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Abstract

Different reasoning systems have different strengths and weaknesses, and often it is
useful to combine these systems to gain as much as possible from their strengths
and retain as little as possible from their weaknesses. Of particular interest is the
integration of first-order and higher-order techniques. First-order reasoning systems,
on the one hand, have reached considerable strength in some niches, but in many
areas of mathematics they still cannot reliably solve relatively simple problems, for
example, when reasoning about sets, relations, or functions. Higher-order reasoning
systems, on the other hand, can solve problems of this kind automatically. But
the complexity inherent in their calculi prevents them from solving a whole range
of problems. However, while many problems cannot be solved by any one system
alone, they can be solved by a combination of these systems.

We present a general agent-based methodology for integrating different reasoning
systems. It provides a generic integration framework which facilitates the cooper-
ation between diverse reasoners, but can also be refined to enable more efficient,
specialist integrations. We empirically evaluate its usefulness, effectiveness and ef-
ficiency by case studies involving the integration of first-order and higher-order
automated theorem provers, computer algebra systems, and model generators.
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1 Introduction

The last decade has seen the development of various reasoning systems which
are specialised in specific problem domains. Theorem proving contests, such
as the annual CASC! competition, have shown that these systems typically
perform well in particular niches but often do poorly in others. First-order
provers, for instance, cannot be used to prove higher-order problem formula-
tions. Deduction systems in general are very weak in carrying out computa-
tions, whereas computer algebra systems are strong in algebraic computations
(e.g., derivatives of functions) but weak at finding logical arguments. Previ-
ous work, such as (Kerber et al., 1998), tackled this problem by integrating
specific reasoning systems, but typically this integration has been hard-wired
and also special purpose. Only rather few architectures have been discussed so
far that try to extend the application range and hence the generality of rea-
soning systems by a flexible integration of different specialist systems. Some
such related systems are further discussed in Sec. 5.

The aim of our work is to broaden the range of mechanisable mathematics by
allowing a flexible cooperation between specialist systems. Thus, we developed
a framework for such integration of a variety of reasoning systems by using
an agent-oriented approach, and we present it in this paper. Some of our
ideas and first implementations of this framework were reported previously
in (Benzmiiller et al., 1999, 2001, 2005). An agent-architecture offers several
benefits in developing such a framework. From a software engineering point
of view it provides a simple and flexible methodology for integrating systems.
Furthermore, it enables a flexible proof search where each single system — in
form of a proactive software agent — can focus on parts of the problem it is good
at, without the need for specifying a priori a hierarchy of their application.

In our framework we employ a centralised approach and focus on the con-
struction of a single proof object. This means that all agents pick up and
investigate the central proof object that is given in higher-order natural de-
duction style with additional facilities to abstract from the pure calculus
layer (Cheikhrouhou and Sorge, 2000). If an agent determines that it is appli-
cable in the current proof context, then it carries out its task, for instance, by
invoking a tactic or by calling the external system it encapsulates. The agent
is given a fixed amount of resources for this, and when these are consumed
it comes back and makes bids in terms of a modified proof object. Based on
heuristic criteria, one bid is accepted and executed by the central system while
the remaining ones are stored for backtracking purposes. In this sense, we use
our central proof object for establishing global cooperation and communica-
tion. The benefit is that only translations into a single proof representation

I CADE ATP System Competitions, see also http://www.tptp.org.



language are required, which reduces the proof theoretical and logical issues
to be addressed. Furthermore, our central proof object uses a human-oriented
natural deduction format which eases user interaction. We discuss the agent-
framework for generic integration of reasoning systems in more detail in Sec. 2.

Our current system, which implements the agent-framework just outlined,
combines different reasoning components such as specialised state-of-the-art
higher-order and first-order theorem provers, model generators, and computer
algebra systems. It employs a classical natural deduction calculus and tacti-
cal theorem proving in the background to bridge the gaps between different
subproofs of the individual components, as well as to guarantee correctness of
constructed proofs. In Sec. 3, we present some case studies by running exam-
ples of how theorems from a variety of domains are tackled in our system.

While our generic framework for integrating a variety of systems is indeed very
flexible and generic, a centralised approach can lead to excessive communica-
tion between the agents. This is a weakness of our generic approach. Hence,
we studied in detail how some fine-tuning, which decentralises communication,
can improve efficiency of cooperation between the systems. In particular, in
Sec. 4 we present this specialist integration for first-order and higher-order
theorem provers. The experiments that we carried out with this implementa-
tion show that decentralising communication and using specialist integration
for particular systems leads to a much higher overall efficiency and power of
the central system and enables it to solve problems that are still very hard for
first-order automated theorem provers.

2 Agent Architecture for Integrating Reasoning Systems

Here we describe our multi-agent framework for flexibly integrating any num-
ber of diverse reasoning systems. We start in Sec.2.1 with the generic archi-
tecture, which provides a simple mechanism for incorporating new reasoning
systems. The generality feature of the architecture is in some cases traded-
off for less than optimal performance, and we therefore present in Sec.2.2 a
refinement of the generic approach in order to optimise its performance.

The cooperation between the different systems of the framework is realised
in the concurrent hierarchical blackboard architecture OANTS (Benzmiiller
and Sorge, 1998), in which different reasoning systems can pick up problems
(or subproblems) from a blackboard and contribute to the overall solution by
solving problems or generating subproblems. OANTS was originally conceived
to support interactive theorem proving but was later extended to a fully au-
tomated proving system (Sorge, 2001; Benzmiiller and Sorge, 2001). Its basic
idea is to compose a central proof object by generating, in each proof situation,



a ranked list of bids of potentially applicable inference steps. In this process,
all inference rules, such as calculus rules or tactics, are uniformly viewed with
respect to three sets: premises, conclusions, and additional parameters. The
elements of these three sets are called arguments of the inference rule and they
usually depend on each other. An inference rule is applicable if at least some
of its arguments can be instantiated with respect to the given proof context.
The task of the OANTS architecture is now to determine the applicability of
inference rules by computing instantiations for their arguments. These appli-
cability checks are performed by separate processes, i.e. software agents which
compute and report bids.

2.1 A two-layered architecture

The architecture consists of two layers. On the lower layer, bids of possible
instantiations of the arguments of individual inference rules are computed. In
particular, each inference rule is associated with its own blackboard and several
concurrent processes, at least one process for each argument of the inference
rule. The role of every process is to compute bids of possible instantiations for
its designated argument of the inference rule, and to record these bids on the
blackboard for this rule. The computations are carried out with respect to the
given proof context and by exploiting bids already present on the rules’ black-
board, that is, argument instantiations computed by other processes working
for the same rule. On the upper layer, the bids from the lower layer that are
applicable in the current proof state are accumulated and heuristically ranked
by another process. For instance, bids with closed (sub)goals are preferred over
partial results, and big steps in the search space are preferred over calculus
level steps. The most promising bid on the upper layer is then applied to the
central proof object and the data on the blackboards is cleared for the next
round of computations.

OANTS employs resource-bounded reasoning to guide search.? This enables
the controlled integration (e.g., by specifying time-outs) of full-fledged exter-
nal reasoning systems such as automated theorem provers, computer algebra
systems, or model generators into the architecture. The use of the external
systems is modelled by inference rules, usually one for each system. Their cor-
responding computations are encapsulated in one of the independent processes
in the architecture. For example, an inference rule modelling the application
of an ATP has its conclusion argument set to be an open goal. A process
can then place an open goal on the blackboard, where it is picked up by a
process that applies the prover to it. Any computed proof or partial proof

2 OANTS also provides facilities to define and modify the processes at run-time, but
we do not use these advanced features in the case studies presented in this paper.



from the external system is again written to the blackboard from where it is
subsequently inserted into the proof object when the inference rule is applied.
The semantics of the rules connecting to external reasoners is currently hand-
coded. Further work includes to investigate whether an ontology as suggested
in (Sutcliffe et al., 2003) could be fruitfully employed.

The advantage of this setup is that it enables proof construction by a collabo-
rative effort of diverse reasoning systems. Moreover, the architecture provides
a simple and general mechanism for integrating new reasoners in the system.
The integration is independent of all the other systems already integrated.
Adding a new reasoning system to the architecture requires only transforming
the new system into an agent by wrapping a shell around it. This shell can
communicate with the blackboard by reading and writing subproblems to and
from the blackboard, as well as writing proofs back to the blackboard in a
standardised format.

The disadvantage of such a generic architecture that employs centralised com-
munication is that the cooperation can be achieved only via the central proof
object. This means that all partial results have to be translated back and forth
between the syntaxes of the integrated systems and the language of the proof
object. Since there are many types of integrated systems, the language of the
proof object — a very rich higher-order language, together with a natural de-
duction calculus — is expressive but also cumbersome. This leads not only to
a large communication overhead, but also means that complex proof objects
have to be created (e.g., large clause sets need to be transformed into large
single formulae to represent them in the proof object; the support for this in
OANTS to date is inefficient), even if the reasoning of all systems involved is
clause-based. Consequently, the cooperation between external systems is typ-
ically rather inefficient (Benzmiiller et al., 2001): the larger part of the proof
effort may in some cases be spent on communication rather than on proof
search.

In summary, while central communication eases cooperation between any type
of reasoner, certain systems could communicate far more efficiently with each
other using dedicated formalisms. To exploit this fact — and thus overcome
the communication bottleneck — we devised a new method for the cooperation
between two integrated systems via a single inference rule, which we describe
in detail next.

2.2 Cooperation via a single inference rule

In the generic approach described above, the cooperation between systems
is achieved at the upper layer of the OANTS architecture, by modelling each



system as a separate inference rule. A more refined approach, first presented
in (Benzmiiller et al., 2005), fosters cooperation by exploiting the lower layer
of the OANTS blackboard architecture. This effectively cuts out the need to
communicate via the central proof object, and therefore offers the advantage of
a more succinct exchange of intermediate results between the systems involved,
in a specialist language.

Direct bilateral integration of two reasoning systems is generally difficult if
both systems do not share representation formalisms that are sufficiently sim-
ilar. It also requires at least one of the systems involved to be open, such that
it can continuously incorporate results of another system during its own run.
Finally, the effort of implementing a dedicated inference rule for the commu-
nication of two particular types of reasoning systems is more involved than
simply integrating a system and its results into OANTS’s central architecture.
It is therefore, necessary to carefully consider if a bilateral integration actually
promises a gain in reasoning power of the overall system — see Sec. 4 for a
detailed case study that empirically evaluates this specialist integration.

We realised the specialist approach discussed here by using a single infer-
ence rule to model the cooperation between the higher-order resolution prover
LeO (Benzmiiller and Kohlhase, 1998) and a first-order theorem prover in
OANTS. The cooperation between the provers is enabled by directly exchang-
ing sets of clauses without translating them into single formulae and back. The
general idea is that LEO sends the subset of its clauses that do not contain any
‘real” higher-order sub-terms (such as a A-abstraction or embedded equations)
to a first-order theorem prover. We call clauses of this sort FO-like clauses. In
detail, the single inference rule needs four arguments to be applicable: (1) an
open proof goal, (2) a partial LEO proof, (3) a set of FO-like clauses in the
partial proof, (4) a first-order refutation proof for the set of FO-like clauses.

Each of these arguments is computed, that is, its instantiation is found, by
an independent process. The first process finds open goals in the central proof
object and posts them on the blackboard associated with the new rule. The
second process starts an instance of the LEO theorem prover for each new open
goal on the blackboard. Each LEO instance maintains its own set of FO-like
clauses. The third process monitors these clauses, and as soon as it detects a
change in this set, that is, if new FO-like clauses are added by LEO, it writes
the entire set of clauses to the blackboard. Once FO-like clauses are posted, the
fourth process first translates each of the clauses directly into a corresponding
one in the format of the first-order theorem prover, and then starts the first-
order theorem prover on them. Note that translating FO-like clauses directly
is far more efficient than translating them first into single, fully quantified
formulae in the central higher-order proof object. As soon as either LEO or
the first-order prover finds a refutation, the second process reports LEO’s
proof or partial proof to the blackboard, that is, it instantiates argument (2).



