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Abstract. Heterogeneous reasoning refers to theorem proving with
mixed diagrammatic and sentential languages and inference steps. We
introduce a heterogeneous logic that enables a simple and flexible way
to extend logics of existing general-purpose theorem provers with repre-
sentations from entirely different and possibly not formalised domains.
We use our heterogeneous logic in a framework that enables integrat-
ing different reasoning tools into new heterogeneous reasoning systems.
Our implementation of this framework is MixR – we demonstrate its
flexibility and extensibility with a few examples.
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1 Introduction

Theorem provers generally use a sentential logical language with which they
express formulae and construct proofs. However, human mathematicians typi-
cally use not only multiple but also informal representations such as diagrams
or images within the same problem for different parts of the solution. Often,
there may be parts of the problem that can be better (more intuitively or more
efficiently) solved in one representation, language or theorem prover, and other
parts in another. However, existing general-purpose theorem provers currently
use sentential logics only and do not provide support for diagrammatic and het-
erogeneous reasoning. Moreover, tools for combining systems (e.g., OpenBox [1],
Sledgehammer [2], Omega [6], HETS [9], Chiron [4]) do not allow augmenta-
tions to theorem provers that would enable flexible and heterogeneous mixing of
formal as well as informal representations and reasoning steps within the same
proof attempt. They also do not have the ability to integrate foreign or non
formalised data into formulae of theorem provers, and reason with it natively.
We analyse related work in more detail in Sec. 5.

Our goal is to enable heterogeneous reasoning (HR) [11], that is, reasoning
with mixed representations and also with inference steps from different existing
sentential reasoners (SR) as well as diagrammatic reasoners (DR). Further-
more, when logical formalisation of a particular representation (e.g., diagrams,
images, or audio) is not tractable, we want to allow the embedding of such data
in existing provers and still enable informal heterogeneous reasoning with these
opaque objects within an otherwise formal proof. Our aim is to provide an HR
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Fig. 1. A heterogeneous proof: it consists of three proof steps. The ComputeArea
inference step is heterogeneous. It takes a bitmap image and extracts some information
(the area of the square) which is expressed in the sentential language. The ArithSimp
inference step is sentential. The ComputeShape is also a heterogeneous inference step.
It extracts that the bitmap shape is a square and thus resolves the implication.

framework that enables the construction of heterogeneous proofs. Fig. 1 shows
a simple example of a heterogeneous proof that we want to construct in an
HR system. The idea is that the user can choose the most appropriate senten-
tial and diagrammatic reasoners and representations, integrate them using our
framework, and produce proofs where they can readily choose which parts of the
proof they want to represent with which language, and which parts they want
to prove with which reasoner.

Our work aims to model human flexible and informal reasoning with their
plethora of representations and reasoning techniques. The applications of our
work are targeted at tool developers whose sentential or diagrammatic theorem
provers’ power could be enhanced by bringing to them new and possibly infor-
mal representations and reasoning tools. Moreover, domain specific tools like, for
example, those for image processing, circuit design, natural language processing,
Venn and spider diagrams, which typically do not have access to reasoning en-
gines, can utilize our framework to gain formal reasoning capabilities. Thus, the
main contributions of our work are:

– A generic infrastructure for extending existing general-purpose theorem pro-
vers (TP) with heterogeneous reasoning – we call this heterogeneous logic
and describe it in more detail in Sec. 2;

– A mechanism, called placeholders, for embedding foreign data into formulae
of existing theorem provers: it is a crucial part of our heterogeneous logic;

– The MixR framework, which is an implementation of the heterogeneous logic
and placeholders. It is a generic infrastructure for creating new HR systems.



A Framework for HR in Formal and Informal Domains 279

MixR can integrate arbitrary existing TPs of any modality with each other
into new HR systems – we describe the architecture of MixR in Sec. 3.

A tool developer can plug their chosen reasoners into MixR by writing MixR
drivers for them. MixR, in turn, integrates them with each other into a new
HR system. For example, we plugged Speedith [13] for spider diagrams and
Isabelle [10] for sentential higher-order logic into MixR to create the Diabelli [12]
HR system (see Sec. 4.1). MixR provides a user interface as well as an application
programming interface (API) for drivers. Using the API, the drivers can share,
translate and visualise formulae of various modalities. They may also apply
foreign inference steps and query other drivers to invoke foreign reasoning tools.

