approa
h but in proof planning in general.11There is a
ounter for the operator �, the evaluation of this operator is only performed until an upper bound isrea
hed. This guarantees the termination of the appli
ability test.

Automati
 Learning of Proof Methods in Proof Planning 15inside the appli
ability test of the method outline. The ineÆ
ien
y due to overhead
ould be avoided in a
omplete re-implementation of the Multi proof planner.4 Evaluation and ExperimentsIn order to evaluate our approa
h, we
arried out an empiri
al study in di�erentproblem domains. In parti
ular, we tested our framework on examples of grouptheory, residue
lasses and set theory. The aim of these experiments was to investigateif the proof planner
mega enhan
ed with the learnt methods
an perform betterthan the standard
mega planner. The learnt methods were added to the sear
hspa
e in
onjun
tion with a heuristi
 (
ontrol-rule) spe
ifying that their appli
abilityis
he
ked �rst, that is, before the existing standard methods.The measures that we
onsider are:1. mat
hings { the number of all true and false attempts to mat
h methods that are
andidates for appli
ation in the proof plan;2. proof length { the number of steps in the proof plan;3. timing { the time it takes to prove a theorem;4.
overage { the ability to prove theorems.In order to perform these tests we have built di�erent
ounters in the program. The
ountermat
hings
ounts the su

essful and unsu

essful appli
ation tests of methods.It also
ontains the method mat
hings
he
ked by the sear
h engine in the appli
abilitytests of learnt methods (see Se
tion 3.3). Mat
hings provides an important measure,sin
e on the one hand, it indi
ates how dire
ted the sear
h for a proof is. On theother hand,
he
king the
andidate methods that may be applied in the proof is byfar the most expensive part of the proof sear
h. Hen
e, mat
hings is a good measureto
ompare the performan
e of the two approa
hes (i.e., with and without learntmethods) while it is also independent of potential implementation ineÆ
ien
ies.The development set usually
onsists of a small number of examples, in parti
ular,for the examples in the domains dis
ussed in this paper it
onsisted of three exampletheorems (see Se
tion 2). The test set
onsists of a number of theorems, whi
h arenew, more
omplex, and signi�
antly diverse from the development set. It ex
ludesthe proofs from whi
h the new methods were learnt.The size of our test sample was relatively small in group theory: we tested ourlearnt methods on 8 theorems, but large in other domains: we had 881 theorems ofresidue
lasses and 120
onje
tures of set theory.Moreover, we
hose our test set to be
hara
teristi
 of the problem domain ingeneral. Furthermore, noti
e that some evaluation measures, e.g., proof length and
overage are independent of the size of the test set. Namely, some inspe
tion of theapproa
h
learly indi
ates that the proof plans that use learnt methods will be shorter,and from the domain of group theory, it is
lear that new theorems are proved thatotherwise
ould not be.Table 1
ompares the values of mat
hings and proof length for the three problemdomains. In ea
h problem domain we break down the results a

ording to the type oftheorems under
onsideration (e.g., how
omplex they are, what pattern of reasoningor proof methods their proofs may use, how many variables are in them). The table
ompares the values for these measures when the planner sear
hes for the proof with

16 Automati
 Learning of Proof Methods in Proof PlanningDomain Type of Mat
hings LengthTheorems S L SL S L SLGroup theory simple 94.2 79.0 1.19 15.5 8.3 1.87
omplex | 189.6 | | 9.8 |Residue Class
hoose 691.0 656.0 1.05 39.3 33.0 1.19ZZ3 tryanderror 425.3 82.1 5.80 38.6 2.0 19.30both 552.9 323.2 1.71 39.7 19.0 2.09Residue Class
hoose 751.2 713.8 1.05 35.2 29.1 1.21ZZ6 tryanderror 2309.5 402.9 5.73 218.2 2.0 109.10both 2807.8 1419.3 1.98 185.9 73.0 2.55Residue Class
hoose 1996.1 1640.5 1.22 111.2 78.4 1.42ZZ9 tryanderror 4769.1 1132.2 4.21 453.1 2.0 226.55both 6931.6 3643.4 1.90 438.7 163.0 2.691 variable 26.9 42.0 0.64 6.6 6.6 1.00Set theory 3 variables 45.6 14.9 3.06 10.9 2.0 5.455 variables 48.1 28.7 1.68 12.7 4.0 3.17Table 1. Evaluation results.the standard set of available methods (
olumn marked with S), and when in additionto these, there are also our newly learnt methods available to the planner (
olumnmarked with L). \|" means that the planner ran out of resour
es (i.e., four hours ofCPU time) and
ould not �nd a proof plan.4.1 Group theory domainIn the group theory domain, our learning me
hanism learnt �ve new methods, butsin
e some are repeated appli
ations of others, we only tested the planner by usingtwo newly learnt
omplex
ompound methods.12The methods simplify group theory expressions by applying asso
iativity left andright methods, and then redu
e the expressions by applying appropriate inverse andidentity methods (see Se
tion 2.1). The entries in Table 1 refer to two types ofexamples. First, we give the average �gures for simple theorems that
an be provedwith standard and with learnt methods. Se
ond, we give the average �gures for
omplex theorems that
an be proved only when the planner has our learnt methods.It is evident from Table 1 that the number of mat
hings is improved, but it is onlyredu
ed by about 15%. We noti
ed that the simpler the theorem, the smaller theimprovement. In fa
t, for some very simple theorems, a larger number of mat
hingsis required if the learnt methods are available in the sear
h spa
e. The reason forthis behaviour is that there are only a few standard methods available initially in thegroup theory domain. Hen
e, any additional learnt method will noti
eably in
reasethe sear
h spa
e. Also, the appli
ation test for learnt methods may be expensive, es-pe
ially when a learnt method is not appli
able, but still all possible interpretations of12In general, it is a good heuristi
 to keep the size of the set of appli
able methods small. This
an be a
hievedby subsuming spe
ialised methods by more general ones. For example, as soon as the system has learnt repeatedappli
ation of simplify in group theory (rep-simplify = simplify�), we
an remove the proof method simplify.