Once all four arguments of our inference rule are instantiated, the rule can
be applied and the open proof goal can be closed in the central proof object.
That is, the open goal can be proved by the cooperation between LEO and
a first-order theorem prover. When computing applicability of the inference
rule, the second and the fourth process concurrently spawn processes running
LEO or a first-order prover on a different set of FO-like clauses. Thus, when
actually applying the inference rule, all these instances of provers working on
the same open subgoal are stopped.

The cooperation can be carried out between any first-order theorem prover
and LEO instantiated with any strategy, thus resulting in different instanti-
ations of the inference rule discussed above. Several first-order provers are
integrated in OANTS and could be used, but in the case study that evaluates
this approach (see Sec. 4) we used concretely BLIKSEM (de Nivelle, 1999) and
VAMPIRE (Riazanov and Voronkov, 2002). In most cases, more than one pro-
cess running a first-order ATP was necessary. This is because the subsets of
FO-like clauses generated by LEO in its first reasoning loops are usually still
consistent and they become inconsistent only after several reasoning rounds
in which new FO-like clauses are generated. Each time the subset of FO-like
clauses in LEO’s search space changes, a new process running a first-order ATP
is started. In contrast to the many processes running first-order ATPs only one
process running LEO is started. Crucial to the success of the integration was
also the possibility of retrieving intermediate results from LEO that are suf-
ficiently informative for the first-order prover. Since LEO’s standard calculus
intrinsically avoids primitive equality and instead provides a rule that replaces
occurrences of primitive equality with their corresponding Leibniz definitions,
which are higher-order, we had to forgo this optimisation and add all the
clauses with primitive equality to the intermediate results. See (Benzmiiller
et al., 2005) for more details on this aspect of the integration.

Our approach to the cooperation between a higher-order and a first-order the-
orem prover has many advantages. The main one is that the communication is
restricted to the transmission of clauses, and thus it avoids intermediate trans-
lation into the language of the central proof object. This significantly reduces
the communication overhead and makes effective proving of more involved
theorems feasible. In fact, many theorems that would be difficult to prove or
even not provable at all in reasonable time due to communication overhead
in the generic architecture that uses a centralised communication, are now
provable with this specialist architecture that decentralises communication —
see the results of the case study in Sec. 4.3. A disadvantage of this approach is
that we cannot easily translate and integrate the two proof objects produced
by LEO and BLIKSEM, or LEO and VAMPIRE into the central proof object
maintained by OANTS, as is possible when applying only one prover per open
subgoal. The repercussions will be discussed in more detail in Sec. 4.2.



In the following two sections we will demonstrate the effectiveness of both in-
tegration approaches — the generic integration of arbitrary reasoning systems
on the top layer of OANTS, and the specialist integration of a higher-order and
a first-order resolution prover on the lower layer of OANTS — with example
applications from diverse mathematical domains.

3 Generic Integration of Reasoning Systems

In this section we present several application examples of the generic integra-
tion architecture as presented in Sec. 2.1. The examples demonstrate the ease
of integration of systems in our architecture, the power of such cooperative
architecture, and the diversity of examples that the combined systems can
tackle.

In particular, we demonstrate the complementary interplay of theorem provers
and model generators to decide validity of conditional and unconditional set-
equalities as well as set-inequalities (Sec. 3.1.1). Our previous case studies
further show the cooperation between an automated theorem prover and a
computer algebra system on problems in sets over naturals (Sec. 3.1.2), and
the collaboration of a higher-order and a first-order prover on group theory
examples (Sec. 3.1.3). We then consider theoretical properties such as sound-
ness and completeness for each case study (Sec. 3.2), and analyse their results
(Sec. 3.3) to show that our novel cooperative solution achieves a much higher
reliability and coverage than the standard single reasoning system approach.

3.1 Test Problems

The test problems we chose for our three case studies are diverse and demon-
strate the breadth and power of our cooperative reasoning approach. Pure
set equalities have been previously investigated in (Benzmiiller et al., 2001).
Here in Sec. 3.1.1, we extend the case study to set inequalities, as well as
set equalities and inequalities under additional conditions. The test prob-
lems in Sec. 3.1.2 on sets over naturals have in part previously appeared
in (Benzmiiller et al., 2001). The test problems in Sec. 3.1.3 in group the-
ory have in part previously appeared in (Sorge, 2001).

3.1.1 Conditional and Unconditional Set-Equalities and Set-Inequalities

The examples in this section are concerned with checking the validity or in-
validity of statements about set relations. This case study demonstrates the



cooperation between higher-order ATP, first-order ATP and a model gener-
ator. The task at hand is to construct either a proof or a counterexample.
Both are handled in a similar fashion by our system. First, simple natural
deduction agents reduce the set equalities to a propositional logic statement.
The resulting statements are then picked up by a propositional logic agent
employing the theorem prover VAMPIRE and a counter-example agent using
the model generator PARADOX. The logic statement is then either proved or
disproved. Thus, valid and invalid statements are tackled analogously in all
but the last step.

The test problems we consider are universally quantified statements involv-
ing equality, inequality, or the subset relations between sets constructed with
the simple set operations N, U, \ that represent intersection, union, and set-
difference, respectively. Moreover, to widen the coverage to extreme ends of the
spectrum of test problems, we consider additional conditions on the relation-
ships between the sets involved. In particular, we explicitly express uniqueness
or disjointness of particular sets.

As concrete examples of two set equalities whose validity /invalidity is to be
decided, consider the proof or refutation of the following simple, unconditional
statements:

(1) Vo,y,z.(zUy)Nz=(zNz)U(yNz2)
(2) Vo,y,z.(xUy)Nz=(zUz)N(y U 2)

Both problems are tackled similarly by the system. First, all the universally
quantified variables are eliminated with the appropriate natural deduction
rules. In the case of (1) this yields

(aUb)Nc=(anc)U(bNec)

as new open subgoal. Then set extensionality gives us

Viuou € (aUb)Ne<s ue ((anc)U(bne)).

Further elimination of universally quantified variables and subsequent defini-
tion expansions of the operations U, N and €, with aUb := Az.(z € a)V(z € b),
anNb:=Xzn(z€a)A(z€b), and u € a := a(u) reduces that goal finally to

(a(d) v b(d)) A e(d) = (a(d) A e(d)) V (b(d) A c(d))

which contains no variables and which is trivial to prove for any propositional
logic prover. In case (2) we analogously derive

(a(d) v b(d)) A e(d) = (a(d) V e(d)) A (b(d) V c(d))



but now there exists a counterexample of the form a(d), b(d), —¢(d), which rep-
resents the set of all d such that d € a, d € b, but d ¢ c. This counterexample
can be easily constructed by a model generator.

3.1.2 Sets over Naturals

The test problems in this case study consider sets over naturals, and demon-
strate the cooperation between theorem provers and computer algebra sys-
tems. The problems themselves are mathematically trivial, but require a com-
bination of deduction and computation to solve them. While the reasoning
itself is relatively shallow, the problems can generally not be solved by a theo-
rem prover alone as the contained functions need to be treated with symbolic
or numerical computation that is out of reach of provers. In our architecture
the problems are tackled by a collaboration of the higher-order theorem prover
LEO, the first-order theorem prover OTTER, and the computer algebra system
MAPLE.

A concrete example of these test problems is the following equation: {z|z >
gcd(10,8) Az < lem(10,8)} = {z|xr < 40} N{z|z > 2}. In order to tackle it, it
is necessary to first simplify the numerical functions contained, that is ged and
lem, and then rewrite the set representations on either side of the equality.
The first step is carried out by a simplification agent which links the com-
puter algebra system MAPLE to the core system. As an application condition,
this agent checks whether the current subgoal contains certain simplifiable ex-
pressions. If so, it simplifies the subgoal by sending the simplifiable sub-terms
(e.g., x > gcd(10,8)) to MAPLE and replaces them with the corresponding
simplified terms (e.g., © > 2). Hence, the new subgoal suggested by the sim-
plification agent is, e.g.: (Az.z > 2 Az < 40) = (Azz < 40) N (Az.z > 2).
Since no other agent comes up with a better alternative, this suggestion is
selected and executed. Subsequently, the LEO agent successfully attacks the
new goal after expanding the definition of N. This particular problem can,
after MAPLE’s contribution, be proved by LEO alone. In other cases MAPLE’s
contribution may lead to a problem which can be solved only by a further
collaboration between LEO and a first-order ATP.

3.1.83  Group Theory and Algebra

The test problems in this case study involve theorems from group theory and
algebra, and are mainly about the equivalence of definitions and uniqueness
statements. This case study demonstrates the cooperation between higher-
order and first-order ATPs. Since the problems contain some rather elaborate
higher-order constructions, they cannot be tackled by a first-order theorem
prover alone. Instead, they are solved by a goal directed higher-order natural
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deduction proof search in cooperation with a first-order automated theorem
prover.

The group theory and algebra examples that we examined are rather easy from
a mathematical viewpoint, however, can become non-trivial when painstak-
ingly formalised. An example are proofs in which particular elements of one
mathematical structure have to be identified by their properties and trans-
ferred to their appropriate counterparts in an enriched structure. The equiv-
alence statement:

(Fo0.Group(G, o)) < (Fx.Monoid(M,*) A\ Inverses(M,x, Unit(M,x)))

where the unit element of the monoid has to be identified with the appropriate
element of the group, is in this category. Here, Group and Monoid refer to a
definition of a group and a monoid, respectively. Inverses(M,, Unit(M,x))
is a predicate stating that every element of M has an inverse element with
respect to the operation x and the identity Unit(M,*). Unit(M,x) itself is a
way to refer to that unique element of M that has the identity property.

In higher-order logic this can be formalised most elegantly using the descrip-
tion operator ¢ (cf. (Andrews, 1972) for definition in higher-order logics), by
assigning to the element in the group the unique element in the monoid that
has exactly the same properties. In the context of our examples, we employed
a description that encodes concepts like the (unique) unit element of a group
by a single term that locally embodies the particular properties of the en-
coded concept itself. If any property of the unit element is required in a proof,
then the description operator has to be unfolded (by applying a tactic in the
system) and a uniqueness subproof has to be carried out.

The idea of the proofs is to divide the problems into smaller chunks that can
be solved by automated theorems provers, and if necessary, to deal with for-
mulae involving description. The ND search procedure implemented in OANTS
has the task to simplify in turn the given formulae by expanding definitions
and applying ND inferences. After each proof step the provers try to solve
the introduced subproblems. If they all fail within the given resources (typi-
cally time limit), the system proceeds with the alternative ND inferences and
subsequently the provers try to tackle the new subproblems introduced by
them.

When a point is reached during the proof where neither applicable rules nor so-
lutions from the provers are available, but the description operator still occurs
in the considered problem, two theorems are applied to eliminate description.
Description in goals is eliminated with the theorem V@) g,V Pg,. [[3!25. P(x)] A
Vz5. P(2) = Q(2)]] = [Q¢P]. Since the reverse direction of the above theo-
rem does not necessarily hold (as with QuP we cannot assume that P actu-
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ally uniquely describes an element), we use the theorem V@) g,. VPs0. [QLP] =
[[Fzp. P(x) = Yyp. P(y) = (v = y)] = [V23. P(2) = Q(2)]] to eliminate occur-
rences of description in forward reasoning direction. The results of description
elimination are generally very large formulae, which can then again be tackled
with the ND rules and the theorem provers.