MixR provides placeholders which store foreign data that is dealt with by
external tools. This data is directly embedded into formulae of a prover which
treats them as primitive objects that can be reasoned with its standard inference
engine. When required, the reasoner can invoke external tools on this data to
obtain new knowledge as the result. Our approach using placeholders removes
the need for translations between representations which is particularly useful
when no such translation is available or even possible (e.g., diagrammatic rep-
resentations from CAD tools, images, and signal processing).

We demonstrate the generality and extensibility of MixR in Sec. 4 by present-
ing three examples: Diabelli for mixing spider diagrams and sentential higher-
order logic, and two new prototype drivers: one for image processing, and another
for natural languages. These show how to integrate tools and languages of differ-
ent modalities with existing TPs. We also show that HR is achievable by merely
extending general purpose TPs rather than creating entirely new ones.

2 Heterogeneous Logic

Our heterogeneous logic provides a generic infrastructure to formally or infor-
mally connect multiple logics as well as representations with each other. It serves
as the foundation for building HR frameworks – MixR is its example implemen-
tation (see Sec. 3). We first define the basic concepts and then the logic of HR.

� Participating logics and reasoners are integrated by our heterogeneous
logic into a single system. Participating logics may either be diagrammatic, sen-
tential, or of another modality. Participating reasoners provide languages, infer-
ence rules, theories, and proof structure. Goal-providing reasoners are master
reasoners, and others are slave reasoners. Master reasoners must provide a lan-
guage, proof obligations (goals) expressed in that language, inference steps, and
a concept of a proof. Slave reasoners must only provide inference rules.

Reasoners may be formal and logical (e.g., a sentential general-purpose the-
orem prover, a formal diagrammatic prover), or informal (e.g., CAD software,
image processing, or signal processing tools whose procedures for knowledge ex-
traction have not been formally verified).

� Participating languages and inference rules are provided by participat-
ing reasoners and can be diagrammatic, sentential, or of other modality. We de-
note the set of all participating languages with L, and the set of all participating
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inference rules with I. Our heterogeneous logic does not impose any restrictions
on the syntax and semantic interpretations of these languages – they are left for
the reasoner to provide. The languages can be formal or informal. For example,
general-purpose TPs typically use formal logical languages and inference rules.
Image processing software, however, uses informal images and informal image
processing algorithms as its inference rules for extracting knowledge (e.g., a trend
in a chart). Thus, the languages express and store data, while the inference rules
(algorithms) extract knowledge.

� Heterogeneous formula is a family of representations of the same original
expression but possibly in different languages. A single representation is denoted
with φa and is expressed in a particular language La ∈ L.

Definition 1. A heterogeneous formula is a pair (φm, R), where φm is the
main representation and R is a set of derived representations: R = {φa, φb, . . .}.
Every heterogeneous formula has a specific main representation φm from which
others can be derived. These derived representations in the set R are in some
semantic relation to the main representation φm which must be specified either
by the translation procedure or by the inference rule that produced the represen-
tation. Our heterogeneous logic does not impose any restrictions on how these
translations or inferences are defined (see below).

The languages of representations may be sentential, diagrammatic, or can
contain multiple embedded foreign expressions. Representations must be asser-
tions that can be evaluated to establish their truthfulness. The reasoner that
provides the language defines and manages this notion of truth. Some languages
(such as formal logics) have a clear definition of truth, while others (such as
natural languages) lack formality. Nonetheless, many of these informal domains
have notions of assertions that are compatible with the ones in formal TPs and
can still be partly defined. We exploit this via placeholders, described below.

� Heterogeneous goal, Γ , is a heterogeneous formula consisting of premises
(heterogeneous formulae) and a conclusion (a single heterogeneous formula):

Γ = P1, P2, . . . , Pn =⇒ C

Each premise and the conclusion may be represented in a different language.
Goals provide a standard way to exchange proof obligations and proofs between
participating reasoners. Each reasoner can be invoked on parts of the goal which
can be (re)presented in its language. Goals originate from a master reasoner.
If they are expressed in one language, then they are homogeneous. If they are
expressed in different languages or contain placeholders for non-formalisable or
non-translatable languages, then they are heterogeneous.