Automati
 Learning of Proof Methods in Proof Planning 17the learnt method outline have to be
he
ked by the sear
h engine. However, for more
omplex examples, this is no longer the
ase, and an improvement is noti
ed. This isbe
ause the sear
h within the appli
ability test of the learnt method is more dire
ted
ompared to the sear
h performed by the proof planner. The improvement in
reaseswhen a larger number of primitive methods is repla
ed by the learnt methods.As expe
ted, the proof length is redu
ed by using learnt methods.On average, the time it took to prove simple theorems of group theory was ap-proximately 100% longer than without the learnt methods. Noti
e that this doesnot in
lude the
ase of
omplex theorems, when the proof planner timed out without�nding the proof plans of the given theorems. The reason for bad timing in the
aseof simple theorems is that the learnt methods are small and simple, and the proofsear
h
ontains the overhead due to the
urrent implementation for the reuse of thelearnt methods (see Se
tion 3.3).On the other hand, in the
ase of
omplex group theory examples, the advantageof having learnt methods in the sear
h spa
e is evident from the fa
t, that when ourlearnt methods are not available to the planner, then it
annot prove some
omplextheorems. When trying to apply methods su
h as asso
iativity left or right, for whi
hthe planner has no
ontrol knowledge about their appli
ation, then it
annot �nda proof plan within the given resour
es (i.e., four hours of CPU time). Our learntmethods, however, en
apsulate typi
al patterns of reasoning about these theorems,hen
e they provide
ontrol over the way the methods are applied in the proof andlead to su

essful proof plans.4.2 Residue
lass domainIn the domain of residue
lasses, we gave our learning me
hanism examples fromthe residue
lass ZZ3 domain su
h that it learnt two new methods: tryanderror (asdemonstrated in our examples in Se
tion 3.2), and
hoose.We applied the standard set of methods and the set enhan
ed with the two learntmethods to randomly
hosen theorems regarding the residue
lass sets ZZ3, ZZ6 andZZ9. We subdivided the results in Table 1 a

ording to whether only one of thelearnt methods or both of them were appli
able in the proof. The number of methodmat
hings is also represented in Figure 2 and the length of proofs in Figure 3. Thelabels in these �gures denote the
lass of theorems, for example, \
hoose L" standsfor theorems where the learnt method
hoose was appli
able and proved by a strategy
ontaining the learnt methods, while \
hoose S" stands for the same
lass of theoremsbut now proved with the standard strategy (i.e., without the learnt methods).There is an improvement in ea
h residue
lass set when learnt methods are available.Sin
e
hoose repla
es only small subproofs, whereas tryanderror
an prove the wholetheorem in one step, the latter has
learly better results for proof length andmat
hings.The bene�t in the sear
h for proofs where both learnt methods are appli
able liesbetween them.In addition to
omparing the absolute values for our measures within the di�erentsub-domains of residue
lass theorems (i.e., ZZ3, ZZ6 and ZZ9) in Table 1, we also
ompare the relative improvement between the di�erent sub-domains. This
an bedone by examining the ratio between the number of mat
hings in the standard (S) andthe enhan
ed (L) sets of methods (and the same for proof length), and then
omparing

18 Automati
 Learning of Proof Methods in Proof Planning

01000200030004000500060007000

ZZ3 ZZ6 ZZ9
Mat
hings
hoose S
hoose L

tryanderror S
tryanderror L

Both S
Both L

b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

Fig. 2. Method mat
hings for residue
lasses.the ratios for ea
h type of theorems a
ross sub-domains. Table 1 states these values.For example, the ratio for proof length in the
ase of theorems that use tryanderrormethod in ZZ3 is 19:30. This means that the proofs when only standard methods areavailable are 19:30 times longer than when learnt methods are available as well.Table 1
learly shows that the ratios for proof length in
rease a
ross sub-domains(e.g., in
ase both learnt methods are used, the ratio in
reases from 2:09 to 2:55 and2:69 a
ross sub-domains). This indi
ates that the more
omplex the theorem (higherresidue
lasses have longer and more
omplex proofs), the better the improvementwhen learnt methods are available to the planner.In general, the same trend
an be observed for the mat
hings ratios. An ex
eptionare the ratios for the type of theorems that
an be proved using tryanderror method,whi
h only marginally de
rease a
ross sub-domains (but we would expe
t them toin
rease as in the
ase for theorems that are proved using
hoose method). This
an be explained by the fa
t that the theorems were randomly
hosen a
ross sub-domains, rather than using the theorems for the same properties but di�erent residue
lasses. Namely, the random di�eren
es in the
omplexity of theorems in di�erentsub-domains may be signi�
ant, e.g., the properties randomly
hosen in ZZ6 may bemore
omplex to prove than the ones
hosen in ZZ3.On average, the time it took to prove theorems of residue
lasses with the newlylearnt methods was 50% shorter for proofs
ontaining tryanderror than without su
hmethods, 25% longer for both methods and 80% longer for
hoose. The time
or-responds to the measured mat
hings but su�ers from the overhead of the
urrentimplementation, espe
ially for the smaller
hoose method. Sin
e the learnt methodsare tried before the standard set of methods, this e�e
t in
reases for longer proofs.

