
Using Animation in Diagrammati TheoremProvingDaniel Winterstein1, Alan Bundy1, Corin Gurr1, and Mateja Jamnik21 Division of Informatis, University of Edinburgh, 80 South Bridge, Edinburgh, EH11HN, U.K.danielw�dai.ed.a.uk, bundy�dai.ed.a.uk, orin�ogsi.ed.a.uk2 Shool of Computer Siene, University of Birmingham, Birmingham, B15 2TT,U.K.M.Jamnik�s.bham.a.ukAbstrat. Diagrams have many uses in mathematis, one of the mostambitious of whih is as a form of proof. The domain we onsider isreal analysis, where quanti�ation issues are subtle but ruial. Com-puters o�er new possibilities in diagrammati reasoning, one of whihis animation. Here we develop animated rules as a solution to problemsof quanti�ation. We show a simple appliation of this to onstraint di-agrams, and also how it an deal with the more omplex questions ofquanti�ation and generalisation in diagrams that use more spei� rep-resentations. This allows us to takle diÆult theorems that previouslyould only be proved algebraially.1 IntrodutionIn adapting diagrammati reasoning to omputers, there is the exiting possibil-ity of developing diagrams in new ways. Diagrams in textbooks are neessarilystati. However, if we onsider the very real di�erenes between text and hy-pertext, we see that diagrammati reasoning on omputers need not be just astraight onversion of diagrammati reasoning on paper. One suh new diretionis the use of animation. In this paper we desribe how animation an be appliedto represent and reason about quanti�ation. Other appliations are possible:although unrelated to our present work, animated diagrams may also be use-ful in representing and reasoning about temporal relations. There is an obviousattration in using time to represent itself.1From the very beginning of mathematis, diagrams have been used to giveproofs in subjets suh as geometry and number theory. Nevertheless diagram-mati proof is only partially understood today. In partiular, we do not have ageneral theory for handling quanti�ation and the related topi of generalisation.1 This would probably not be suitable for domains whih involve preise time alu-lations, as these would be hard to judge in an animation. For qualitative reasoningthough, or as part of a mixed system, it seems an interesting line for future researh.



2 We identify three distint problems in this area: quanti�er hierarhy, quanti-�er type and identifying generalisation onditions. In sentential reasoning, quan-ti�er hierarhy is determined by reading from left-to-right. Quanti�er type isdetermined by the semantis attahed to the symbols 8; 9 (whih are part of theommon language of sientists and mathematiians), and generalisation is on-trolled by expliit onditions (e.g. 8A;B;C:triangle(ABC) ^ angle(A;B) =90o ) :::). Unfortunately these solutions do not naturally arry over to dia-grams.The use of two dimensions with several spatial relations being signi�antremoves the neat left-to-right ordering on objets that we have in sententialreasoning. For quanti�er type, we ould try to label objets with the 8; 9 symbolsas in algebra, but it is not always lear whih objet suh a label applies to,espeially if the diagram involves omposite objets. Fig. 1 gives an exampleof how this ould be less than lear (does the 8 symbol apply to the losestline, triangle or square?). Unlike algebra, where the onditions on a theoremare expliitly stated, diagrams often ontain a lot of information that may ormay not be relevant. Thus several generalisations are possible, some of whihmay be false. For example in Fig. 1, we might generalise to `all triangles', `allright angled triangles', or `all similar triangles2 to the one drawn'. Often thereis a lear intuitive generalisation, but this must be formalised if we are to giverigorous proofs (.f. [9℄ for a detailed disussion of this). So diagrams require afresh approah to all three problems.
Fig. 1. Problems in Pythagoras' Theorem: It is not lear what the 8 symbol appliesto, and we have not spei�ed whih aspets of the triangle are important.1.1 Related workSeveral approahes have takled the problem of quanti�ation in diagrams byintroduing new notation. This an produe systems as powerful as prediatelogi. However, it generally leads to more omplex diagrams, and great are isrequired if these are to retain their intuitive feel. For example, in 1976 Shubert,starting from semanti nets, developed (by adding more and more notation) adiagrammati representation that is as expressive as modal lambda alulus (seeFig. 2) [12℄. Unfortunately, the resulting diagrams are extremely diÆult to readand, to the best of our knowledge, were not generally used.2 Two triangles are similar if they di�er only in sale or left-right orientation.
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Fig. 2. A Shubert diagram for \Several hildren are on the playground. Most of themare playing in the sandbox."A more reent example is [8℄, whih extends Venn diagrams with extra no-tation and some inferene rules to give a heterogenous system3 as expressive as�rst-order prediate logi. It is shown to be sound and omplete, but also seemstoo diÆult to use. As Ambrose Biere's inventor said: \I have demonstratedthe orretness of my details, the defets are merely basi and fundamental" [2℄.By extending diagram systems on purely logial riterion without onsideringease-of-use issues, the �nal systems lost the very qualities that make diagramsattrative.