� Placeholder (or embedded foreign formula) is our novel concept that allows
sentences of one language to be inserted directly (without translation) into a host
formula of another language. Placeholders support embedding of representations
that are foreign to a participating language (e.g., in Fig. 1 an image is embedded
within a sentential logical formula). This is particularly useful when a translation
of one, possibly informal, representation into another is not available or even
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possible. The novelty of placeholders is that they do not require translation or
changing the syntax of the participating language. Instead, placeholders encode
the foreign formula using the syntax of the host formula (for a concrete example
of a placeholder, see Sec. 4.2). This differs from existing work on logical theories
since they do not admit foreign data, they only use uninterpreted constants for
building theories in their own, single language. We, in contrast, use uninterpreted
constants to carry foreign data expressed in any language. This data becomes
part of a chosen host language and theories can be built using it.

Definition 2. A placeholder π[V ,Lp, φp] is a formula in the language Lc ∈ L,
where φp is a payload formula, V is a set of variables bound implicitly in φp,
and Lp ∈ L is the language in which φp is expressed.

The role of the placeholder π[V ,Lp, φp] in a sentence of the language Lc is the
same as that of a Boolean predicate P (v1, · · · , vn) where {vi | 1 ≤ i ≤ n} = V.

Variables V provide the link between the host and foreign formulae. For exam-
ple: using an external reasoner, we can deduce that for any x and any y the
placeholder π[{x, y} ,Lnl, “x is smaller than y”] implies that x < y in the host
theory. Note that universal quantification cannot be to the right of the impli-
cation, since x and y are bound in the placeholder. If no variables were listed
in V , for example, π[∅,Lnl, “x is smaller than y”], then x and y are independent
universally quantified free variables in the host theory, and now the placeholder
implies that x < y for any x and any y, a clear falsehood.

Placeholders have no defined interpretation in the host reasoner. They only
carry data (i.e., the payload) throughout a proof while being embedded within a
host formula. The data is given to external reasoners for knowledge extraction.
The extracted knowledge is then embedded back into the proof hosted by the
master theorem prover. The external reasoners can themselves be formal, but
the entire step is still informal due to placeholder’s informal embedding of data.

� Inference rules I ∈ I are applied on goals to constitute inference steps. In
general, an inference step takes as input a set of initial HR goals {Γ1, . . . , Γn}
and produces a new, transformed set of {Γ ′

1, . . . , Γ
′
m}. The inference rule I must

guarantee that the new goals logically entail the initial goals (see below).
The general form of an inference step in our heterogeneous logic is:

Γ ′
1, . . . , Γ

′
m

rule: I.
Γ1, . . . , Γn

We use the backward reasoning notation, where transformed goals are on top
and the original ones on the bottom. Inference rules may transform premises as
well as the conclusion of a goal, thus both forward and backward (goal-directed)
reasoning methods are supported in our heterogeneous logic.

Inference rules adhere to typical constraints of goal-directed reasoning: strength-
ening or information-preserving rules can be applied on the conclusion of a goal;
weakening or information-preserving rules can be applied on the premises of a
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goal. Our heterogeneous logic defines weakening, strengthening, and information-
preservation relative to other languages on the basis of translations.

Consistency: Our heterogeneous logic does not impose any restrictions on how
the inference rules are constructed. Consequently, no guarantees can be given
about the consistency and correctness of proofs in general (see heterogeneous
proof below). Nonetheless, our logic can formally guarantee correctness of proofs
under the following conditions: the entire proof must be hosted in a single mas-
ter reasoner, the proof must start in the language of the master reasoner, all
inferences (including external ones) must produce goals in the language of the
master reasoner or the produced goals can be translated into that language.
Under these conditions, the master reasoner can verify the correctness of each
step (this process is called proof reconstruction). On the other hand, proofs that
extract knowledge from placeholders are necessarily informal, as no translation
of their content into the language of a master reasoner exists.

Heterogeneity: An inference rule is heterogeneous if it transforms goals contain-
ing formulae of different languages, otherwise it is homogeneous. Heterogeneous
rules have to be written by the developer of a heterogeneous system (e.g., het-
erogeneous inference rules in Sec. 4.3 take an image and produce a sentential
formula). Heterogeneity is also achieved by translating formulae of different lan-
guages to a target language before passing them to the inference rule.

�Translation procedure takes an existing formula representation of a premise,
conclusion, or entire goal, and produces another one in another language. These
representations must be in a correct logical entailment relation with each other.
Depending on the entailment of translation we distinguish between translations
that are: strengthening (applicable on conclusions), weakening (applicable on
premises) and information-preserving (applicable anywhere). If entire goals are
translated, weakening applications must not be used.