3.2  Theoretical Considerations

For the integration of multiple reasoning systems to construct a single, co-
herent proof, it is particularly crucial to consider the soundness of such an
integration. In the case of combining different theorem provers (like in the
case study in group theory examples in Sec. 3.1.3), this is mainly a question of
compatibility and connectability of the respective calculi. We will shed more
light on soundness and completeness considerations when presenting special-
ist integration of first-order and higher-order reasoners in Sec. 4.2. However,
in the case of integrating more general computations into the reasoning pro-
cess, for instance, as in our case with a computer algebra system or a model
generator, soundness issues have to be considered case by case.

The use of a counterexample generator as presented in Sec. 3.1.1 is sound if
and only if the full problem is given to the counterexample generator. Note
that it is not sufficient to give to the counterexample generator only some of
the axioms and not others, since this may transform an inconsistent set into
a consistent one. In general the original problem is initially transformed into
an equivalent problem that is given in parallel to a first-order theorem prover
and a first-order model generator. The original problem is proved if the first-
order theorem prover finds a refutation, and falsified if the first-order model
generator finds a counterexample. Since the original transformation preserves
(un-)satisfiability the approach is sound.

Soundness of the solutions for the problems in Sec. 3.1.2 depends crucially
on soundness of the computations by the computer algebra system. This is
not guaranteed, as MAPLE, like most other computer algebra systems, is not
provably correct, and also does not provide an explicit justification for its
computations. Consequently, correctness has to be ensured explicitly by cer-
tifying the computations after the proof has been found. This is achieved by
constructing justifications on the calculus level — see (Sorge, 2000) for details.

We cannot guarantee completeness neither in integrating a model generator
nor a computer algebra system. A finite model generator is by its very na-
ture incomplete. Similarly, a computer algebra system only provides a limited
library of algorithms and generally has some limitations with respect to the
size of its integer computations.
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3.8 Results

3.3.1 Conditional and Unconditional Set-Equalities and Set-Inequalities

We carried out a case study with an automatically and randomly generated
test-bed of examples consisting of set statements involving equality, inequality
and subset as relations, and N, U, \ as functions that combine a maximum of 6
universally quantified variables up to a nesting depth of 6. For our experiments
we generated 100 basic (i.e., unconditional) statements. All 100 statements are
listed in Tables A.1 and A.2 in Appendix A. Given these 100 statements we
then added conditions on the relationship between the universally quantified
sets. In detail, we devised three types of formulae, that can be viewed as the
extreme positions of these conditions, by taking the set statement

(1) without assumptions, or unconditional, for example:
Va1, 9, X3 (1‘1 U xg) = (1‘1 N (1‘2 U xg))

(2) under all different, that is, the uniqueness assumption, for example:

Va1, 2, 3. [(21 # 22) A (22 # 23) A (21 # 23)] —
[(x1 Uze) = (1 N (22 Uxs))]

(3) under pairwise disjoint, or disjointness, assumption, for example:

Vl‘l,xg,l‘g. [(3:1 Nxg = @) A\ (1‘2 Nx3 = @) A\ (1‘1 Nx3 = @)] I

[(.1‘1 @] l‘g) = (.1‘1 M (.1‘2 @] l‘3))]

Note that there are formulae in the first class, such as Vi, zo. (z1\22) U
(xo\z1) # 0, which are non-theorems but are theorems in the second; or
non-theorems in the first class such as Vrq,xe.21\x2 = z71, but theorems in

the third.

Thus we carried out three sets of experiments, each with 100 problems. Each
problem was then attempted to be proved by the theorem prover VAMPIRE,
the model generator PARADOX, and OANTS separately within a two minutes
time limit. If a system could not solve the problem within the given time, it
was classified as a failed attempt. However, we distinguish between two types
of failure, depending on the validity of the problem: VAMPIRE fails if it cannot
prove a valid statement, whereas it is obviously not expected to solve an invalid
statement. Conversely, PARADOX fails if it cannot find a model for an invalid
statement. OANTS, on the other hand, is expected to solve all problems, thus
there is only one type of failure possible.
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Vampire Paradox Oants
Problem type || Valid | Invalid || Proof | Failed || Model | Failed || Proof | Model | Failed
Unconditional | 14 86 12 | 2,86| 86 |0, 14| 14 86 0
= |2 | s ]| o Ja2lss] s Jolz2] 2 | s | o
C 12 33 12 0 :33 33 0 :12 12 33 0
£ 0 15 0 0115 15 (010 0 15 0
Uniqueness 20 80 3 [17,80] 13 |eé7i20] 20 80 0
= 2 s | o Jatss] s fsol2]l 2 | s | o
C 12 33 0 |12 : 33 3 |30 : 12 12 33 0
£ 6 9 3 319 0 916 6 9 0
Disjointness || 31 69 6 |25169| 69 |0131] 31 69 0
= e s 1 Jess| s oyr]l 7| o | o
C 23 22 4 |19,22| 22 |0, 23] 23 22 0
# 1 14 1 0'14| 14 |01 1 14 0
Table 1

Summary of the results of the experiments with set expressions.

A summary of the results is given in Table 1. It presents the number of valid
and invalid set statements in each of the three experiments, followed by the
number of problems VAMPIRE, PARADOX, and OANTS could or could not
solve, respectively. Observe that for VAMPIRE and PARADOX figures for the
two types of failure are given, separated by a dashed bar, where the first
figure indicates the number of problems the system was indeed expected to
solve. Fach experiment is further broken down in the number of statements
involving set equality, subset relation, and inequality. The full results for all
three experiments are listed in Tables A.3, A.4, and A.5 in Appendix A.

The results in Table 1 present a mixed picture. In the case of unconditional
statements the results are straightforward. PARADOX easily finds models for
all invalid statements and VAMPIRE proves all valid statements except for the
two involving equality. In the experiments with uniqueness condition, how-
ever, both PARADOX and VAMPIRE have considerably more problems. VAM-
PIRE cannot prove any statements with equality or subset relation, and only
proves 3 out of 6 of the inequality statements. Similarly, PARADOX fails to
find models for the majority of statements with uniqueness condition, in par-
ticular it cannot find models for any of the invalid inequality statements. For
statements with disjointness condition, PARADOX does better than VAMPIRE
as it finds models for all invalid statements, whereas VAMPIRE can only prove
a fraction of the valid statements.

In contrast, OANTS can solve all problems, regardless of precondition, and
can also decide on their validity and invalidity, as it integrates both theorem
proving and model generation. For the unconditional statements this is not
as impressive, since using both, PARADOX and VAMPIRE, without integration
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one after another on all problems, is almost as powerful as OANTS. In fact, the
timings in A.3 reveal that OANTS is slower due to communication overheads.
On the other hand, for the conditional problems, OANTS is the only reliable
way of distinguishing valid and invalid statements for all considered problems.
Thus, the combined systems in OANTS have a considerably broader coverage
of the problem domain than the single reasoning systems alone.

3.3.2 Sets over Naturals

We experimented with 50 problems of sets over naturals. They all involved
some element of computation, which was mainly concerned with natural num-
ber arithmetic, but also contained simple number theoretic functions such as
gcd, lem, and absolute value function. All of the problems could successfully
be solved by the combination of first-order and higher-order reasoning and
computer algebra simplification. As current automated theorem provers are
comparatively weak in integer arithmetic and the formalisation of functions
like lem or ged is very involved, they are likely to be outperformed by a com-
bined system like OANTS, and hence, we did not carry out a comparison of
OANTS with any specific automated theorem proving system.

3.3.83  Group Theory and Algebra

In our case study on group theory and algebra problems we have successfully
experimented with 20 examples of the described type, of which we could solve
11 automatically. A direct comparison with first-order provers alone is super-
fluous, as in a purely first-order formulation quantified operations would have
to be pre-instantiated appropriately. This would, however, defeat the purpose
of showing equivalence of definitions that define different operations on a set.

There is still quite a number of problems which, while considered very easy
for humans, cannot be solved automatically. As a simple example of a prob-
lem that could not be solved, consider proving the equivalence between two
different definitions of a group. One definition is the standard one, that is,
a group is a set G with an associative operation o, such that there exists a
neutral element for o and each element has an inverse with respect to that
neutral element. The alternative, equivalent definition axiomatises a group as
a set G with an operation /, such that for all a, b, ¢ € G we have (i) a/a = b/b,
(i) a/(b/b) = a, (iii) (a/a)/(b/c) = ¢/b, and (iv) (a/c)/(b/c) = a/b. The main
difficulty in the proof of this equivalence is to find the right reformulations
between the two operations o and /, since they cannot be simply equated.
While in most of the other examples, higher-order unification can actually
find the right equation between the operations in question, the complexity of
the reformulation needed in this example would require a primitive substitu-
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tion mechanism (Andrews, 1971) that can handle the description operator.
However, this is currently beyond automation.

3.3.4  Summary of Results

Our integration approach has proved successful in different ways. Firstly, it
provides a flexible means to integrate heterogeneous systems, especially those
that are designed with diverse and even opposite functionality. The integrated
system can solve tasks such as deciding the validity or invalidity of logical
statements that can normally be done only by using several separate systems,
or they cannot be proved at all with a single specialist system. Secondly,
OANTS’ range and coverage of solvable problems is far greater than that of
any individual system alone. In particular, OANTS can formulate problems
with the expressive power of a higher-order language, and is able to simplify
problems in a goal-directed way either by using its own built-in calculus rules
or by exploiting the computational power of other integrated systems (such
as computer algebra) before handing them to dedicated first-order systems.
And hence, thirdly, OANTS proves theorems in a significantly more reliable
way than the individual systems.

While the approach described in this section is generic and allows to integrate
several systems in a consistent and easy way, it leads to a computational
overhead which in some cases makes proof search prohibitively expensive. In
particular, experiments on integrating higher-order with first-order reasoners
have shown that some problems quickly reach sizes that make their translation
via the OANTS central formalism computationally infeasible. This suggested a
much tighter integration between component systems that cuts out overhead.
In particular, it has lead to the development of the specialist integration of
reasoning systems for higher-order and first-order reasoners, which we describe
and evaluated in the next section.

4 Specialist Integration of Reasoning Systems

We now carry out a case study in which we empirically evaluate the power
and efficiency of the specialist integration of reasoning systems described in
Sec. 2.2. We are particularly interested in the higher-order /first-order ATP
cooperation. Some of the results of this case study were previously reported
in (Benzmiiller et al., 2005).

Existing higher-order ATPs generally exhibit shortcomings in efficiently rea-

soning with first-order problems for several reasons. Unlike in the case of
first-order provers, for which sophisticated calculi and strategies, as well as ad-
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vanced implementation techniques, such as term indexing (Sekar et al., 2001),
have been developed, fully mechanisable higher-order calculi are still at a
comparably early stage of development. Some problems are much harder in
higher-order, for instance, unification is undecidable, strong constraining term-
and literal-orderings are not available, extensionality reasoning and set vari-
able instantiation have to be addressed. Nevertheless, for some mathematical
problem domains, such as naive set theory, for instance, automated higher-
order reasoning performs very well. Our motivation therefore is to combine
the best of the two approaches in a specialist integration.

4.1 Test Problems

We motivate the need for linking higher-order and first-order ATPs with some
examples from Table 2. It contains a range of challenging problems taken from
the TPTP (Sutcliffe and Suttner, 1998), against which we will evaluate our
system in Sec. 4.3. The selection is inspired by the one given in (Ganzinger
and Stuber, 2003) but contains some additional problems.® The problems are
given by the identifiers used in the SET domain of the TPTP-v3.0.1, and are
formalised in a variant of Church’s simply typed A-calculus with prefix poly-
morphism. In classical type theory, terms and all their sub-terms are typed.
Polymorphism allows the introduction of type variables such that statements
can be made for all types. For instance, in problem SET014+4 the universally
quantified variable X,, denotes a mapping from objects of type a to objects
of type 0. We use Church’s notation o«, which stands for the functional type
a — o. The reader is referred to (Andrews, 2002) for a more detailed introduc-
tion. In the remainder, o will denote the type of truth values, and small Greek
letters will denote arbitrary types. Thus, X,, (resp. its n-longform Ay.. Xy)
is actually a characteristic function denoting the set of elements of type «,
for which the predicate associated with X holds. As further notational con-
vention, we use capital letter variables to denote sets, functions, or relations,
while lower case letters denote individuals. Types are usually only given in the
first occurrence of a variable and omitted if inferable from the context.