Automati
 Learning of Proof Methods in Proof Planning 19

0100200300400

ZZ3 ZZ6 ZZ9
Prooflength
hoose S
hoose L

tryanderror S

tryanderror L

Both S
Both L

b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b b bFig. 3. Proof length for residue
lasses.4.3 Set theory domainThe examples in this domain were sele
ted to test the
ost of learnt methods in thesear
h pro
ess when they are not appli
able. To this end, we added to the set of avail-able methods the method learnt-set (see Se
tion 3.2) that was learnt from theorems
ontaining three variables. Note that sin
e all the theorems in the development sethave three variables, the universal quanti�
ation in learnt-set is eliminated (introdu
edin ba
kward reasoning) exa
tly three times. Our development set is
hosen deliber-ately in this restri
ted way in order to test the e�e
t of a learnt method in situationswhere it is not appli
able or appli
able only in
ombination with other methods. Inthis way, we wanted to �nd out to whi
h degree
an learnt methods have a negativee�e
t on the sear
h spa
e. Note that if we
hose `better examples' for learning, e.g.,theorems that have one, three and �ve variables, then our learnt method learnt-setwould be more powerful and appli
able to all three types of theorems.In order to test the restri
ted method learnt-set we added to our test set two typesof theorems, namely, with one and with �ve variables. As expe
ted, learnt-set is notappli
able in the proofs of theorems with one variable. In the proofs of theoremswith �ve variables learnt-set is appli
able after two methods of the standard set areapplied.For theorems with three variables the proof sear
h performs best, that is, the num-ber of mat
hings is redu
ed by a fa
tor of three when the learnt method is available.proof length is redu
ed by more than �ve times. The results for theorems with �vevariables are still better than without the learnt method, but as expe
ted, not asgood as with three variables. For theorems with one variable, where learnt-set is notappli
able at all, the proof sear
h
learly su�ers from the additionally available learnt

20 Automati
 Learning of Proof Methods in Proof Planningmethod, and hen
e the number of mat
hings is in
reased. Of
ourse, proof length isnot a�e
ted in this
ase.The bene�ts and drawba
ks of the availability of learnt methods
an be seen very
learly in these evaluation results for the set theory examples. Namely, when a learntmethod is appli
able, then its availability improves the performan
e of the proofplanner. However, when a learnt method is not appli
able then the proof planner hasto test a larger set of methods, and this will harm its performan
e.On average, the time it took to prove or disprove
onje
tures in set theory withthe newly learnt methods was about 40% faster for theorems with three variables,approximately 5% faster for theorems with �ve variables, and nearly 20% slower fortheorems with one variable.4.4 Analysis of resultsAs it is evident from the dis
ussion above, in general, the availability of newly learntmethods that
apture general patterns of reasoning improves the performan
e of theproof planner. In parti
ular, the number of mat
hings (whi
h are the most expensivepart of the proof sear
h) is redu
ed a
ross domains, as indi
ated in Table 1. Further-more, as expe
ted, learnt methods
ause proofs to be shorter, sin
e they en
apsulatea number of other methods. Also, the time is in general redu
ed when using learntmethods. There are some overheads, and in some
ases these are bigger than theimprovements. Sin
e the time should be related to the redu
ed number of mat
hings,but it is not in all our
ases (group theory), this indi
ates that our implementationof the exe
ution of learnt methods, as des
ribed in Se
tion 3.3, is not as eÆ
ient asthat of the
mega proof planner.In our experiments, the
overage when using learnt methods is in
reased, whi
h isalso indi
ated by the fa
t that using learnt methods,
mega
an prove theorems thatit
annot prove otherwise. Sin
e in our experiments proof plans were either foundrelatively qui
kly or not at all, we did not noti
e a possible e�e
t where some proofplans that were found with the standard set of methods, now
ould no longer befound, be
ause the learnt methods misled the proof sear
h and in
reased planningtime beyond the four hour limit.The reason for the improvements des
ribed above is due to the fa
t that our learntmethods provide a stru
ture a

ording to whi
h the existing methods
an be applied,and hen
e they dire
t sear
h. This stru
ture also gives better explanations why
ertainmethods are best applied in parti
ular
ombinations. For example, the simpli�
ationmethod for group theory examples indi
ates how the methods of asso
iativity, inverseand identity should be
ombined together, rather than applied blindly in any possible
ombination.A general performan
e problem of using learnt methods arises when a learnt methodis not appli
able. A learnt method is not appli
able when there is no instantiationof the learnt sequen
e so that the methods of this instantiation are appli
able. Thismeans that every possible instantiation has to be tested and refuted. In the presentedexperiments, the learnt methods nearly always outperform the standard set of prim-itive methods. But there
ould be worst
ase s
enarios where the learnt method isvery general (
ontains many star operations) and a large part of the learnt sequen
e isappli
able but the whole sequen
e is not. This has not happened in our experiments.