Consistency and validity: Translations are formal when the logic of one language,
say La, has been formalised in the logic of another language, say Lb. If these
translations are used in a proof, then such a proof is formal if hosted and recon-
structed by the master reasoner that uses the language Lb. Our formalisation of
spider diagrams in the sentential logic of Isabelle/HOL is one such formal trans-
lation: proofs are hosted and reconstructed in Isabelle/HOL [12]. Translations
can be left informal when formalisation is not feasible. Clearly, in this case their
soundness cannot be guaranteed.

� Logical entailment between two formulae is heterogeneous if the two formu-
lae are of different languages, and homogeneous otherwise. The heterogeneous
logical entailment is defined for formulae resulting from applying inference steps
or translations procedures as:

Definition 3. Formula φa, expressed in language La ∈ L, entails formula φb

of language Lb ∈ L with respect to language Lc if there exists a direct translation
t1 from φa to φa’ and another translation t2 from φb to φb’, where both φa’ and
φb’ are expressed in language Lc, and φb’ can be deduced from φa’ in a finite
homogeneous proof, or if for any interpretation such that φa’ is true, so is φb’.
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Heterogeneous entailment is formal with respect to language Lc if the transla-
tions t1 and t2 are formalised within the logic of Lc (e.g., our formalisation of
spider diagrams in Isabelle/HOL in [12]). Homogeneous entailment is a special
case of heterogeneous entailment, where the translation is an identity map.

�Heterogeneous proofs are based on discharging proof obligations which take
the form of heterogeneous goals. An HR proof thus consists of initial heteroge-
neous goals, followed by multiple applications of heterogeneous inference rules
which produce new goals. The inference rules are applied until only tautological
goals remain – they are thus discharged and the proof is completed.

Soundness : Proofs in our heterogeneous logic are hosted in a master reasoner.
Foreign inference rules can be used on goals by extracting the goals from the mas-
ter reasoner, passing them to the slave reasoner for inference, and then inserting
the result back into the master reasoner’s proof. Only a formal translation can
provide soundness and completeness guarantees. So, if the new formula is not a
placeholder (i.e., a translation into the host language exists), then the master
reasoner can verify its soundness. Otherwise, the master reasoner can trust that
the new goal is correct using the oracle principle, but clearly the proof cannot
be guaranteed to be sound. Tools such as HETS [9] could be utilised to provide
other existing translations, and thus formal guarantees for them.

3 Architecture and Design of MixR

MixR implements the heterogeneous logic introduced in Sec. 2: it manages formu-
lae, their translations, inference rules and communicates these with participat-
ing reasoners. Tool developers, who are the users of the MixR framework, can
integrate their own representations (formula formats), translation procedures,
inference rules, visualisations, or entire participating reasoners using MixR by
providing drivers which are pluggable components. This results in a new HR
system for end users. We present three examples of drivers in Sec. 4. MixR was
implemented in Java using the NetBeans platform.1

Fig. 2 shows the general architecture of MixR. A MixR-based system adds
HR on top of participating reasoners. Master reasoners host the proof in their
proof management infrastructure. MixR, however, takes proof obligations (goals)
from master reasoners, translates them, visualises them, and lets users interact
and explore them. MixR also facilitates communication of goals with other slave
reasoners. Slave reasoners transform the goals with their inference rules. The
result is communicated back to the originating master reasoner. In summary,
MixR’s role is that of a mediator between multiple master and slave reasoners.

MixR is a small core that implements a set of heterogeneous logic components
(concepts from our heterogeneous logic), driver contracts (that facilitate inte-
gration of reasoners), and general UI components (which display pending proof
obligations, enable user interaction and coordinate formulae visualisation).

1 All MixR sources are available from https://github.com/urbas/mixr .

https://github.com/urbas/mixr
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Driver A
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proof replay
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inference
rules
visualisation
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Plug points (contracts):

translation contract

goal provider contract
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contract
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formula format
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Fig. 2. The outline of MixR’s architecture with hypothetical drivers. The central box
represents MixR’s core. It contains the implementation of heterogeneous logic compo-
nents, general UI components, and driver plug-points. Drivers surround MixR’s core
and plug into it through the plug-points.