The test problems in Table 2 employ defined concepts that are specified in a
knowledge base of hierarchical theories that LEO has access to. All concepts
necessary for defining our problems in Table 2 are given in Table 3. Concepts
are defined in terms of A-expressions and they may contain other, already
specified concepts. For presentation purposes, we use customary mathematical
symbols U, N, etc., for some concepts like union, intersection, etc., and we also

3 We omitted problem SET108+41 used in (Ganzinger and Stuber, 2003) as it ad-
dresses the universal class and can therefore not be formalised in type theory in the
same concise way as the other examples.

17



SET Problem Formalisation
014+4 | YXoa, Yo, Aoas[[X CAAY C A] = (X UY) C A]
01741 | VZa,Ya, Za=|UnOrderedPair(x,y) = UnOrderedPair(x, z) = y = 2]
066+1 | Vo, Yan|UnOrderedPair(xz,y) = UnOrderedPair(y, x)
067+1 | Vzo, Yan|UnOrderedPair(xz, z) C UnOrderedPair(z,y))
076+1 | Voo, YanVZoanz € Z Ny € Z = UnOrderedPair(z,y) C Z
086+1 | VzasTyas[y € Singleton(z)]
09641 | VXoa,yan[X C Singleton(y) = [X =0V X = Singleton(y)]]
14343 | VXoa, Yo, Zoas (X NY)NZ = X N (Y N Z)]
17143 | ¥Xoa, Yoo, Zoas| X U (Y N Z) = (X UY) N (X U 2)]
58043 | VXoa, Yoa, Uas(t € EzclUnion(X,Y) < [u€ X & u g Y]]
60143 | VaXoa, Yoo, Zoa (X NY)U (Y NZ2)U(ZNX))=(XUY)N((YUZ)N(ZUX))]
60643 | VXoa, Yoar [X\(X NY) = X\Y]
607+3 | VXoa, Yoar [ X U (Y\X) = X UY]
60943 | VXoa, Yoa; Zoar [ X\(Y\Z) = (X\Y)U (X N 2)]
61143 | VXoa, Yoar [X NY =0 & X\Y = X]
61243 | VXoa, Yo, Zoas [X\(Y U Z) = (X\Y) N (X\Z)]
614+3 | VXoa, Yoa, Zoas [(X\Y)\Z = X\(Y U 2)]
61543 | VXoa, Yoo, Zoas (X UYN\Z = (X\Z) U (Y\Z)]
62343 | YXoa, Yoa; Zoas | ExclUnion(ExclUnion(X,Y), Z) = ExclUnion(X, ExclUnion(Y, Z))]
62443 | VXoa, Yoa, Zoas|Meets(X, (Y U Z)) < [Meets(X,Y) V Meets(X, Z)]]
63043 | VXoa, Yoas [Misses(X NY, ExclUnion(X,Y))]
64043 | VRoga, Qopar[Subrel(R, Q) = Subrel(R, (AuasT) X (AvgaT))]
646+3 | Vzo,yss[Subrel(Pair(x,y), (AuasT) X (AvgaT))]
64743 | VRoga, Xoas[(RDom(R) C X) = Subrel(R, X x RCodom(R))]
648+3 | VRogq, Yogs[(RCodom(R) CY) = Subrel(R, RDom(R) X Y)]
64943 | VRoga, Xoa, Yop=[[RDom(R) C X A RCodom(R) C Y] = Subrel(R, X x Y)]
65143 | VRogas[RDom(R) C Aoa = Subrel(R, A X (AugaT))]
65743 | VRopas|Field(R) C ((AuasT) U (AvgaT))]
669+3 | VRoaas[Subrel(Id(AuasT), R) = [(AMuas T) € RDom(R) A (AuasT) = RCodom(R)]]
67043 | VZoa, Rogas XoaYops[IsRelOn(R, X,Y) = IsRelOn(RestriccRDom(R, Z), Z,Y)]
67143 | VZoa, Ropas Xoa, Yops[[IsRelOn(R, X,Y) AN X C Z] = RestrictRDom(R, Z) = R|
67243 | VZ,8, Ropa, XoaYops[IsRelOn(R, X,Y) = IsRelOn(Restrict RCodom(R, Z), X, Z)]
67343 | VZog, Roga, Xoas Yops[[IsRelOn(R, X,Y) NY C Z] = Restrict RCodom (R, Z) = R]
680+3 | VRopa, Xow, Yoss[IsRelOn(R, X,Y) =
Vuaeu € X = [u € RDom(R) < Jvgsv € Y A R(u,v)]]]
68343 | VRoga, Xoa, Yoss[IsRelOn(R, X,Y) =
[Vvgsv €Y = [v € RCodom(R) = Juasu € X Au € RDom/(R)]]]
68443 | VP,a, Rovys; Ta, zys[RelComp (P, R)xz < Jygs Py A Ryz]
686+3 VZoo, Ronyg, Tan[x € InverselmageR(R, Z) < JyasRay N € Z]
71644 | VFgq, Gygs[[Inj(F) A Ing(G)] = Inj(G o F)]
72444 | VFgo,Gyg, Hygs[[F oG =F o HA Surj(F)] = G = H|
74144 | VFga,Gyg, Havys [([In)]}((F 0G)oH)A Surj((GoH)o F) A Surj((Ho F)oQG)] =
Bij(H
T47T+4 | VFsa, Gyp,Laas qiﬁﬂ’ qgw. [[IncreasingF (F, <',<?) A DecreasingF (G, <?,<%)] =
DecreasingF (F o G, <, <3)]
75244 | VXoa, Yoo, Fgas[ImageF (F, X UY) = ImageF (F, X) U ImageF (F,Y))
753+4 | VXow, Yoa, Fgas[ImageF (F,X NY) C ImageF (F, X) N ImageF (F,Y)]
764+4 | VFgqa[InverselmageF (F,0) = (]
7704+4 | VYRoga, Qopas|[FquivRel(R) A EquivRel(Q)] =
[EquivClasses(R) = EquivClasses(Q) V Disjoint( EquivClasses(R), EquivClasses(Q))]]
Table 2

Test problems from TPTP for the evaluation of OANTS.

use infix notation. For instance, the definition of union on sets can be easily
read in its more common mathematical representation AUB := {z|x € AVz €
B}. Before proving a problem, LEO always expands — recursively, if necessary
— all occurring concepts. This straightforward expansion to first principles is

realised by an automated preprocess in our current approach.

We present different example problems which demonstrate the main features
of our specialist integration approach. We first discuss example SET17143 to

contrast our formalisation to a standard first-order one.

18




Defined Notions in Theory Typed Set

_€_ = AZa, Aocas[AZ]
0 := [Azasl]
-C_ = Moo, Boar[Vzaz € A=z € B
_U_ = AMoa,Boar[Atasz € AV x € B]
_N_ = Moo, Boas[Azarz € ANz € B
= Moas[Masz ¢ A
- = Aoa, Boas[Azasz € ANz ¢ B

EzclUnion(-,-) := AAoa,Boas[(A\B) U (B\A)]

Disjoint(-,-) := AAoa, Boas|AN B = 0]
Meets(-,-) := MAoa, Boas[ITasz € ANz € B
Misses(-,-) = AAoa,Boas["Ixanz € ANz € B
Defined Notions in Theory Relation
UnOrderedPair (-, -) := Ala,Yar Aot =2V u =1y
Singleton(2) = Aza=[Aua=u = ]
Pair(-,2) = AZa,ygs|[Aa,vgu =2 Av=1y]
_X _ = AMoa,Bogs[Mia,vg-u € ANV € B|

RDom(-
RCodom (-
Subrel (_

1d(-

) = ARygas[AasTyss Rxy]
) := AR,gas[AygeITas Ray)
2 = ARoga; Qogas[VEasVyas Rry = Quy]
) = Moan[AZa,Yart € AN T = Y]
Field(.) := ARoga=[RDom(B) U RCodom(R)]
IsRelOn (-, _,-) := ARoga;AoanABogs[Va,ygRry = (x € ANz € B)]
RestrictRCodom(-,-) := AR,Ba, Aoas[ATa,ygex € AN Rry]
RelComp(-,-) = ARoBa;Qovype[Aa, zysJyg Rxy A Ryz]
InverseImageR(-,.) = ARoga; Bops[MasTygy € B A Rxy]
) = ARygas[VZasRrx]
) := AR,gas[VZasVyas Rry = Ryz]
) = ARygas [VZasVyasVzas Rry A Ryz = Ruz]
) = ARygas[Reflexive(R) A Symmetric(R) A Transitive(R)]
) = ARoaan[AoasTFUuastt € A AVVauv € A < Ruv)
Defined Notions in Theory Function

Reflexive(-
Symmetric(-
Transitive(-

EquivRel(-
EquivClasses(-

Inj(2) = AFgas[VZa,ygF(z) = F(y) = = =y]
Surj(2) = AFgas(VygeIzany = F(x)]
Bij(-) = AFgauSurj(F) A Inj(F)
ImageF (_,_) = AFgq, Avcas[Aygsdzasz € ANy = F ()]
InverselmageF (_,_) = AFgq, Bogs[MarTygy € BAy = F(z)]
_o_ = AFga,Gyga[Azas G(F(2))]
IncreasingF (_, _,.) = AFgq, q},aa,diﬂﬂ. VZa,Yasz <t y = F(z) <® F(y)]
DecreasingF (-, _,_) = AFgq, q},aa,diﬂﬂ. VZa,Yasz <t y = F(y) <? F(x)]

Table 3
Defined concepts occurring in test problems from Table 2

SET171+3 After recursively expanding the input problem, that is, com-
pletely reducing it to first principles, LEO turns it into a negated unit clause.
Since this initial clause is not in normal form, LEO first normalises it with
explicit clause normalisation rules to reach some proper initial clauses. In our
case, this normalisation process leads to the following unit clause consisting
of a (syntactically not solvable) unification constraint (here B,,, Con, Doo are
Skolem constants and Bz is obtained from expansion of z € B):

(Ao Bx V (Cx A Dx)) =" (Ao (Bx V C2) A (Bx V Dx))]

Note that negated primitive equations are generally automatically converted
by LEO into unification constraints. This is why [(Az,. Bz V (Cx A Dx)) ="
(Azon (BzV Cz) A (BzV Dx))] is generated, and not [(Aza. Bz V (Cz A Dzx)) =
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Assumptions: VB, C,z.[z € (BUC) < x € BV e (] (1)
VB,C,z.[x € (BNC) < x e BAzx e (] (2)
VB,C.[B=C< BCCAC C B] (3)
VB,C.[BUC = C U B] (4)
VB,C.[BNC =Cn B (5)
VB,C.[BCC & Va.x € B=x € (] (6)
VB,C.[B=C & Vr.x € B< z e (] (7)

Proof Goal: VB,C,D.[BU(CND)=(BUC)N(BUD)] (8)

Table 4
TPTP problem SET17143 — distributivity of U over N.

(AZoe (BxVCx)A(BxV Dx))]F. Observe, that we write [.]7 and [.]¥ for positive
and negative literals, respectively. LEO then applies its goal directed functional
and Boolean extensionality rules which replace this unification constraint by
the negative literal (where z is a Skolem constant):

[(Bz V (Cx A Dz)) < ((Bx Vv Cz) A (Bz vV D))"

This unit clause is again not normal; normalisation, factorisation and sub-
sumption yield the following set of clauses:

[Bx]* [Bz]" v [Cx]" [Bx]" v [Dx]T [Cx]F v [Dx]F

This set is essentially of propositional logic character and trivially refutable.
LEO needs 0.56 seconds for solving the problem and generates a total of 36
clauses.