Automati
 Learning of Proof Methods in Proof Planning 214.5 Analysis of general approa
hThe additional hierar
hi
al stru
ture of proofs
onstru
ted with learnt methods
analso be bene�
ial for proof verbalisation and proof explanation tools like P.rex [8℄.The information hidden within our learnt methods
an now likewise be hidden inverbalisations, and expanded if appropriate or requested by the user. Namely, learntmethods en
apsulate bigger and more abstra
t steps in proofs than smaller methodsthat make up our learnt methods. Hen
e, learnt methods provide a higher-levelexplanation of what is going on in the proof plan, and therefore they help to re
e
t themain idea of a proof by masking and grouping details in the proof. In
ombination,for instan
e, with the proof verbalisation tool P.rex it enables the proof planner
mega to automati
ally produ
e better explanations of the proofs whi
h
an be ashigh-level or as low-level as needed.The pre
onditions of learnt methods are
urrently generated by the sear
h enginefor the reuse of methods des
ribed in Se
tion 3.3. The engine sear
hes for the in-stantiation of the method outline whi
h is appli
able in a given proof situation. Thismeans that a small amount of sear
h, whi
h is guided by the method outline, needsto be
arried out in the appli
ability test of the learnt method. Note that in thestandard set of methods, i.e., not the learnt ones, the appli
ability test is
arriedout by
he
king if the expli
itly and de
laratively stated pre
onditions for the methodhold or not in a given proof situation { similarly to the
ase with our learnt methods,this may also require sear
h. The fa
t that the pre
onditions of the standard set ofmethods are de
laratively stated, but the pre
onditions of our learnt methods need tobe
omputed, does not
hange how proof methods are treated in the planning pro
ess.All methods, whether learnt or not, form part of the sear
h spa
e that the proof plan-ner traverses in the pro
ess of �nding a proof plan. Indeed, one of our motivationsstated at the start of this paper was to devise a me
hanism whi
h is able to learnnew primitives of the sear
h spa
e, rather than
ontrol the sear
h within a �xed setof primitives. In the framework of proof planning the primitives of the sear
h spa
eare proof methods whi
h we
an now learn automati
ally. Even when some sear
hneeds to be
arried out in order to
ompute the appli
ability
ondition of our learntmethods, this still is mu
h better, that is, sear
h is mu
h pruned, than when su
hmethods are not available to the planner. This is supported by the results of ourevaluation demonstrated above in this se
tion.It is obvious that a new learnt method does not, in general, make some of the lowerlevel methods obsolete while sustaining some notion of
ompleteness. On the otherhand, we
annot rule out this possibility
ompletely for spe
ial
ases. Determiningsu
h situations is
hallenging and requires proof theoreti
 methods based on derivabil-ity and admissibility
riteria. This task
an
learly not be addressed automati
ally inour approa
h.We
an see our approa
h as a me
hanism that learns how to hierar
hi
ally stru
turethe sear
h through the sear
h spa
e. We built new methods that en
apsulate guidedsear
h over some more primitive methods, and then add these new elements as a kindof
hunks of stru
tured sear
h to our system. This
ontrasts with the idea of havingonly one global
ontrol layer in proof planning, sin
e our learnt methods themselves
an be seen as little planning pro
esses
onsisting of a set of internal methods and
ontrol information on how to sear
h with them.The me
hanism for reusing learnt methods des
ribed in Se
tion 3.3 is spe
i�
 to

22 Automati
 Learning of Proof Methods in Proof Planning
mega proof methods. On the other hand, the learning algorithm presented in Se
-tion 3.2 is general and
an be used for learning in other automated reasoning systems,not just the
mega proof planner (see Se
tion 6). The learning algorithm learnsmethod outlines whi
h with some enri
hment
ould be used in other systems as infer-en
e rules, in
mega as proof methods, in �Clam [27℄ as methodi
al expressions [26℄,et
. In fa
t, in some systems, like �Clam, method outlines are exa
tly methodi
alexpressions that the planner
an use dire
tly, so no enri
hing of the method outlinerepresentation is required. In other systems, enri
hed method outlines are just in-feren
e rules. This may give rise to the question of what is the di�eren
e betweenmethods, methodi
al expressions and ta
ti
s. It seems that our method outlines o�era uni�ed view of all these stru
tures that are used in di�erent automated reason-ing system, e.g., inferen
ing systems, ta
ti
al theorems provers, and proof planners.Depending on the system, a di�erent primitive of the sear
h spa
e is needed (e.g.,inferen
e rules, ta
ti
s, proof methods, methodi
al expressions). Hen
e, the enri
hingof the learnt method outline representation so that the new primitive
an be usedin the given system has to be
arried out di�erently, or may indeed need no enri
h-ing at all. Studying how this pro
ess varies for di�erent systems may give us some
lues about the similarities and di�eren
es between su
h stru
tures, but this is leftfor future work.5 Related WorkSome work has been done in the past on applying ma
hine learning te
hniques to the-orem proving. Unfortunately, not mu
h work has
on
entrated on high-level learningof stru
tures of proofs and extending the reasoning primitives within an automatedtheorem prover.For example, S
hulz's work in [29℄, whi
h is a
ontinuation of previous work su
has by Fu
hs and Fu
hs [9℄ and Denzinger and S
hulz [6℄, investigates learning ofheuristi