3.1 Heterogeneous Logic Concepts

Since heterogeneous proofs are hosted by master reasoners, it is the respon-
sibility of master reasoners (and their drivers – see below) to implement the
concept of heterogeneous proofs. MixR provides implementations for the other
heterogeneous logic concepts: FormulaFormat (participating languages),
FormulaRepresentation, heterogeneous Formula, heterogeneous Goal,
Placeholder, heterogeneous InferenceRule, and FormulaTranslator (trans-
lation procedures). MixR also implements placeholders that provide the infras-
tructure for inserting foreign data into formulae of existing theorem provers (for
examples, see Sec. 4). With these, specialised ad-hoc mixed systems do not have
to repeat implementing or re-inventing placeholders. Instead, MixR allows the
developer to focus on the rules and simply reuse the infrastructure.

3.2 Driver Contracts

MixR makes the functionality of every driver available to every other driver and
also the user interface. To simplify and generalise all inter-driver communication,
MixR defines a standard set of driver contracts: GoalProvider, FormulaFormat-
Provider, FormulaPresenter, TranslationProvider, and GoalTransformer.

The GoalProvider contract must be implemented by drivers that connect
master reasoners to MixR. They communicate pending proof goals of the master
reasoner to MixR. MixR also uses this contract to re-insert transformed goals
back into the master reasoner.

Drivers providing new formula formats to MixR must implement the Formula-
FormatProvider contract. They must provide a unique name of each format, a
description and an API for manipulating the formulae of that format.

MixR gives users the choice of using sentential, diagrammatic as well as het-
erogeneous formulae. These are displayed to the user in a way most suitable for
the given format. For this reason, drivers can implement the FormulaPresenter
contract that facilitates the visualisation of formulae of particular formats.
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Fig. 3. The user interface of a MixR-based system that integrates PicProc with Isabelle

Translation procedures are integrated into MixR by drivers implementing the
TranslationProvider contract. These drivers advertise all translations they
contribute. MixR uses them automatically whenever a particular formula format
is requested. The user may also invoke a translation on any formula interactively.

Drivers that transform goals with inference rules must implement the Goal-

Transformer contract. They bring slave reasoner functionality into MixR.

3.3 General UI Components

MixR’s general UI components present and control aspects that are common to
the entire framework. Fig. 3 shows the user interface of a system created using
MixR, which contains the following components (sub-windows):

– Top-left: The list of pending goals of the currently active master reasoner.
– Top-right: The proof script of the master reasoner.
– Pop-up menu under the mouse cursor: Shows how the user interacts with the

list of pending goals (e.g., applying inference rules on the goals, translating
them to a target representation, or selecting the part to be visualised).

– Bottom-centre: Visualises currently active or selected formulae.
– Bottom-left and bottom-right: Lists of all available reasoning languages, reg-

istered drivers, master reasoners, and slave reasoners.

This is how the interaction with inferences is carried out in MixR:

1. The user first selects the part of a goal on which to apply the inference rule.
In Fig. 3 the user selected the first premise of the first goal (see top-left
sub-window).

2. Next, the user chooses an inference rule by left-clicking the selected invoca-
tion target and choosing the desired inference rule (shown under the mouse
cursor in Fig. 3).

3. Now, if the inference rule is an interactive one, the user may be asked for
more input. In the example from Fig. 3 the selected rule Get object area
requires no additional input.
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4. Finally, the inference rule returns its result, which may be a formula foreign
to the target master reasoner. If so, MixR tries to translate it. If no transla-
tion succeeds, the result is placed into a placeholder. MixR constructs a new
goal with the result and passes it to the master reasoner’s driver. The driver
then inserts the goal into the master reasoner’s proof script. In Fig. 3, the
line starting with apply was inserted after the user invoked the inference.

4 Prototype Examples

We now demonstrate MixR’s generality and its facilities to integrate diverse sys-
tems into heterogeneous reasoning tools. To integrate a new reasoner, we have to
create a driver for it. The driver must implement a particular set of driver con-
tracts to integrate the desired features into MixR. In the past, we used MixR to
integrate the general purpose theorem prover Isabelle [10] and our diagrammatic
prover Speedith [13] into an HR system Diabelli [12]. Here we present Diabelli,
and two new drivers:NatLang and PicProc. NatLang integrates a mock sentential
reasoner for informal natural languages. PicProc integrates an image processing
visual reasoning tool. We use MixR to combine each with Isabelle that has the
role of the master reasoner in this demonstration. These prototype drivers work
on domains that are inherently hard to formalise. They showcase how such in-
formal domains may still be integrated with a formal general purpose theorem
prover. To give an idea of their complexity, the Speedith, Isabelle, NatLang and
PicProc drivers each consist of between 400 and 600 lines of Java source code.