Let us consider now this same example SET1714-3 in its first-order formulation
from the TPTP (see Table 4). We can observe that the assumptions provide
only a partial axiomatisation of naive set theory. On the other hand, the
specification introduces lemmas that are useful for solving the problem. In
particular, assumption (7) is trivially derivable from (3) with (6). Obviously,
clausal normalisation of this first-order problem description yields a much
larger and more difficult set of clauses. It is therefore not surprising that
most first-order ATPs fail to prove this problem. Of course, the significance of
the comparison is clearly limited, because different systems are optimised to a
different degree. Moreover, first-order systems often use a case tailored problem
representation (e.g., by avoiding some base axioms of the addressed theory),
while the higher-order prover has a harder task of dealing with a general (not
specifically tailored) representation that does not make any assumptions about
which parts of the theory are or are not needed for the concrete problem at
hand.

We use A-abstraction as well as the extensionality treatment inherent in LEO’s
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calculus (Benzmiiller, 2002). This enables a theoretically?* Henkin-complete
proof system for set theory. In the above example SET171+43, LEO generally
uses the application of functional extensionality to push extensional unifica-
tion constraints down to base type level, and then eventually applies Boolean
extensionality to generate clauses from them. These are typically much sim-
pler and often even propositional-like or FO-like, and are therefore suitable
for treatment by a first-order ATP or even a propositional logic decision pro-
cedure.

SET624+3 Sometimes, extensionality treatment is not required and the orig-
inally higher-order problem is immediately reduced to only FO-like clauses.
For example, after expanding the definitions, problem SET624+3 yields the
following clause (where Boy, Con, Doo are again Skolem constants):

[(324. (Bx A (Cz V D)) & ((370. Bx A Cx) V (334. Bx A Dx))]*

Normalisation results in 26 FO-like clauses, which present a hard problem for
LEO: it needs approx. 35 seconds (see Sec. 4.3) to find a refutation, whereas
first-order ATPs only need a fraction of a second.

SET646+3 Sometimes, problems are immediately refuted after the initial
clause normalisation. For example, we get the following clause after defini-
tion expansion in problem SET646+3 (where B,, Coa, T, are again Skolem
constants):

[Az = (Vyg. By = (VueVvs.(u=2Av=1y) = ((-L)A (L))"

Normalisation in LEO immediately generates a basic refutation (i.e., a clause
[L]T v [L]T) without even starting proof search.

SET611+3 The examples discussed so far all essentially apply extensionality
treatment and normalisation to the input problem in order to immediately
generate a set of inconsistent FO-like clauses. Problem SET611+3 is more
complicated as it requires several reasoning steps in LEO before the initially
consistent set of available FO-like clauses grows into an inconsistent one. After
definition expansion, LEO is first given the input clause:

4 For pragmatic reasons, such as efficiency, most of LEO’s tactics are incomplete,
however. LEO’s philosophy is to rely on a theoretically complete calculus, but to
practically provide a set of complementary strategies so that these cover a broad
range of theorems.
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[VAow, Boar (AToe (A ABT)) = (A2 g L) & (A2 e (AxA=Bx)) = (Az0e Az)|F

which it normalises into:

[(A2ge (AzABz)) =" (A2ge L)] V [(A2ae (AzA=Bz)) =" (A2oe Az)] 9)
[(AZor (AZABZ)) = (Aar L) V[(AZar (ArA=Bx)) = (Az0n Ax)]T (10)

As mentioned before, the unification constraint (9) corresponds to:

[(AZan (AZABz)) = (AT0e L) V[(AZon (AzA=Bz)) = (Az0n Ax)]F (11)

LEO has to apply to each of these clauses and to each of their literals appro-
priate extensionality rules. Thus, several rounds of LEO’s set-of-support-based
reasoning procedure are required, so that all necessary extensionality reason-
ing steps are performed, and sufficiently many FO-like clauses are generated
which can be refuted by a first-order ATP.

In summary, each of the examples discussed in this section exposes a motiva-
tion for our higher-order/first-order cooperative approach to theorem proving.
In particular, they show that:

e Higher-order formulations allow for a concise problem representation which
often allows easier and faster proof search than first-order formulations.

e Higher-order problems can often be reduced to a set of first-order clauses
that can be more efficiently handled by a first-order ATP.

e Some problems are trivially refutable after clause normalisation.

e Some problems require in-depth higher-order reasoning before a refutable
first-order clause set can be extracted.

4.2 Theoretical Considerations

Clearly, soundness and completeness properties depend on the correspond-
ing properties of the systems involved, in our case, of LEO and BLIKSEM or
VAMPIRE, respectively.

Soundness: The general philosophy of OANTS is to ensure the correctness
of proofs by the generation of explicit proof objects, which can be checked in-
dependently from the proof generation. In particular, reasoning steps of ATPs
have to be translated into OANTS’s natural deduction calculus via the TRAMP
proof transformation system (Meier, 2000) to be machine-checkable. Because
of the tight integration of LEO with the first-order ATPs, in which FO-like
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clauses that are in LEO’s search space are directly picked up by the processes
running first-order ATPs, some essential information needed for TRAMP is
not available. Thus the cooperative proof results of LEO-BLIKSEM or LEO-
VAMPIRE cannot yet be translated and inserted into the centralised proof
object and the generation of a machine-checkable proof object is not yet fully
supported. One possible solution we propose is to translate the first-order
proofs into LEO proofs and to insert them at the right places. Then, the mod-
ified LEO proofs can be inserted into the centralised proof object, and hence,
explicit proof objects can be generated by OANTS.

While there are many advantages in guaranteeing correctness of proofs by
checking them, it is worth noting that the combination of LEO and BLIK-
SEM (or LEO and VAMPIRE) is sound under the assumption that the three
systems are sound. Namely, to prove a theorem it is sufficient to show that
a subset of clauses generated in the proof is inconsistent. If LEO generates
an inconsistent set of clauses, then it does so correctly by assumption, be
it a FO-like set or not. Assuming that the translation from FO-like clauses
to truly first-order clauses preserves consistency/inconsistency, then a set of
clauses that is given to BLIKSEM (or VAMPIRE) is inconsistent only if LEO
generated an inconsistent set of clauses in the first place. By the assumption
that BLIKSEM (or VAMPIRE) is sound follows that it will only generate the
empty clause when the original clause set was inconsistent.

Thus, soundness of our cooperative approach critically relies only on the
soundness of the selected transformational mapping from FO-like clauses to
proper first-order clauses. We use the mapping from TRAMP, which has been
previously shown to be sound and is based on (Kerber, 1992). It injectively
maps expressions such as P(f(a)) to expressions such as @ (P, @}, (f,a)),
where the @ are new first-order operators describing function and predicate
application for particular types and arities. The injectivity of the mapping
guarantees soundness, since it allows each proof step to be mapped back from
first-order to higher-order. Hence, our higher-order/first-order cooperative ap-
proach between LEO and BLIKSEM (or VAMPIRE) is sound.

Completeness: Completeness (in the sense of Henkin completeness) can in
principle be achieved in higher-order systems, but practically, the strategies
used are typically not complete for efficiency reasons. Let us assume that we
use a complete strategy in LEO. All that our procedure does is pass FO-like
clauses to BLIKSEM (or VAMPIRE). Hence, no proofs can be lost in this process.
That is, completeness follows trivially from the completeness of LEO.

The more interesting question is whether particular cooperation strategies
will be complete as well. For instance, in LEO we may want to give higher
preference to real higher-order steps which guarantee the generation of first-
order clauses.
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4.8 Results

We conducted several experiments to evaluate our cooperative reasoning ap-
proach. In particular, we concentrated on test problems given in Table 2. We
investigated several LEO strategies in order to compare LEO’s individual per-
formance with the performance of the LEO-BLIKSEM and the LEO-VAMPIRE
cooperation. Some of LEO’s results were already published in (Benzmiiller and
Kohlhase, 1998; Benzmiiller, 1999), and some of LEO-BLIKSEM results were
previously presented in (Benzmiiller et al., 2005). We also compare our results
to those of the most successful first-order systems on these test problems as
given in the TPTP and in the literature. These were, in detail:

MUSCADET (v2.4) a natural deduction system that uses special inference
rules for sets (Pastre, 2001),

E-SETHEO (csp04) that combines a variety of first-order theorem provers and
specialised decision procedures into a single proof engine exploiting strategy
parallelism (Moser et al., 1997),

VAMPIRE (v7.0) a first-order theorem prover using a binary resolution and
superposition based calculus (Riazanov and Voronkov, 2002),

SATURATE an extension of VAMPIRE with Boolean extensionality rules that
are a one-to-one correspondence to LEO’s rules for Extensional Higher-Order
Paramodulation (Ganzinger and Stuber, 2003).

Table 5 presents the results of our experiments. The first column contains
the TPTP identifier of the problem. The second column lists the TPTP dif-
ficulty rating of the problem, which indicates how hard the problem is for
first-order ATPs (difficulty rating 1.00 indicates that no TPTP prover can
solve the problem). The third, fourth, and fifth columns list whether SATU-
RATE, MUSCADET and E-SETHEO , respectively, can (4) or cannot (—) solve
a problem. The sixth column lists the timing results for VAMPIRE. All timings
given in the table are in seconds. Since the results for SATURATE are taken
from (Ganzinger and Stuber, 2003) (a ‘?” in Table 5 indicates that the result
was not listed in (Ganzinger and Stuber, 2003) and is thus unavailable) and
the results for MUSCADET and E-SETHEO are taken directly from the on-line
version of the TPTP, a run-time comparison would be unfair as the times are
measured on different platforms. The timings for VAMPIRE, on the other hand,
are based on private communication with A. Voronkov. They were obtained
on a computer with a very similar specification to the one we used, namely
a 2.4 GHz Xenon machine with 1GB of memory. The remaining three major
columns: LEO, LEO-BLIKSEM, and LEO-VAMPIRE detail the results of our
experiments. Each of these three columns is further divided into sub-columns
to allow for a detailed comparison.
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For our experiments with LEO alone in column seven in Table 5 we tested four
different strategies. Mainly, they differ in their treatment of equality and ex-
tensionality. This ranges from immediate expansion of primitive equality with
Leibniz equality and limited extensionality reasoning, STANDARD (ST), to
immediate expansion of primitive equality and moderate extensionality rea-
soning, EXT, to delayed expansion of primitive equality and moderate ex-
tensionality reasoning, EXT-INPUT (EI), and finally to delayed expansion
of primitive equality and advanced recursive extensionality reasoning, EXT-
INPUT-RECURSIVE (EIR). Column seven (LEO) in Table 5 presents the
fastest strategy for each problem (Strat.), the number of clauses generated by
Leo (Cl.), and the total run-time (Time). While occasionally there was more
than one LEO strategy that could solve a problem, it should be noted that
none of the strategies was successful for all the problems solved by LEO. In
contrast to the experiments with LEO alone, we used only the EXT-INPUT
strategy for our experiments with the LEO-BLIKSEM and LEO-VAMPIRE.®
Each of column eight (LEO-BLIKSEM) and nine (LEO-VAMPIRE) in Table 5
presents the number of clauses generated by LEO (Cl.) together with the time
(Time), and in addition, the number of first-order clauses (FOcl) sent to, the
time (FOtm) used by, and the number of clauses generated (GnCl) by BLIK-
SEM and VAMPIRE, respectively.