ontrol knowledge in the
ontext of ma
hine oriented theorem proving, morepre
isely, equational or superposition based theorem proving. Knowledge gained fromthe analysis of the inferen
e pro
ess is used to learn important sear
h de
isions, whi
hare represented as abstra
t
lause patterns. These are employed in heuristi
 evaluationfun
tions to better guide the sear
h when atta
king new proof problems. The sele
tionof heuristi
 evaluation fun
tions for a new problem at hand is guided by meta-data.The main di�eren
e with our work is that the learnt information in S
hulz's work isnot be
oming a reasoning primitive, su
h as our learnt methods. It rather guides thesear
h amongst the existing primitives at the global sear
h layer instead of buildingup new, stru
tured
hunks of en
apsulated sear
h pro
esses.Silver [30℄ and Desimone [7℄ used pre
ondition analysis whi
h learns new inferen
es
hemas by evaluating the pre- and post
onditions of ea
h inferen
e step used in theproof. A dependen
y
hart between these pre- and post
onditions is
reated, and
onstitutes the pre- and post
onditions of the newly learnt inferen
e s
hema. Theses
hemas are synta
ti
ally
omplete proof steps, whereas the
mega methods
ontainarbitrary fun
tion
alls whi
h
annot be determined by just evaluating the syntax ofthe inferen
e steps.Kolbe, Walther, Brauburger, Melis and Whittle have done related work on theuse of analogy [21℄ and proof reuse [17, 16℄, that is, a sort of learning to solve new

Automati
 Learning of Proof Methods in Proof Planning 23problems by using a similar existing problem. Their systems require a lot of reasoningwith one example to re
onstru
t the features whi
h
an then be used to prove a newexample. The re
onstru
tion e�ort needs to be spent in every new example for whi
hthe old proof is to be reused. In
ontrast, we use several examples to learn a reasoningpattern from them, and then with a simple appli
ation, without any re
onstru
tionor additional reasoning, reuse the learnt proof method in any number of relevanttheorems. Ireland [12℄ extends the appli
ability of the proof planning approa
h bypat
hing failed proof plans by so-
alled proof
riti
s.A pie
e of related work in
ognitive s
ien
e is Furse's Mathemati
s Understander[10℄, MU, whi
h stores mathemati
al domain and pro
edural knowledge in a
on-textual memory system, and tries to simulate how students learn mathemati
s fromtextbooks. MU builds up a uniform low-level data stru
ture, while we build high-level hierar
hi
al proof planning methods. Having expli
it methods allows us to
he
kproofs for their
orre
tness, while in MU in
orre
t proof steps
annot be distinguishedfrom
orre
t ones. The hierar
hi
al
hara
ter of our methods also allows for a user-adaptive proof presentation.In the �eld of ma
hine learning there is a huge amount of relevant work and wemention only some that we deem most related to our work. In terms of a learn-ing me
hanism, more re
ent work on learning regular expressions, grammar inferen
eand sequen
e learning by Sun and Giles [31℄ is related. Learning regular expressionsis equivalent to learning �nite state automata, whi
h are also re
ognisers for regu-lar grammars. Muggleton has done related work on grammati
al inferen
e methods[22℄ whi
h automati
ally
onstru
t �nite-state stru
tures from tra
e information. Hismethod IM1 is a general one and
an des
ribe all other existing grammati
al inferen
emethods. IM1
onsists of �rst, generating a pre�x tree from example tra
es, se
ond,merging of states to get
anoni
al a

eptor states (whi
h still des
ribe only the ex-ample tra
es), and third, merging states whi
h essentially does the generalisation ofthe stru
ture. The generalisation, i.e., merging, is determined by a parti
ular
hosenheuristi
 measure. The existing state automata learning te
hniques di�er depend-ing on the heuristi
 that they employ for generalisation. The main di�eren
e to ourwork is that these te
hniques typi
ally require a large number of examples in order tomake a reliable generalisation, or supervision or an ora
le whi
h
on�rms when newexamples are representative of the inferred generalisation. Furthermore, the heuris-ti
s des
ribed by Muggleton do not seem to be suÆ
ient for generalisation in our
ase, as none of the states des
ribing our proof tra
es would be merged. It is un
learwhat other heuristi

ould be employed to suÆ
e the generalisation of our examples.Moreover, these te
hniques learn only sequen
es, i.e., regular expressions. However,our language is larger than regular grammars as it in
ludes
onstant repetitions ofexpressions and expressions represented as trees.There have been various approa
hes to in
orporate learning in planning. In theProdigy system [32℄ a number of te
hniques for learning are available. The goal of thelearning pro
ess is either to get
ontrol knowledge, that is, rules that des
ribe whi
hgoal to ta
kle next and whi
h method to prefer at the de
ision points of the planningalgorithm, or learn planning operators from the
hange of planning states by observingan expert agent. The learning me
hanism of Learn
mati
 di�ers in both aspe
tsas its goal is to learn new operators that are learnt from other operators and
ouldbe
ompared to learning of ma
ro operators of
hunks [28℄. Another di�eren
e is that

