
Diagrammatic Reasoning in Separation Logic

M. Ridsdale1, M. Jamnik1, N. Benton2, and J. Berdine2

1 University of Cambridge
2 Microsoft Research Cambridge

Abstract. A new method of reasoning about simple imperative pro-
grams in separation logic is proposed. Rather than proving program
specifications symbolically, the hope is to model more closely human
diagrammatic reasoning, and to perform automated diagrammatic rea-
soning in separation logic.

1 Introduction

Separation logic is used for reasoning about low-level imperative programs that
manipulate pointer data structures. It enables the writing of concise proofs of
correctness of the specifications of simple programs, and such proofs have been
successfully automated.

When reasoning informally about separation logic, it is often useful to draw
diagrams representing program states, with memory locations represented by
boxes, pointers represented by arrows, etc. We aim to formalise these diagrams
and implement an automated theorem prover (ATP) which makes use of this
formalism. This proposal outlines a promising direction for research. The ideas on
diagrammatic reasoning are drawn from [1], which is on diagrammatic theorem
proving in arithmetic; we also draw on ideas from [2], which is on symbolic
automated theorem proving in separation logic. An example of the kind of

x

x
nil nil

x

x

x
nil

nil

nil

nilnil

nil

nil

nil

k := [x+1]
[x+1]:= y

y := x
x := k

y:=nil; while x!=nil do
 (k:=[x+1]; [x+1]:=y; y:=x; x:=k)

k := [x+1]
[x+1]:= y

y 1α 2α k
3α

y := x
x := k1α

y

2α k
3α

. . .

5. 4α

1α

2.

3.

1. Initial state

k

k
y

1 2 3 4

1 2 3 4

4321

α

α α α α

ααα

α α α α

4. 4α

2α 3α y4α

Fig. 1. An informal diagrammatic proof, that the program shown reverses a list

problem we want to be able to solve is shown in Fig. 1.
Each square represents a memory location, which can hold values (αi) or

pointers to other memory locations. x, y, k outside of the squares represent
program variables, which store memory locations. The program shown reverses
a linked list; this can be proved symbolically using separation logic. An informal
diagrammatic proof is given in Fig. 1. It shows a partial execution trace of
the list-reversal program, through two iterations of the while loop. On each
iteration, the direction of one pointer in the list is reversed. A person following
this trace can see intuitively that the entire list will be reversed when the program
is complete.

Following [1], we intend to turn this into a formal proof using an ATP which
makes use of schematic proofs. This approach allows us to avoid including ab-
stractions such as ellipses in diagrams, and doing inductive proofs over diagrams.
Informally, schematic proofs are intended to capture the notion of a ‘general
proof’: they are functions from some set of parameters to a set of proofs, for
some more specific notion of a proof. In the example in Fig. 1, the schematic
proof sch-pf would be a function of the length of the list, such that sch-pf (n) is
a proof that lists specifically of length n are reversed by the program.

A disadvantage of this approach is that it requires at least one example
proof from the user in every case. Possible future work would be to look at an
alternative diagrammatic procedure which is fully automated.

In order to implement the above, we first need to define the following:

1. Diagram syntax: the arrangements of shapes on a page or screen which con-
stitute a well-formed diagram.

2. Diagram semantics: a function mapping each diagram to a set of memory
states represented by the diagram.

3. Diagram operations: a set of operations on diagrams that will permit us to
perform automated reasoning. These operations must be sound with respect
to the semantics, and preferably complete, particularly since the symbolic
system in [2] is complete.

4. Theorems and proofs: a schematic proof will output a concrete proof for each
value of parameter n. A definition is required of what would constitute such
a concrete proof.

Once the appropriate definitions are in place, the ATP would work in the
following stages:

1. User provides a few example proofs for a specific instance of a theorem.
2. Program generalises from the examples, using a heuristic which suggests a

schematic proof.
3. Program verifies the schematic proof using a sound verification procedure.

2 Syntax and Semantics

We can define diagrammatic objects corresponding to predicates in separation
logic. These predicates represent data structures and statements about data
structures. For example, the two diagrams in Fig. 2 represent memory states in
which the predicates list and list segment hold. The list is terminated by
nil, while the list segment is terminated by a program variable.

1 n
α α

. . .
x 1 n

α α

. . .
x

nily

Fig. 2. Diagrams representing a list segment (left) and a list (right)

3 Theorems and Proofs

Before being able to reason about programs using the schematic proofs men-
tioned previously, we need to be able to reason about static memory states,
computing whether two diagrams are equivalent, or whether one diagram entails

2

another, more general one. For example, a single list might be drawn as the
concatenation of any possible decomposition into sublists, and we need a way
to automatically recognise these equivalences. An example from [2] is shown in
Fig. 3. There is a list segment from x to t, and a separate list beginning at
y. The two are connected by a single element, indexed by t. It follows that there
is in fact a list from x terminated by nil.

x

. . .

nil. . .

. . .

. . . nil

x γ
1

α γ
m

α

1
β

n
β

m1

y 1 n
β

αα

β

t

t y

Fig. 3. A list segment and a list, which are implicitly connected.

In order to perform automated reasoning, we define a set of operations on
diagrams, which will be picked to allow for sound reasoning with respect to
the semantics. These can be of two types: static operations which preserve the
diagrams’ meaning, for reasoning about static memory states, and dynamic oper-
ations corresponding to program commands. An example of the former is shown
in Fig 3. It constitutes a simple diagrammatic proof of the problem described in
the previous paragraph: two instances of a replacement operation. This opera-
tion simply replaces both instances of program variables y and t with pointers
between the relevant cells. For comparison, here is the symbolic proof that the
procedure in [2] would give:

t 6= nil | ls(y, nil) ⊢ ls(y, nil)

t 6= nil | t 7→ [n :y] ∗ ls(y, nil) ⊢ t 7→ [n :y] ∗ ls(y, nil)

t 6= nil | t 7→ [n :y] ∗ ls(y, nil) ⊢ ls(t, nil)

t 6= nil | ls(x, t) ∗ t 7→ [n :y] ∗ ls(y, nil) ⊢ ls(x, nil)

ls(x, t) ∗ t 7→ [n :y] ∗ ls(y, nil) ⊢ ls(x, nil)

We believe the diagrammatic proof is more human-readable.

4 Conclusion

Developers frequently use diagrams informally when discussing separation logic
problems with one another. Our aim is to formalise these diagrams and imple-
ment an automated diagrammatic theorem prover for separation logic. A nec-
essary first step to creating an ATP which can reason about entire programs
is an ATP which can reason about static memory states, and this is our initial
direction of research.

References

1. Jamnik, M., Bundy, A., Green, I.: On automating diagrammatic proofs of arithmetic
arguments. Journal of Logic, Language and Information 8(3) (1999) 297–321

2. Berdine, J., Calcagno, C., O’Hearn, P.: Symbolic execution with separation logic.
APLAS (2005)

3