4.1 Diabelli

Diabelli is our HR system that allows users to construct heterogeneous proofs
with spider diagrams mixed with the sentential higher-order logic language. It is
a system resulting from plugging the Speedith [13] DR and the Isabelle [10] SR
into the MixR framework. Diabelli does not utilise MixR’s placeholder mecha-
nism since Speedith’s representation can be translated into Isabelle’s, so Speed-
ith’s data is not foreign to Isabelle. Fig. 4 shows Diabelli’s user interface with
Isabelle/HOL sentential formulae mixed with Speedith’s spider diagrams and
spider-diagrammatic inference rules. The implementation details of the drivers
for Speedith and Isabelle can be found in [12]. Diabelli provides a non-hypo-
thetical, fully integrated, and non-trivial experimental evidence for how MixR
contributes and aims to spur innovation within the community using and
studying diagrams.

4.2 NatLang

The NatLang driver implements the contracts FormulaFormatProvider and
GoalTransformer. It provides a single formula format, the NatLangFormat,
which is a plain string with no restrictions or grammar. We use MixR’s
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Fig. 4. Diabelli’s main window. The top-right sub-window contains I3P’s hosting proof
script editor for Isabelle. Users may edit theories in the same way as in standalone I3P.
Diabelli inserts heterogeneous proof steps into this proof script as the user applies them
through Diabelli’s GUI (by right-clicking on the goals in the top-left sub-window).

placeholders to insert NatLang expressions into Isabelle/HOL formulae. Here is
an Isabelle/HOL formula containing one such placeholder:

(MixR [About[Teenager , Human]] "NatLang:Every teenager is a

human.")

∧ (∀p. p ∈ Human −→ p ∈ Mortal)

−→ Teenager ⊆ Mortal.

The predicate MixR is the placeholder. It contains the set of variables (V =
{Teenager, Human}) and a string (payload) which consists of the name of the
foreign language (Lp = NatLang ) and the actual foreign formula (φp = Every

teenager is a human ).
NatLang provides inference rules HomogeneousInference and Heterogene-

ousInference, which rely entirely on user-input. The homogeneous inference
rule takes a NatLang expression and returns a NatLang formula which is re-
embedded into the Isabelle/HOL formula as a placeholder. The heterogeneous
rule takes a NatLang expression and returns an Isabelle/HOL formula, which it
places into the Isabelle formula without a placeholder. Here is an example where
Teenager ⊆ Human has been inferred from the above NatLang sentence:

(Teenager ⊆ Human ∧ (∀p. p ∈ Human −→ p ∈ Mortal)) −→
Teenager ⊆ Mortal

The resulting goal may now be reasoned about with Isabelle’s own theories
and inferences. The homogeneous inference rule shows how a foreign inference
step can be used within an Isabelle proof (i.e., both the input and the output
formulae are foreign to the theorem prover). The heterogeneous inference rule,
on the other hand, demonstrates how knowledge can be transferred between
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the natural language domain and the theorem prover’s domain. Such reasoning
is informal as a whole, but the informal parts are limited to small steps that
link both domains. This mechanism provides more than the oracle principle:
MixR extracts knowledge from the placeholder’s data piecewise (as it’s needed
in the proof); the oracle principle is used to trust each such step of knowledge
extraction, translation, and re-embedding.

4.3 PicProc

The PicProc example demonstrates the integration of images and image process-
ing into sentential theorem provers. This example also utilises placeholders and
the Isabelle master reasoner. Fig. 1 shows a heterogeneous proof that PicProc
contributes to, and Fig. 3 shows the screenshot of the system resulting from
plugging PicProc and Isabelle into MixR.

Similarly to the NatLang driver, PicProc provides a new formula format and
two inference rules. The formula format is called ImgUrl and the provided infer-
ences are ComputeArea and ComputeShape. The ImgUrl formulae are paths to
bitmap images. The rule ComputeArea returns the area of the shape (the tilted
square at the bottom of Fig. 3). The rule ComputeShape infers the type of the
shape. This rule decides whether the shape is a circle, a triangle, or a square
(based on the ratio between the area and the circumference of the shape).