24 Automati
 Learning of Proof Methods in Proof Planninglearning from an analysis of the domain theory, in our
ase the set of methods, withoutthe generation of examples appears to be diÆ
ult, sin
e proof planning methods are
omplex and the post
onditions are only available when a method is applied in a
on
rete proof situation. The abstra
tion from the proof to method names that is theinput for the learning me
hanism of Learn
mati
 is rather radi
al
ompared withabstra
tions in other planning systems, see [15℄. There, a hierar
hy of abstra
tions
an be established by analysing the predi
ates of the domain theory. Some ideas forabstra
tions in method learning that retain possibly useful information are dis
ussedin the next se
tion.Related is also the work on pattern mat
hing in DNA sequen
es [2℄, as in theGENOME proje
t, and some ideas underlying our learning me
hanism have beeninspired by this work.6 Future WorkThere are several aspe
ts of our learning framework whi
h need to be addressed inthe future. With respe
t to the representation formalism, we have mainly
onsideredsequential rewriting proofs. Other styles (di�erent dire
tions of reasoning) should alsobe
onsidered.Furthermore, we would like to apply our learning approa
h to other proof planners,su
h as �Clam [27℄. Sin
e proof methods have a di�erent stru
ture in di�erent proofplanners, this task would require using the same learning me
hanism, but probably,instead of our appli
ability test, a di�erent reuse of methods approa
h than in the
ase of
mega.The expressiveness of our language L for method outlines (see Se
tion 3.1)
ouldbe studied further in order to determine if it should be extended. In parti
ular, we
ould look into what type of
mega methods
annot be expressed using the
urrentlanguage L, and what other language
onstru
ts we would need. Moreover, we
ouldexamine if our language is suÆ
ient to express primitives of the sear
h spa
e in otherautomated reasoning systems, like methodi
al expressions in �Clam or inferen
e rulesin other theorem provers.Regarding the learning algorithm itself, we need to examine what are good heuristi
sfor our generalisation and how suboptimal solutions
an be improved. While thelearning me
hanism is not eÆ
ient, we argue that we do not need a highly
ompli
atedand eÆ
ient te
hnique for learning patterns, as in the GENOME proje
t, for example.If we moved to larger example sets we
ould use a divide and
onquer heuristi
. Ourlearning algorithm without heuristi
s is suÆ
ient for small patterns (e.g., less than50 steps). We did not en
ounter larger patterns in our examples and do not expe
tvery large ones for our appli
ation domain, sin
e we assume well-
hosen examplesfor the learning part. Our approa
h re
e
ts the view that human mathemati
ianslearn
omplex stru
tures not in one single step but
ompose them step by step in ahierar
hi
al way.An interesting aspe
t that
ould be addressed in the future is whether a system
ould automati
ally learn the information that is abstra
ted from the proof tra
es andthat has to be re
onstru
ted by sear
h performed in the appli
ability test when reusinglearnt methods. What
ould this additional information that des
ribes learnt methodsmore spe
i�
ally be? When we take a look at the examples in group theory, it seems

Automati
 Learning of Proof Methods in Proof Planning 25obvious that the simpli�
ation using asso
iativity, inverse and identity methods aremeant to a
t on the same subformula. This information is lost during abstra
tion, andhen
e, during the appli
ability test of the learnt method, asso
iativity is applied atevery possible pla
e. So, the question is,
ould the smallest subterm of an expressionto whi
h the newly learnt method should be applied, i.e., the fo
us for the method,be learnt automati
ally and how? Future investigations
ould address su
h questionsas well as identify additional pie
es of information that des
ribe learnt proof methodsmore spe
i�
ally. In order to redu
e sear
h with the newly learnt methods it wouldalso be good to learn meta-level
ontrol knowledge for them.Another interesting, but diÆ
ult idea for future work is to
hara
terise well-
hosenexamples more pre
isely, so that these
ould be sele
ted automati
ally, rather thandepend on the user. It would be desirable to identify automati
ally the subparts ofproof tra
es in several examples of proofs that
ontain the same reasoning pattern. Inour framework, this has to be done by the user of the system. Te
hniques from datamining or algorithmi
 learning theory
ould perhaps be useful to ta
kle this diÆ
ultproblem, however, they usually require very large data sets, whi
h in proof planningwe typi
ally do not have. An idea is to apply our approa
h to me
hanised theoremprovers (rather than proof planners), for whi
h we have large proof
orpuses (e.g.,Mizar, Isabelle, Otter), and then use data mining te
hniques in order to getgood examples from them.The extra
tion of method sequen
es from proofs is
urrently implemented with re-spe
t to the
hronologi
al order of method appli
ations during proof planning. There
ould be other orderings, e.g., the di�erent linearisations of the proof tree, some ofthem
ould even result in more adequate learnt method outlines. For example, in asituation where the planner has more than one di�erent subgoal that
an be
losed bythe same sequen
e of method appli
ations [m1;m2℄, it depends on the sear
h behaviourof the proof planner whether the proofs will have a tra
e like [m1; : : : ;m1;m2; : : : ;m2℄or [m1;m2; : : : ;m1;m2℄. The learning me
hanism will produ
e [m�1;m�2℄ in the �rst
ase and [m1;m2℄� in the se
ond
ase. The latter will have a better sear
h behaviourin the appli
ability test of the learnt method be
ause only one instantiation for thestar operator has to be found.Finally, an idea for more long-term future resear
h is to model the powerful humanlearning
apability in theorem proving more adequately. For this, it would be ne
-essary to model how humans introdu
e new vo
abulary for new (emerging)
on
epts(e.g., representing asso
iative expressions as lists of terms in the expressions, anno-tations in rippling [5, 11℄). With our approa
h, we
annot do that, however. It is avery
hallenging question left for future proje
ts.7 Con
lusionIn this paper we des
ribed a hybrid system Learn
mati
, whi
h is based on the
mega proof planning system enhan
ed by automati
 learning of new proof methods.This is an important advan
e in addressing su
h a diÆ
ult problem, sin
e it makessigni�
ant steps in the dire
tion of enabling systems to better their own reasoningpower. Proof methods
an be either engineered or learnt. Engineering is expensive,sin
e every single new method has to be freshly engineered. Hen
e, it is better tolearn, whereby we have a general methodology that enables the system to automati-

