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Abstract. When formalising diagrammatic systems, it is quite common
to situate diagrams in the real plane, R2. However this is not necessarily
sound unless the link between formal and physical diagrams is examined.
We explore some issues relating to this, and potential mistakes that can
arise. This demonstrates that the effects of drawing resolution and the
limits of perception can change the meaning of a diagram in surprising
ways. These effects should therefore be taken into account when giving
formalisations based on R2.

1 Introduction

When formalising diagrammatic systems, it is quite common to situate diagrams
in the real plane, R2.. Curves and points in the diagram are associated with
curves and points in the real plane. Results from real analysis – most commonly
the Jordan Curve Theorem1 – can then be used to prove various properties of
the representation system.

However this does not guarantee these properties unless the link between
diagrams ‘drawn’ in R2 and actual physical diagrams is examined. Familiarity
makes it easy to forget that R2 is a technical mathematical construction, and
not the same as a physical plane. Caution is suggested by the fact that the
Jordan Curve Theorem does not hold for Q2 – which is a better approximation
to R2 than any physical drawing surface. We must take into account the limited
precision of drawing tools, and the limits to which people using the diagram can
accurately identify the objects drawn. In R2, it is possible to draw infinitely thin
curves and distinguish between arbitrarily close points. This is, of course, not
possible for any physical surface on which a diagram might be drawn. Another
discrepancy is that R2 is not bounded.

To analyse the possible effects of these discrepancies, let us suppose that
diagrams are produced by a drawing function that converts diagrams in R2into
physical diagrams (either on paper or a computer screen). We may plausibly
assume that given a diagram consisting of curves and points in R2, its physical
drawing is a ‘blurred’ version of the original (where points have an area, lines have
a width, and the drawing process can introduce some small errors). Measurement
errors will also occur when reading the diagram, adding another level of blurring.

At least two problems can occur in drawing objects from R2:
1 “All non-intersecting closed curves in R2 are homeomorphic to the unit circle” - and

hence have a well-defined inside.
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Fig. 1. Example of a mistake arising from the appearance of equality. Spotting the
error behind this paradoxical diagram is left as a puzzle for the reader

Fig. 2. Example of how using inside to represent ∈ can produce representation errors:
the left hand diagrams shows a ∈ B, which turns out to be false on magnification

1. False equality statements can be generated, and in several different ways: If
two points are close but not equal, two lines almost but not quite parallel,
etc. these distinctions will be lost in the physical diagram. Figure 1 is a classic
example2 of this, which has implications for proofs such as the diagrammatic
proof of Pythagoras’ Theorem.

2. Many diagram systems use loops to represent sets (with inside used for
⊂ /∈). Clearly, drawing at too low a resolution can obscure such relations,
but that only results in lost information. More worrying is the possibility that
false relations might appear as ‘artifacts’ of the drawing process. Figure 2
shows how this can happen.

2 Original source unknown.
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2 Solutions

Note that using diagram viewers with a ‘zoom’ ability does not solve these
problems, since the user cannot know what level of magnification is required
to reveal any errors. However the problems raised here can be dealt with in
a rigorous fashion, and in several ways, including:

– We can restrict what diagrams are allowed to say (i.e. what information can
legitimately be read from a diagram).

– We can restrict ourselves to diagrams where problems cannot arise. This can
be done by identifying classes of diagrams which are immune to problems.
For example, it can be proved – subject to very plausible assumptions – that
the ‘closing eye’ structure shown in figure 2 is the only way in which errors
involving ⊂ / ∈ can occur (see [1]), and that restricting diagrams to using
convex curves prevents this.

– Where diagrams are computer-generated, the computer could detect that
such errors have occurred in drawing the diagram (by analysing the bitmap
produced or otherwise), and warn the user. This is the approach we have
taken in our Dr.Doodle system for analysis theorem proving [2].

3 Conclusion

We have shown that some caution is necessary when applying results from real
analysis to diagrams. The issues raised here do not threaten diagrammatic rea-
soning though: these problems are unlikely to occur in ‘normal use’ of most sys-
tems, and can be seen as merely technical difficulties in formalising diagrammatic
reasoning. Moreover, where diagrams are computer generated (which is surely
the future of diagrammatic reasoning), such drawing errors can be automatically
detected. We have, though, only examined drawing errors here. Ultimately, we
would also like a theory of diagram reading errors, which would also cover ef-
fects such as optical illusions. This is a much harder requirement, and any such
theory must be based in a cognitive science understanding of how people process
diagrammatic representations.
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