Note that in Fig. 3 (top-right sub-window) the PicProc image is inserted into
a MixR placeholder within the host Isabelle/HOL formula. The About[ShapeA]

clause indicates that the placeholder talks about an object called ShapeA. Place-
holder’s variables V such as ShapeAmust be extracted and listed by the driver (in
this case the driver simply takes the name of the image file), otherwise Isabelle
cannot know that the payload contains knowledge about them.

The PicProc driver also implements the FormulaPresenter contract which
provides MixR with new visualisation capabilities. ImgUrl formulae found by
MixR can now be passed to PicProc, which opens the image and displays it in
MixR’s visualisation panel (see the bottom-centre sub-window of Fig. 3).

5 Related Work and Evaluation

The topic of HR has been explored in a number of different contexts [11,1,12].
Here, we compare our work to existing logics and systems that provide some
level of heterogeneity. We then evaluate its scalability and extensibility.

5.1 Logics

Chiron [4], context logic [3], and multilanguage hierarchical logics (MLHL) [5]
are logics that provide heterogeneity on two levels: multiple reasoning paradigms
with a single sentential language (Chiron and context logic), or single reason-
ing paradigm with multiple first-order sentential languages. In particular, these
logics use purely sentential languages and establish entirely formal connections
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between all their components. For example, Chiron uses a single sentential lan-
guage but allows switching between different reasoning paradigms (e.g., classical
reasoning, set-theoretic reasoning, type-theoretic reasoning). Similarly, context
logic uses a single sentential language, but its semantics are defined with con-
texts and multiple sets of statements. This enables context logic to encompass
intuitionistic, classical, and predicate logic as its special cases. The goal of MLHL
is similar – to enable reasoning in multiple sentential logics. Although MLHL
allows multiple different languages, they are all confined to first-order logics.

Thus, Chiron, context logic, and MLHL have a different notion of heterogene-
ity to ours, and unlike MixR they also do not extend logics of existing theorem
provers with HR, nor facilitate formal and informal HR.

5.2 Frameworks and Systems

� OpenBox is the only other existing implementation of an HR framework [1].
It maintains its own proofs and uses external theorem provers to validate sep-
arate inference steps within its proofs. These provers may be diagrammatic or
sentential, which makes OpenBox a heterogeneous framework. Unlike MixR,
OpenBox does not extend existing reasoners with heterogeneous reasoning but
rather utilises them to make its own proofs heterogeneous. This forces users
of reasoners to abandon their existing work. In contrast, MixR reuses proofs
and proof scripts of existing reasoners which means that users can retain their
existing work and seamlessly extend it with HR. While separate formulae of
OpenBox’s proof can be of different modalities, a single OpenBox formula is of a
single modality. This is in contrast to MixR where a single formula can contain
embedded foreign formulae of different modalities. Furthermore, unlike MixR,
OpenBox cannot embed foreign data into formulae of existing TPs.
� Sledgehammer [2] is a component of the Isabelle [10] SR that passes trans-
lations of Isabelle statements to external reasoners for validation. It replaces
external answers with corresponding Isabelle’s inference steps. This purely sen-
tential process requires formal translations and that obtained answers are fully
expressible with Isabelle. Sledgehammer cannot process heterogeneous nor in-
formal inference steps, and it cannot embedding foreign data into formulae.
� Omega is a proof planning system [6] that uses different sentential reasoners,
and is thus a homogeneous rather than a heterogeneous system. Unlike MixR,
Omega imposes its own proof structure that is maintained by the blackboard
mechanism. An external SR can only be invoked if the translation of the Omega
formula into its representation exists. This is in contrast to MixR which can use
placeholders to embed foreign data from external reasoners into formulae when
no translation exists. Omega also does not extend existing reasoners in any way.
�HETS (or Heterogeneous Tool Set) [9] differs fromMixR in the use of the term
“heterogeneous”. In HETS it is used to refer to formal relations between multiple
sentential logics. Unlike MixR, HETS is thus a purely sentential system, which
produces formal translations between sentential logics. In contrast to MixR,
which does not require translations, a logic cannot be used in HETS if it cannot
be translated into other HETS logics.
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5.3 Scalability and Extensibility

Current benchmark problem sets (such as TPTP) test the efficiency and scope
of theorem provers in first-order or higher-order sentential logic. In contrast, our
heterogeneous logic and framework aim to expand the vocabulary of existing TPs
with foreign data, formulae, diagrams, informal reasoning, and foreign inference –
none of these are included in benchmark sets. Thus, rather than quantitatively we
qualitatively evaluate the extensibility of our heterogeneous logic and framework.