26 Automati
 Learning of Proof Methods in Proof Planning
ally learn new methods. The hope is that ultimately, as the learning be
omes more
omplex, the system will be able to �nd better or new proofs of theorems a
ross anumber of problem domains.A demonstration of Learn
mati
 implementation
an be found on the followingweb page: http://www.
s.bham.a
.uk/~mmk/demos/LearnOmati
/.A
knowledgementsThe main part of this work was done when the authors were working for the S
hoolof Computer S
ien
e of The University of Birmingham. Many people were generouswith their time and advi
e and their help was invaluable to us. In parti
ular, wewould like to thank Alan Bundy, Predrag Jani�
i�
, A
him Jung, Stephen Muggleton,and Julian Ri
hardson for their helpful advi
e on our work, and Andreas Meier, andVolker Sorge for their help with some of the implementation in
mega. This work wassupported by an EPSRC Advan
ed Resear
h Fellowship GR/R76783, EPSRC grantsGR/M22031 and GR/M99644, SFB 378 Proje
t grant, and European CommissionIHP Cal
ulemus Proje
t grant HPRN-CT-2000-00102.Referen
es[1℄ C. Benzm�uller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber, M. Kohlhase,E. Melis, A. Meier, W. S
haars
hmidt, J. Siekmann, and V. Sorge.
mega: Towards a math-emati
al assistant. In W. M
Cune, editor, 14th Conferen
e on Automated Dedu
tion, number1249 in Le
ture Notes in Arti�
ial Intelligen
e, pages 252{255. Springer Verlag, 1997.[2℄ A. Brazma. Learning regular expressions by pattern mat
hing. Te
hni
al ReportTCU/CS/1994/1, Institute of Mathemati
s and Computer S
ien
e, University of Latvia, 1994.[3℄ A. Bundy. The use of expli
it plans to guide indu
tive proofs. In E. Lusk and R. Overbeek,editors, 9th Conferen
e on Automated Dedu
tion, number 310 in Le
ture Notes in ComputerS
ien
e, pages 111{120. Springer Verlag, 1988. Longer version available from Edinburgh as DAIResear
h Paper No. 349.[4℄ A. Bundy. A
ritique of proof planning. In Antonis C. Kakas and Fariba Sadri, editors, Com-putational Logi
: Logi
 Programming and Beyond, Essays in Honour of Robert A. Kowalski,number 2408 in Le
ture Notes in Computer S
ien
e, pages 160{177. Springer Verlag, 2002.[5℄ A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A heuristi
 forguiding indu
tive proofs. Arti�
ial Intelligen
e, 62:185{253, 1993. Also available from Edinburghas DAI Resear
h Paper No. 567.[6℄ J. Denzinger and S. S
hulz. Learning domain knowledge to improve theorem proving. In M.A.M
Robbie and J.K. Slaney, editors, 13th Conferen
e on Automated Dedu
tion, number 1104 inLe
ture Notes in Arti�
ial Intelligen
e, pages 62{76. Springer Verlag, 1996.[7℄ R.V. Desimone. Learning
ontrol knowledge within an explanation-based learning framework. InI. Bratko and N. Lavra�
, editors, Progress in Ma
hine Learning { Pro
eedings of 2nd EuropeanWorking Session on Learning, EWSL-87, Wilmslow, UK, 1987. Sigma Press. Also availablefrom Edinburgh as DAI Resear
h Paper 321.[8℄ A. Fiedler. P.rex: An intera
tive proof explainer. In R. Gor�e, A. Leits
h, and T. Nipkow, editors,Automated Reasoning { Pro
eedings of the First International Joint Conferen
e, IJCAR-01,number 2083 in Le
ture Notes in Arti�
ial Intelligen
e, pages 416{420. Springer Verlag, 2001.[9℄ M. Fu
hs and M. Fu
hs. Feature-based learning of sear
h-guiding heuristi
s for theorem proving.AI Communi
ations, 11:175{189, 1998.[10℄ E. Furse. Learning university mathemati
s. In C.S. Mellish, editor, Pro
eedings of the 14thIJCAI, volume 2, pages 2057{2058. International Joint Conferen
e on Arti�
ial Intelligen
e,Morgan Kaufmann, 1995.