The overall time limit of all experiments was 100 seconds for both LEO alone
and the LEO-first-order cooperations. This time also includes the time needed
to write and process input and output files over the network. While LEO and
instances of BLIKSEM or VAMPIRE were running in separate threads (each
run of BLIKSEM and VAMPIRE was given 50 seconds), the figures given in the
‘Time’ column reflect the overall time needed for a successful proof. That is,
they contain the time needed by all concurrent processes: LEO’s own process
as well as those processes administering the various instances of BLIKSEM or
VAMPIRE. However, during I/O operations (i.e., writing input files and reading
output files of the provers) the threads were locked and could only be killed
once the operation was completed. While these operations generally only took
milliseconds, for particular large files this could take longer, which accounts for
the more than 500s needed by LEO-VAMPIRE on problem SET752+4. Since
all processes ran on a single processor, there is potential to improve upon run
times by using real multiprocessing. Note also, that the number of clauses in
LEO’s search space is typically low as subsumption is enabled. Subsumption,
however, was not enabled for the accumulation of FO-like clauses in LEO’s
bag of FO-like clauses. This is why there are usually more clauses in this
bag (which is sent to BLIKSEM or VAMPIRE) than there are in LEO’s search
space. Finally, observe that some problems were refuted after LEO’s clausal
normalisation, and hence BLIKSEM or VAMPIRE was not applicable (N/A).

® In a small empirical study we identified EXT-INPUT as the most successful strat-
egy for LEO-BLIKSEM and LEO-VAMPIRE.
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TPTP- Diffi- || Satu- || Mus || E-Se- || Vamp- LEO LEO-BLIKSEM LEO-VAMPIRE
Problem culty || rate ||cadet || theo || ire 7 |[|Strat.| Cl.|Time||CL | Time |FOcl|FOtm| GnCl||Cl.| Time|FOcl|FOtm GnCl
SETOI4+4([ .67 + + + .01 ST| 411 .16]| 34| 6.76] 19 .01 7 111 2.6 .01 .01 16
SETO17+1(| .56 — - + .03|| EXT 3906 [57.52|| 25| 8.54| 16 .01 74| 28| 5.05 8 .01 22
SET066+1 || 1.00 ? - - - — — —|| 26| 6.80| 20 .01 56| 38| 3.73| 17 .01 53
SETO067+1(| .56 + + + .04 ST 6| .02|| 13| .32| 16 .01 12(] 9 1110 .01 17
SETO076+1( .67 + - + .00 — - —|| 10| .47| 18 .01 35| 12| 97| 12 .01 27
SETO086+1 || .22 + + .04 ST 20 .01|| 2| .01|N/A| N/A| N/A| 2| .01|N/A| N/A N/A
SET096+1 || .56 + - + .03 — — —|| 27| 7.99| 14 01 25| 81| 7.29] 71| 0.02 23
SET143+3|| .67 + + + 68.71|| EIR| 37| .38 33| 7.93| 18 01 19]| 8 .31 9 .01 9
SET171+3( .67 + + — ||108.31| EIR| 36| .56|| 25| 4.75| 19 01 20| 6| .38] 10 .01 9
SET580+3 || .44 + + + 14.71(| EIR| 25| .19|| 6| 2.73 8 01 13] 8| .23| 12 .01 4
SET601+3 || .22 + + + [/168.40(| EIR| 145| 2.20|| 55| 4.96 8 01 13| 20| 1.18| 31 .01 17
SET606+3 || .78 + - + 62.02|| EIR| 21| .33) 17| 10.8| 15 01 5| 5| .27 5 .01 3
SET607+3|| .67 + + + 65.57|| EIR| 22| .31) 17| 7.79| 15 01 6]l 5| .26 8 .01 3
SET609+3 || .89 + + - ||161.78| EIR| 37| .60|| 26| 6.50| 19 01 17| 6| .49| 10 .01 9
SET611+3 | .44 + - + 60.20|| EIR| 996|12.69( 72|32.14| 38 01 101 39| 4.00| 40| 0.03 23
SET612+3|| .89 + - — ||113.33|| EIR| 41| .54|| 18| 3.95 6 01 7 8| .46| 11 .01 9
SET614+3|| .67 + + — || 157.88| EIR| 38| .46|| 19| 4.34| 16 01 17]| 8 .41 9 .01 9
SET615+3|| .67 + + — ||109.01|| EIR| 38| .57|| 17| 3.59 6 01 9| 6| .47 8 .01 9
SET623+3|| 1.00 ? - - —|| EXT| 43| 8.84| 23| 9.54| 10 01 14| 9| 2.27| 10 .01 8
SET624+3( .67 + - + .04 ST [4942|34.71|( 54| 9.61| 46 01 212|| 47| 3.29| 44 .01 71
SET630+3 || .44 + - + 60.39|| EIR| 11| .07| 6 08 8 01 41l 4] .05 6 .01 10
SET640+3 || .22 + - + 70.41|| EIR 2| .01| 2 01|N/A| N/A| N/A|| 2| .01|N/A| N/A N/A
SET646+3 || .56 + - + 59.63|| EIR 2| .01| 2 01|N/A| N/A| N/A| 2| .01|N/A| N/A N/A
SET647+3 || .56 + - + 64.21|| EIR| 26| .15| 13 300 13 01 15( 7 .12 7 .01 11
SET648+3 || .56 + - + 64.22|| EIR| 26| .15| 14 300 13 01 16f 7 .12 9 .01 3
SET649+3 || .33 - - + 63.77|| EIR| 45| .30| 29| 5.49| 12 01 16| 10| .25| 13 .01 8
SET651+3 || .44 - - + 63.88|| EIR| 20| .10 11 16| 10 01 11| 7( .09 8 .01 2
SET657+3|| .67 + - + 1.44|| EIR 2| .01| 2 01|N/A| N/A| N/A|| 2| .01|N/A| N/A N/A
SET669+3 || .22 — + .34 EI 6| .19|| 7| .21|N/A| N/A| N/A| 6 2| N/A| N/A N/A
SET670+3|| 1.00 ? - - —|| EXT| 15| .17 17| .36| 16 01 6 9 .14 11 .01 14
SET671+3 || .78 — - + (|218.02|| EIR| 78| .64| 7| 2.71| 10 01 14 13| 47 11 .01 9
SET672+3|| 1.00 ? - - —|| EXT| 27 Al 301 .70 21 01 11 10| .23 12 .01 14
SET673+3|| .78 - - + 47.86|| EIR| 78| .65 14| 5.66| 14 01 16| 13| 47| 17 .01 6
SET680+3 || .33 + - + .07 ST| 185| .88|| 29| 4.61| 18 01 24|| 30| 2.38] 16 .01 27
SET683+3 || .22 + - + .06 ST| 46| .20 35| 8.90| 18 01 24| 12| 27| 15 .01 4
SET684+3|| .78 - - + .33 ST| 275| 2.45|| 46| 5.95| 26 01 47| 41| 3.39| 35 .01 38
SET686+3 || .56 - - + 11 ST| 274| 2.36|| 46| 5.37| 26 01 46| 42| 3.55| 37 .01 39
SET716+4 || .89 + + - - ST| 39| .45]|f 18| 3.81| 18 01 1181 19 Al 24 0.02 73
SET724+4| .89 + + - —|| EXT| 154| 2.75|| 18| 7.21| 15 01 23| 10| 1.91] 14 .01 20
SET741+41 0.91 ? + - - - - —1| 21(92.76| 22 01/104850|| 21| 3.70| 26 .01 570
SET747+4 | .89 - + - - ST| 34| .46| 25| 1.11| 18 01 10| 11| 1.18 8 .01 14
SET752+4 | .89 ? + - - - - —|| 50| 6.60| 48 01| 4363| 50|516.0{ 48 .01 (4145104
SET753+4| .89 ? + - - - - —|| 15| 3.07| 12 01 19 12| 1.64| 12 .01 47
SET764+4| .56 + + + .02 EI 2| .01| 2 01|N/A| N/A| N/A|| 2| .01|N/A| N/A N/A
SET770+4| .89 + + - - - - - - - - - - - - - - -
Table 5

Experimental data for the benchmark test problems given in Table 2.



The results in columns three through six indicate that some problems are
still very hard for first-order ATPs, as well as for the special purpose theorem
prover MUSCADET. While LEO itself can solve a majority of these problems
with some strategy, the LEO-BLIKSEM and LEO-VAMPIRE cooperations can
solve more problems and, moreover, need only a single LEO strategy. We can
also observe that many problems that appear to be relatively hard for LEO
alone (e.g., SET017+1, SET611+3, SET624+3), are not only more quickly
solved in the cooperative approach, but are often reduced to a relatively small
higher-order preprocessing step with subsequent easy first-order proofs, as for
instance, in the case of SET017+1. When comparing LEO-BLIKSEM and LEO-
VAMPIRE one can observe that neither is clearly better than the other. Both
cooperations solve the respective sub-problems very quickly, and it depends
on the problem as to which one finds a solution earlier in the proof search.
Moreover, the number of clauses produced during proof search for BLIKSEM
and VAMPIRE can vary significantly. This suggests that in general, it is ad-
vantageous to integrate more than one first-order prover into the cooperative
multi-agent architecture.

From a mathematical viewpoint the investigated problems are easy and, hence,
they should ideally be reliably and very efficiently solvable within a proof
assistant. This has been achieved for the examples in Table 5 (except for
SET770+4) by our cooperative approach. While some of the proof attempts
now require slightly more time than when using LEO alone with a specialised
strategy, they are, in most cases, still faster than when proving with a first-
order system.

5 Related Work

There exist several systems that are related to ours from the point of view
of integrating a number of reasoners in a cooperative environment. The main
difference is that none of these integrate such a variety of diverse reasoning
systems in a common cooperative and distributed framework. Here we outline
commonalities and differences of some such systems with our work.

The integration of reasoners and reasoning strategies was pioneered in the
TEAMWORK system (Denzinger and Fuchs, 1994), which realises the coop-
eration of different reasoning strategies, and the TECHS system (Denzinger
and Fuchs, 1999), which realises a cooperation between a set of heterogeneous
first-order theorem provers. Similar to our approach, partial results in TECHS
are exchanged between the different theorem provers in form of clauses. The
main difference to the work of Denzinger et al. (and other related architec-
tures like (Fisher and Ireland, 1998)) is that our system bridges not only be-
tween first-order theorem provers, but also between first-order ATPs, higher-
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order ATPs, computer algebra systems and model generators. Also, unlike in
TEcCHS, we provide a declarative specification framework for modelling exter-
nal systems as cooperating, concurrent processes that can be (re-)configured
at run-time. Related is also the work of Hurd (Hurd, 2002) which realises a
generic interface between HOL and first-order theorem provers. It is similar to
the solution previously achieved by TRAMP (Meier, 2000) in OMEGA, which
serves as a basis for the sound integration of ATPs into OANTS. Both ap-
proaches pass essentially first-order clauses to first-order theorem provers and
then translate their results back into HOL resp. OMEGA. Some further re-
lated work on the cooperation of ISABELLE and first-order ATPs is presented
in (Meng and Paulson, 2004; Meng et al., 2006). The main difference of our
work to the related systems is that while our system calls first-order provers
from within automatic higher-order proof search, this is not the case for (Hurd,
2002; Meier, 2000; Meng and Paulson, 2004; Meng et al., 2006).

More generally, our cooperative, distributed and multi-agent framework is
related to work on parallelism of deduction and other multi-agent architec-
tures. The notion of parallelism in deduction has been categorised into three
types (Bonacina, 2000): parallelism on term level, on clause level and on search
level. Our architecture models all three types. Parallelism on term level is
clearly realised since our agents can access sub-terms in parallel during their
search (for details of the OANTS suggestion mechanism, see (Benzmiiller and
Sorge, 2001)). Parallelism on clause level is mainly concerned with term rewrit-
ing steps, which corresponds loosely to the application of tactics in our system,
and this is already realised in our underlying OMEGA system. Parallelism on
search level is one of the key criteria of our system, since in each step the
search for the next applicable proof step, which is either a single tactic or the
computations of an integrated reasoner, is parallelised.