The range of domains that can be integrated using MixR was exemplified in
Sec. 4 where we presented case-studies of Diabelli, NatLang and PicProc. These
embed spider diagrams, natural language and image processing into an existing
theorem prover. We now evaluate the generality of our framework by assessing
if and which other reasoners can be plugged into it. We consider Cinderella [8],
Hyperproof’s Blocksworld [1] and Diamond [7] as representative DRs, and HOL4,
HOL Light, Coq and Twelf as representative SRs.

Cinderella [8] (a reasoner for geometric constructions) and Diamond [7] (a
reasoner for diagrammatic proofs on natural numbers) could both be master
reasoners in MixR. Their drivers would have to implement UI editors for hosting
diagrammatic proof scripts and visualisation procedures. Both, Cinderella and
Diamond use automated sentential TPs to validate and verify their diagram-
matic proof steps. These TPs could be integrated as slave reasoners in MixR.
Cinderella could also be used to integrate the domain of geometry into other
master reasoners such as Isabelle. This would require translation procedures
between Cinderella’s internal representation and Isabelle/HOL formulae.

Blocksworld expresses relations between 3D objects placed on a checkerboard.
The reasoning about these relations is done within Hyperproof [1] using a first-
order logic TP. Thus Blocksworld does not have a notion of a proof state, and
can only be plugged into MixR as a slave reasoner. Its driver would have to
integrate its visualisation, and also implement a translation procedure between
Blocksworld’s models and any existing master reasoner in MixR.

Interactive theorem provers HOL4, HOL Light, Coq, and Twelf all use textual
proof scripts. Master reasoners need these to host proofs. All these provers enable
reasoning with either oracles or axioms (required for informal reasoning). HOL4
and HOL Light provide the mk thm command to introduce informal inferences;
Coq provides the command Axiom; and Twelf supports axiomatic inference rules
as part of its meta-theorem infrastructure. MixR’s placeholders require uninter-
preted constants and functions in the theorem prover’s logic. HOL4 and HOL
Light support uninterpreted functions through the def constant command.
Similarly, Coq provides the command Variable for this purpose. Finally, Twelf’s
fundamental approach to building theories is to start with uninterpreted symbols
and provide inference rules for them later. Therefore HOL4, HOL Light, Coq,
and Twelf could all be extended with our heterogeneous logic and thus plugged
into MixR. This would require the developers to write additional translation pro-
cedures, communication channels between the theorem prover and MixR, and
the integration of the theorem prover’s text editor software with MixR. Theorem
provers that are fully automated, such as Z3, ACL2, Vampire, and Spass lack
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proof scripts (or other theory- and proof-specification documents). Thus they
can be integrated into MixR as slave reasoners but not as master reasoners.

6 Conclusion

In this paper, we presented a heterogeneous logic that marries formal logics
with diverse and possibly informal representations. Our novel concept of place-
holders enables existing logics to formally treat foreign representations within
their own formulae. We implemented this logic in a heterogeneous framework
MixR that facilitates a flexible integration of sentential or diagrammatic the-
orem provers and other formal and informal reasoners, representations and vi-
sualisations. These can be plugged into MixR via drivers to produce integrated
HR systems. With MixR, we can explore in breadth and in depth the interaction
between diagrammatic languages and formal sentential languages which invites
multi-domain collaboration and exploration. Domains traditionally inaccessible
to formal reasoners, can now be integrated and exploited. The developers of HR
systems can be flexible about their system design: their choices may depend on
issues surrounding efficiency, intuitiveness of proofs, or level of expertise of end
users of resulting systems.

We presented three examples of integrated systems from diverse domains of
spider diagrams, natural language and image processing. Plugging them into
MixR alongside a general purpose theorem prover enabled for the first time to
formally use the information from informal reasoners to construct proofs.

Many reasoning tools, representations and visualisation aids in AI exist mostly
in isolation, specialised in their specific domains. Bringing them together in
a simple, flexible and formal way allows them to contribute to the problem
solving/theorem proving tasks. We believe this is desirable for several reasons: it
better models what people do in problem solving, it allows developers to easily
design systems that are flexible according to the needs of the end-users, and it
enables us to take advantage of the existing powerful technology out there in a
novel and sustainable way.
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