Automati
 Learning of Proof Methods in Proof Planning 27[11℄ D. Hutter. Guiding indu
tive proofs. In M.E. Sti
kel, editor, 10th Conferen
e on Automated De-du
tion, number 449 in Le
ture Notes in Arti�
ial Intelligen
e, pages 147{161. Springer Verlag,1990.[12℄ A. Ireland. The use of planning
riti
s in me
hanizing indu
tive Proofs. In A. Voronkov,editor, International Conferen
e on Logi
 Programming and Automated Reasoning, LPAR-92,number 624 in Le
ture Notes in Arti�
ial Intelligen
e, pages 178{189. Springer Verlag, 1992.Also available from Edinburgh as DAI Resear
h Paper 592.[13℄ M. Jamnik, M. Kerber, and M. Pollet. Automati
 learning in proof planning. In F. van Harmelen,editor, Pro
eedings of 15th ECAI, pages 282{286. European Conferen
e on Arti�
ial Intelligen
e,IOS Press, 2002.[14℄ M. Jamnik, M. Kerber, and M. Pollet. Learn
mati
: System des
ription. In A. Voronkov,editor, 18th Conferen
e on Automated Dedu
tion, number 2392 in Le
ture Notes in Arti�
ialIntelligen
e, pages 150{155. Springer Verlag, 2002.[15℄ C.A. Knoblo
k. An analysis of ABSTRIPS. In James Hendler, editor, Arti�
ial Intelligen
ePlanning Systems: Pro
eedings of the First International Conferen
e (AIPS-92), pages 126{135. Morgan Kaufmann, 1992.[16℄ T. Kolbe and J. Brauburger. Plagiator | A Learning Prover. In W. M
Cune, editor, 14thConferen
e on Automated Dedu
tion, number 1249 in Le
ture Notes in Arti�
ial Intelligen
e,pages 256{259. Springer Verlag, 1997.[17℄ T. Kolbe and C. Walther. Reusing Proofs. In A. Cohn, editor, Pro
eedings of the 11th ECAI,pages 80{84. Wiley, New York, 1994.[18℄ A. Meier and V. Sorge. Exploring properties of residue
lasses. In M. Kerber and M. Kohlhase,editors, Symboli
 Cal
ulation and Automated Reasoning: The Cal
ulemus 2000 Symposium,pages 175{190, Nati
k, MA, 2001. A K Peters.[19℄ E. Melis and A. Meier. Proof planning with multiple strategies. In J. Loyd, V. Dahl, U. Furba
h,M. Kerber, K. Lau, C. Palamidessi, L.M. Pereira, Y. Sagivand, and P. Stu
key, editors, FirstInternational Conferen
e on Computational Logi
, volume 1861 of Le
ture Notes in Arti�
ialIntelligen
e, pages 644{659. Springer Verlag, 2000.[20℄ E. Melis and J.H. Siekmann. Knowledge-based proof planning. Arti�
ial Intelligen
e, 115(1):65{105, 1999.[21℄ E. Melis and J. Whittle. Analogy in indu
tive theorem proving. Journal of Automated Reasoning,22(2), 1998.[22℄ S. Muggleton. Indu
tive A
quisition of Expert Knowledge. Addison-Wesley, Reading, MA, 1990.[23℄ G. Plotkin. A note on indu
tive generalization. In D. Mi
hie and B. Meltzer, editors, Ma
hineIntelligen
e 5, pages 153{164. Edinburgh University Press, Edinburgh, UK, 1969.[24℄ G. Plotkin. A further note on indu
tive generalization. In D. Mi
hie and B. Meltzer, editors,Ma
hine Intelligen
e 6, pages 101{126. Edinburgh University Press, Edinburgh, UK, 1971.[25℄ G. P�olya. How to solve it. Prin
eton University Press, Prin
eton, NJ, 1945.[26℄ J.D.C. Ri
hardson and A. Smaill. Continuations of proof strategies. In R. Gore, A. Leits
h, andT. Nipkov, editors, Short Papers of International Joint Conferen
e on Automated Reasoning,IJCAR-01, pages 130{139, 2001.[27℄ J.D.C. Ri
hardson, A. Smaill, and I. Green. System des
ription: proof planning in higher-orderlogi
 with lambda
lam. In C. Kir
hner and H. Kir
hner, editors, 15th Conferen
e on AutomatedDedu
tion, number 1421 in Le
ture Notes in Arti�
ial Intelligen
e, pages 129{133. SpringerVerlag, 1998.[28℄ P.S. Rosenbloom, J.E. Laird, and A. Newell. The Soar Papers: Readings on Integrated Intelli-gen
e. MIT Press, 1993.[29℄ S. S
hulz. Learning Sear
h Control Knowledge for Equational Dedu
tion. Number 230 in DISKI.Akademis
he Verlagsgesells
haft Aka GmbH Berlin, 2000.[30℄ B. Silver. Pre
ondition analysis: Learning
ontrol information. In R.S. Mi
halski, J.G. Carbonell,and T.M. Mit
hell, editors, Ma
hine Learning 2, Palo Alto, CA, 1984. Tioga Press.[31℄ R. Sun and L. Giles, editors. Sequen
e Learning: Paradigms, Algorithms, and Appli
ations,number 1828 in Le
ture Notes in Arti�
ial Intelligen
e. Springer Verlag, 2000.[32℄ M. Veloso, J. Carbonell, A. P�erez, D. Borrajo, E. Fink, and J. Blythe. Integrating planningand learning: The PRODIGY ar
hite
ture. Journal of Experimental and Theoreti
al Arti�
ialIntelligen
e, 7(1):81{120, 1995.

28 Automati
 Learning of Proof Methods in Proof PlanningRe
eived November 5, 2003