Multi-agent aspects of our framework can be compared with respect to the
characterisation of agents as autonomous and flexible computational enti-
ties that exhibit, to a varying degree, reactive, pro-active and social abili-
ties (Weiss, 1999b; Wooldridge, 1999). Our agents are clearly autonomous from
a software engineering point of view, since they are implemented in concurrent
threads. They are pro-active (i.e., they are not scheduled), reactive (i.e., their
internal state is used to react to changes in the overall system) and robust.
They cooperate, but do not exhibit any real social abilities, that is, they are
not aware of other agents and individually cannot decide autonomously whom
to cooperate with. They also have no real planning capabilities. From these
points of view, our system is more closely related to distributed problem solv-
ing systems like HASP (Nii et al., 1982) and PoLiGoN (Rice, 1989), rather
than advanced layered agent architectures like INTERRAP (Miiller, 1997) and
the one by Bond and Gasser (Bond and Gasser, 1988).
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6 Conclusion

We presented a general agent-based architecture that enables easy integration
and cooperation of diverse and very heterogeneous systems like higher-order,
first-order automated theorem provers, computer algebra systems and model
generators. We showed how the integration of different reasoning systems can
lead to a combined system which goes significantly beyond the capabilities
of each individual system. For this we experimented with different forms of
integration which can be achieved relatively easily in the OANTS-framework.
OANTS provides a framework which enables a generic integration of a variety
of systems, and is based on the construction of a common proof object. The
results of our case studies in Sec. 3 demonstrate a stronger reliability and
coverage of our system in comparison to other single specialist systems.

In the case of some specialist reasoning systems it pays off to integrate the dif-
ferent systems more tightly so that they can communicate more efficiently in
a specialist language. The results of this case study in Sec. 4 provide evidence
and support this, in particular they show the effectiveness of a specialist inte-
gration between a higher-order and first-order resolution theorem prover. Our
non-optimised system outperforms state-of-the-art first-order theorem provers
and their ad hoc extensions such as SATURATE (Ganzinger and Stuber, 2003)
on 45 mathematical problems chosen from the TPTP SET category. Among
them are four problems which cannot be solved by any TPTP system to date.
In contrast to the first-order situation, these problems can in fact be proved in
our approach reliably from first principles, that is, without avoiding relevant
base axioms of the underlying set theory, and moreover, without the need to
provide relevant lemmas and definitions by hand.

The results of our case study motivate further research in the automation of
higher-order theorem proving and the experimentation with different higher-
order to first-order transformation mappings (such as the ones used by (Hurd,
2002; Meng and Paulson, 2004; Meng et al., 2006)) that support our hybrid
reasoning approach.® They also provide further evidence for the usefulness of
the OANTS approach as described in (Benzmiiller and Sorge, 2001; Benzmiiller
et al., 2001) for flexibly modelling the cooperation of reasoning systems. The
results also indicate the need for a higher-order extension of the TPTP library
in which alternative higher-order problem formalisations are linked with their
first-order counterparts so that first-order theorem provers can be evaluated
against higher-order systems (and vice versa) — such an extension of the TPTP
library to higher-order logic is currently under way.

6 Indeed, we are currently investigating in a new project LEO-II a cooperation
between a re-implementation of the LEO prover and tightly integrated first-order
theorem provers.
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Future work is to investigate how far our approach scales up to more complex
problems and more advanced mathematical theories. In less trivial settings,
as discussed in this paper, we will face the problem of selecting and adding
relevant lemmas to avoid immediate reduction to first principles and to ap-
propriately instantiate set variables. Relevant related work for this setting
is Bishop’s approach to selectively expand definitions as presented in (Bishop
and Andrews, 1998) and Brown’s PhD thesis on set comprehension in Church’s
type theory (Brown, 2004).

A Testing the Generic Integration

The following tables contain the data relevant to the experiments on set state-
ments described in Sec. 3. Tables A.1 and A.2 contain the problem formula-
tions of the unconditional statements. Tables A.3, A.4 and A.5 contain the
detailed results of the experiments with VAMPIRE, PARADOX, and OANTS
applied to the statements without conditions, with uniqueness condition and
with disjointness condition, respectively. All experiments were run on a PC
with four 2.4Ghz Xeon CPU and 4GB of memory running Linux.

In Tables A.3-A.5 all timings are given in seconds, where t/o means time out
after 120 seconds and < .1 means that the time was below the measurability
of the operating system. For problems that the system was not expected to
solve, that is, invalid problems for VAMPIRE or valid problems for PARADOX,
the table will always have a t/o entry although the systems occasionally de-
tected the invalidity or validity, respectively. The VAMPIRE column contains
the number of clauses generated during proof search. The PARADOX column
contains the minimal size of model needed to refute a conjecture. Finally, the
OANTS column gives first the nature of the result, that is, proof or counterex-
ample (Ctrex.), depending on the validity of the statement, the time OANTS
needed, and the number of reasoning steps OANTS had to perform before
either VAMPIRE or PARADOX could discharge the problem. Observe that in
some cases, OANTS needs two steps, despite PARADOX or VAMPIRE being
able to solve the initial problem in insignificant time. This is due to possible
communication delays via the networked file system, and a second run might
yield a slightly different result.
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Table A.2
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Prb Vampire Paradox Oants Prb Vampire Paradox Oants Prb Vampire Paradox
Time | Clauses || Time | Model || Result | Time | Steps Time | Clauses || Time | Model || Result | Time | Steps Time | Clauses || Time | Model Steps
1| < .1 52| t/o — || Proof 8 1|| 34| t/o —l <.1 2|[Ctrex. 22 2| 67| t/o —|| <.1 2 1
2l t/o —|l <"1 2f|Ctrex.| 26| 2|| 35| t/o —|l<a 2||Ctrex.| 13| 1|| 68| t/o —|| <1 1 1
3|l t/o —|| <.1 2||Ctrex.| 28 2|| 36| t/o —|| <.1 2| Ctrex. 8 1| 69| t/o —|| < .1 2 1
4]l t/o —|| <.1 2| Ctrex. 8 1| 37| t/o —|| <.1 1||Ctrex. 8 1| 70|| t/o —|| < .1 2 1
5| < .1 471 t/o —||Proof 9 1|| 38| t/o —|| < .1 2||Ctrex.| 33 2| 71] t/o —|| <.1 1 1
6|| t/o —|| <.1 2| Ctrex. 8 1| 39| t/o —|| < .1 2| Ctrex. 8 1| 72| t/o —|| <.1 2 2
7| t/o —|| <.1 2| Ctrex. 8 2|| 40] t/o —|| < .1 2| Ctrex. 8 1| 73| t/o —|| <.1 2 2
8|l t/o —|| <.1 2| Ctrex. 8 1|| 41]| t/o —|| <.1 2||Ctrex.| 29 2| 74] t/o —|| < .1 2 2
9| <1 441 t/o —||Proof 30 2|| 42] t/o —|| < .1 1||Ctrex. 8 1| 75| t/o —| <.1 2 9 1
10| t/o —|| < .1 2||Ctrex. 14 2(| 43| t/o — <.1 2||Ctrex. 11 1| 76| <.1 45]| t/o — 8 1
11 t/o —|| < .1 2||Ctrex. 10 1|| 44| t/o — <.1 2||Ctrex. 12 1| 77|| t/o —I| <1 2 9 1
12| t/o —|| < .1 2||Ctrex. 9 1|| 45]|| t/o — <.1 2||Ctrex. 11 1|| 78|| t/o —Il <1 2 11 1
13]| t/o —|| <.1 2||Ctrex.| 10 1|| 46| t/o —|| <.1 2||Ctrex.| 39 1| 79| t/o —|| < .1 2 9 1
14]| t/o —|| t/o —||Proof 17 2|| 47] t/o —|| <.1 2| Ctrex. 9 1| 80|| t/o —|| < .1 2 8 1
15|| t/o —|| <.1 2| Ctrex. 8 1|| 48| t/o —|| < .1 2| Ctrex. 8 1| 81)| <.1 53|| t/o — 8 1
16| t/o —|| < .1 2||Ctrex.| 106 2[| 49| t/o — <.1 2||Ctrex. 9 1|| 82|| t/o —I| <1 1 8 1
17]| t/o —|| <.1 2| Ctrex. 9 1| 50|| t/o —|| <.1 2| Ctrex. 8 1| 83| t/o —|| < .1 1 8 1
18] < .1 54| t/o —||Proof 11 1| 51| t/o —|| <.1 2| Ctrex. 9 1| 84| t/o —| < .1 2 9 1
19]| t/o —|| <.1 2||Ctrex.| 26 2[| 52| t/o —|| < .1 2| Ctrex. 9 1| 85| t/o —|| < .1 2 9 1
20| t/o —|| < .1 2||Ctrex. 19 2[| B3| t/o —| <.1 2||Ctrex. 8 1|| 86| t/o —I| <1 2 9 1
21| t/o —|| <.1 2| Ctrex. 8 1|| 54| t/o —|| < .1 2| Ctrex. 8 1| 87| t/o —|| <.1 2 9 1
22|l t/o —|| <.1 1||Ctrex. 8 1|| 55]|| t/o —|| < .1 1||Ctrex. 8 1| 88| <.1 39| t/o — 10 1
23| t/o —|| <.1 1||Ctrex. 8 1| 56| <.1 44| t/o —||Proof 10 1|| 89| t/o —| < .1 2 9 1
24| t/o —|| < .1 2||Ctrex. 10 1|| 57|| t/o —| <.1 2||Ctrex. 9 1|| 90]|| t/o —I| <1 2 9 1
25(| t/o —|| < .1 2||Ctrex. 8 1|| 58| t/o — <.1 1||Ctrex. 8 1| 91|| t/o —I| <1 2 8 1
26| t/o —|| < .1 2||Ctrex. 22 2[| 59| t/o — <.1 2||Ctrex. 8 1| 92|| t/o —I| <1 2 9 1
27| t/o —| <.1 2| Ctrex. 8 1| 60| t/o —|| <.1 2| Ctrex. 9 1| 93|| t/o —|| < .1 1 8 1
28| t/o —|| <.1 2| Ctrex. 9 1|| 61]| t/o —|| <.1 2| Ctrex. 9 1| 94| t/o —| < .1 2 9 1
29| < .1 46 t/o —||Proof 8 1| 62| t/o —|| < .1 2||Ctrex.| 10 1] 95]| <.1 45| t/o — 10 1
30| t/o —|| <.1 2||Ctrex.| 34 2[| 63| < .1 39( t/o —||Proof 11 1| 96|| t/o —| <.1 2 9 1
31| t/o —|| <.1 1|| Ctrex. 8 1|| 64| t/o —I| t/o —||Proof 67 2| 97| t/o —|| <.1 2 8 1
32(| t/o —|| <.1 1||Ctrex. 8 1|| 65| t/o —|| < .1 1||Ctrex. 8 1| 98| t/o —| < .1 1 8 1
33]| t/o —|<.1 2|| Ctrex. 9 1|| 66]] t/o —| <1 2||Ctrex. 10 1] 99| < .1 45| t/o — 8 1
100])| t/o —ll <1 2 9 1

Table A.3

Results for set equalities under no assumptions, i.e., unconditional.
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Prb Vampire Paradox Oants Prb Vampire Paradox Oants Prb Vampire Paradox Oants

Time | Clauses || Time | Model || Result | Time | Steps Time | Clauses || Time | Model || Result | Time | Steps Time | Clauses || Time | Model || Result | Time | Steps

1| t/o —|[ t/o — || Proof 15 21| 34( t/o —I| t/o — || Ctrex 30 3| 67] t/o —|| t/o — [ Ctrex 30 3
2|| t/o —I| t/o —||Ctrex 35 3[| 35| t/o —|| t/o — || Ctrex 22 3[| 68| t/o —I| t/o — || Ctrex 48 3
3|l t/o —|| t/o —||Ctrex 29 3[| 36| t/o —|| t/o — || Ctrex 31 3[| 69| t/o —I| t/o — || Ctrex 72 3
4]l t/o —|| t/o —||Ctrex 27 3[| 37| t/o —|| t/o —||Proof 40 2[| 70| t/o —I| t/o — || Ctrex 27 3
5|| t/o —1| t/o —||Proof 15 2|| 38| t/o —|| t/o — || Ctrex 32 3[| 71|l t/o —I| t/o — || Ctrex 61 3
6|| t/o —1| t/o —||Ctrex 34 3[| 39| t/o —|| t/o — || Ctrex 31 3| 72|l t/o —I| t/o — || Ctrex 27 3
7| t/o — .3 6 || Ctrex 8 1|| 40|| t/o —|| t/o — || Ctrex 31 3| 73|l t/o —I| t/o — || Ctrex 28 3
8| t/o —|| t/o —||Ctrex 26 3[| 41| t/o —|| t/o — || Ctrex 31 3| 74| t/o — .1 4| Ctrex 8 1
9|l t/o —|| t/o —||Proof 14 2[| 42| t/o —|| t/o —||Proof 17 2[| 75| t/o —I| t/o — || Ctrex 24 3
10|| t/o —1| t/o —||Ctrex 33 3[| 43| t/o —|| t/o — || Ctrex 36 3[| 76|l t/o —I| t/o —||Proof 17 2
11|| t/o —1| t/o —||Ctrex 23 3[| 44| t/o —|| t/o — || Ctrex 33 3| 77| t/o —I| t/o — || Ctrex 33 3
12]| t/o —I| t/o —||Ctrex 30 3[| 45| t/o —|| t/o — || Ctrex 35 3| 78| t/o —I| t/o — || Ctrex 39 3
13]| t/o —|| 1.3 5| Ctrex 8 1|| 46]|| t/o —|| t/o — || Ctrex 23 3| 79| t/o —I| t/o — || Ctrex 29 3
14|| t/o —|| t/o —||Proof 16 2[| 47| t/o —|| t/o — || Ctrex 28 3[| 80| t/o —I| t/o — || Ctrex 27 3
15|| t/o —I| t/o —||Ctrex 25 3[| 48| t/o —|| t/o — || Ctrex 32 3[| 81| t/o —I| t/o —||Proof 16 2
16|| t/o —1| t/o —||Ctrex 25 3[| 49| t/o —|| t/o — || Ctrex 26 3[| 82| t/o —I| t/o — || Ctrex 28 3
17]| t/o —|| t/o Ctrex 23 3[| 50| t/o —|| t/o — || Ctrex 82 3[| 83| t/o —I| t/o — || Ctrex 37 3
18]| t/o —|| t/o —||Proof 16 2[| 51| t/o —|| t/o — || Ctrex 40 3|| 84| t/o —I| t/o — || Ctrex 24 3
19]| t/o — 1 4| Ctrex 8 1|| 52|| t/o —|| t/o — || Ctrex 51 3|| 85| t/o —I| t/o — || Ctrex 30 3
20| t/o —1| t/o —||Ctrex 30 3[| 53| t/o —|| t/o —||Ctrex. | 108 3[| 86| t/o —I| t/o — || Ctrex 27 3
21| t/o — .3 5| Ctrex 8 1|| 54| t/o —|| t/o — || Ctrex 49 3[| 87| t/o —I| t/o — || Ctrex 45 3
22|l t/o —I|| t/o —||Ctrex 55 3|| 55| t/o —|| t/o — || Ctrex 29 3|| 88| t/o —I| t/o —||Proof 15 2
23(| 0.3| 3529|| t/o —||Proof 9 1|| 56| t/o —|| t/o —||Proof 44 2[| 89| t/o —I| t/o — || Ctrex 27 3
24| t/o —I| t/o —||Ctrex 39 3[| 57| t/o —|| t/o — || Ctrex 55 3[| 90| t/o —I| t/o — || Ctrex 29 3
25| t/o —I| t/o —||Ctrex 28 3[| 58| t/o —|| t/o — || Ctrex 55 3[| 91| t/o —I| t/o — || Ctrex 31 3
26| t/o —I| t/o —||Ctrex 33 3[| 59| t/o —|| t/o — || Ctrex 56 3| 92| t/o —I| t/o — || Ctrex 23 3
27| t/o — .3 4||Ctrex 11 1| 60| t/o —|| <.1 4||Ctrex 9 1| 93|| t/o —I| t/o — || Proof 66 2
28| t/o —|| t/o —||Ctrex 53 3[| 61| t/o —|| <.1 4||Ctrex 9 1| 94| t/o —I| t/o — || Ctrex 39 3
29| t/o —1| t/o —||Proof 15 2|| 62] t/o —|| < .1 4||Ctrex 9 1| 95|| t/o —I| t/o —||Proof 15 2
30| t/o —I| t/o —||Ctrex 30 3[| 63| t/o —|| t/o — || Proof 91 2| 96| t/o — 2 5 || Ctrex 8 1
31| t/o — 2 6 || Ctrex 9 1|| 64| t/o —|| t/o — || Proof 41 2| 97| t/o —I| t/o — || Ctrex 39 3
32| 33.5| 54920|| t/o —||Proof 48 2[| 65| 0.5| 5421| t/o —||Proof 10 1| 98| t/o —| < .1 4| Ctrex 8 1
33]| t/o —1|| t/o —||Ctrex.| 25 3]| 66] t/o — 1 4| Ctrex 8 1| 99]|| t/o —I| t/o —||Proof 14 2
100f] t/o —I| _t/o — || Ctrex 29 3

Table A.4

Results for set equalities under uniqueness assumption.
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Prb Vampire Paradox Oants Prb Vampire Paradox Oants Prb Vampire Paradox Oants
Time | Clauses || Time | Model || Result | Time | Steps Time | Clauses || Time | Model || Result | Time | Steps Time | Clauses || Time | Model || Result | Time | Steps
1|l t/o —I| t/o — || Proof 55 31| 34 t/o —l <.1 2||Ctrex. 10 1|| 67| t/o —I| <1 2| Ctrex. 9 1
2|l t/o —|| <.1 2||Ctrex.| 10 1| 35| t/o —|| < .1 2||Ctrex.| 10 1|| 68| t/o —|| < .1 1||Ctrex. 8 1
3|l t/o —| <.1 2||Ctrex.| 10 1| 36|| t/o —|| <.1 2||Ctrex.| 11 1| 69| t/o —| <.1 2||Ctrex.| 10 1
4]l t/o —|| <.1 2| Ctrex. 9 1| 37| t/o —|| <.1 1||Ctrex. 8 1| 70|| t/o —|| < .1 2| Ctrex. 9 1
5|| 65.4]| 495784 t/o —||Proof 14 2[| 38| t/o —|| < .1 2||Ctrex.| 10 1| 71| t/o —|| < .1 1||Ctrex. 8 1
6|| t/o —|| <.1 2||Ctrex.| 10 1| 39| t/o —|| t/o —||Proof 48 2| 72| t/o —|| < .1 2| Ctrex. 9 1
7| t/o —I| t/o —||Proof 43 2|| 40] t/o —|| < .1 2||Ctrex.| 10 1| 73|| t/o —|| < .1 2| Ctrex. 9 1
8| t/o —|| < .1 2||Ctrex.| 10 1|| 41| t/o —|| <.1 2||Ctrex.| 10 1| 74| t/o —|| <.1 2| Ctrex. 9 1
9|l t/o —|| t/o —||Proof 92 2|| 42] t/o —|| <.1 1||Ctrex. 9 1| 75| t/o —|| < .1 2| Ctrex. 9 1
10|| t/o —|| <.1 2||Ctrex.| 10 1|| 43| t/o —|| < .1 2||Ctrex.| 13 2|| 76| t/o —I| t/o —||Proof 25 2
11| t/o —|| <.1 2||Ctrex.| 10 1|| 44| t/o —|| < .1 2| Ctrex. 8 1| 77| t/o —|| <.1 2| Ctrex. 9 1
12]| t/o —1| t/o —||Proof 52 2|| 45] t/o — 1 2||Ctrex.| 10 1| 78| t/o —|| <.1 2| Ctrex. 9 1
13|| 6.3] 62426 t/o —||Proof 17 2[| 46| t/o —|| t/o —||Proof 15 21| 79| t/o —|| < .1 2| Ctrex. 9 1
14| t/o —|| t/o —||Proof 48 2|| 47| t/o —|| <.1 2||Ctrex.| 11 1| 80|| t/o —|| < .1 2| Ctrex. 9 1
15|| t/o —|| <.1 2| Ctrex. 8 1|| 48| t/o —|| < .1 2||Ctrex.| 10 1|| 81| t/o —I| t/o —||Proof 65 2
16|| t/o —I| t/o —||Proof 16 2| 49] t/o —|| < .1 2||Ctrex.| 10 1| 82| t/o —|| <.1 1||Ctrex. 8 1
17]| t/o —|| <.1 2||Ctrex.| 10 1| 50|| t/o —|| <.1 2||Ctrex.| 10 1| 83| t/o —| < .1 1||Ctrex. 8 1
18| t/o —|| t/o —||Proof 17 2|| 51| t/o —|| <.1 2| Ctrex 9 1| 84| t/o —|| <.1 2||Ctrex.| 56 2
19]| t/o —|| <.1 2||Ctrex.| 10 1|| 52|| t/o — 1 2| Ctrex. 9 1|| 85| t/o —|| < .1 2||Ctrex.| 25 1
20| t/o —|| <.1 2||Ctrex. | 11 1|| 53| t/o —|| t/o —||Proof 49 2|| 86| t/o —|| < .1 2| Ctrex. 9 1
21|| 31.3| 168393|| t/o —||Proof 14 2[| 54| t/o —|| t/o —||Proof 91 2|| 87| t/o —I| t/o —||Proof 18 2
22|l t/o —| <.1 1||Ctrex. 8 1|| 55|| t/o —|| <.1 1||Ctrex. 8 1|| 88|l t/o —I| t/o — || Proof 18 2
23| t/o —|| <.1 1||Ctrex. 8 1|| 56| t/o —|| t/o —||Proof 41 2|| 89| 17.6| 170631|| t/o —||Proof 15 2
24| t/o — 1 2||Ctrex.| 10 1| 57| t/o —|| < .1 2| Ctrex. 9 1| 90|| t/o —|| <.1 2| Ctrex. 8 1
25| t/o —I| t/o —||Proof 53 2|| 58] t/o —|| < .1 1||Ctrex 8 1| 91| t/o —|| <.1 2| Ctrex. 8 1
26| t/o —|| <.1 2||Ctrex.| 10 1| 59| t/o —|| < .1 2| Ctrex 9 1| 92|| t/o —I| t/o —||Proof 14 2
27| t/o —|| <.1 2||Ctrex.| 12 1|| 60|| t/o —|| <.1 2| Ctrex 9 1| 93|| t/o —|| <.1 1||Ctrex. 8 1
28| t/o — 1 2| Ctrex. 10 1|| 61]| t/o —|| <.1 2| Ctrex 9 1|| 94|l t/o —I| t/o — || Proof 45 2
29| t/o —I| t/o —||Proof 16 2|| 62] t/o —|| < .1 2| Ctrex. 9 1| 95|| t/o —I| t/o —||Proof 48 2
30|| 34.7| 276481|| t/o —||Proof 21 2[| 63| t/o —|| t/o —||Proof 17 2| 96| t/o —|| <.1 2||Ctrex.| 48 2
31| t/o —|| <.1 1||Ctrex. 8 1|| 64| t/o —I|| — —||Proof 20 2| 97| t/o — .1 2||Ctrex.| 38 1
32(| t/o —|| <.1 1||Ctrex. 8 1|| 65| 0.1 4040|| t/o —||Proof 9 1| 98|| t/o —| < .1 1||Ctrex. 8 1
33]| t/o —| <.1 2||Ctrex.| 10 1|| 66]| t/o —| <1 2||Ctrex 8 1] 99]|| t/o —I| t/o —||Proof 17 2
100f] t/o —I| _t/o — || Proof 60 2

Table A.5

Results for set equalities under disjoint assumption.
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