Fig. 3. We are unsure what this Shubert diagram means.A more suessful diagrammati system with quanti�ers is Gil et al 's on-straint diagrams, whih are an extension of spider diagrams [5℄. The objets inspider diagrams are oval ontours (representing sets with overlap=intersetion),points (representing members of sets) and `spiders' (linked points representingstatements of the form x 2 A [B). Constraint diagrams introdue arrows (rep-resenting relationships) and quanti�ers. Only points and spiders are quanti�edover. Quanti�er type is handled by drawing points in di�erent ways. That is,they have di�erent primitive objets for the di�erent quanti�ers: � = 9point,3 A system whose representations mix diagrams and text [1℄.



4? = 8points. Quanti�er ordering problems are dealt with by labelling quanti�erswith numbers.The solutions in [5℄ for handling quanti�ation have similarities to the oneswe will present here. However the abstrat indiret nature of onstraint diagramsmakes them `loser' to algebra, and thus the problems are easier than for morespei� diagrams (.f. x2.2).The generalisation problem arises only in a limited form for [5℄. This is be-ause, exept for set membership, all onditions must be made expliit { as inalgebra. Set membership onditions are handled by �xing the interpretation: apoint x is interpreted as belonging to the smallest region ontaining it. `Spiders'provide a means for over-riding this default interpretation. We shall look at howthis idea of a default reading with extra syntax to give other readings an beextended to over diagrams where a wide range of onditions an be represented.Using di�erent objets to represent quanti�er type would not be suitable forour analysis diagrams, where we variously wish to quantify over points, sets,funtions, lengths, et., as it would involve introduing multiple primitives foreah type of objet. This would quikly get onfusing.2 Prerequisites: some de�nitions2.1 Real analysisOur work is in the domain of real analysis (whih gives a rigorous underpinningfor alulus, and leads on to �elds suh as topology). Analysis is a form of geome-try, but one whose dry algebrai formalism an make it hard to learn. This makesit an attrative area for applying diagrammati reasoning. We have implementeda prototype interative theorem prover using a diagrammati logi [14℄. Our aimis to produe a teahing system based on this, so issues of omprehension andunderstanding are paramount.We follow Cauhy's � � Æ analysis (also known as standard analysis), basedon arbitrarily small error terms [11℄. De�nitions often involve arbitrarily smallopen balls. We write Br(x) = fx0 : jx � x0j < rg for the ball of radius r withentre x (this notation is ommon but not universal). Our examples in this paperwill be based on open sets, whih are de�ned as follows:De�nition 21. If X is open... open(X)) set(X)^8x 2 X; 9� > 0:B�(x) � XDe�nition 22. X is open if... set(X);8x 2 X; 9� > 0:B�(x) � X ) open(X)2.2 DiagramsDiagrammati representations are by their nature quite spei�, however thelevel of spei�ity varies. We introdue the term diret to informally desribethe degree of this. A more diret diagram is one where the representation usedis losely linked to its meaning. For example drawing a triangle to reason abouttriangles. By ontrast, an indiret diagram is one where the relation between



5sign and meaning is arbitrary, and based on onvention. Constraint diagramsare an example of this, where a dot an represent anything from a spatial pointto a person. Textual representations are always indiret.In general, the loser the link between signi�er and signi�ed,4 the more spe-i� the representations are (i.e. more diret diagrams tend to be more spei�).Spei� representations lead to the generalisation problem outlined in x1. Also,it seems that the more spei� the representations are, the harder it is to prop-erly perform universal quanti�ation. This is beause there is extra informationthat the user must ignore. For example, it is easier to reason with `let X repre-sent any man...' than `let the late Jon Barwise, who had fading brown hair andontributed so muh to diagrammati reasoning, represent any man...'. Never-theless, spei� representations do seem to have strong advantages. In partiular,more diret diagrams give representations for geometri objets whih are bothvery natural, and seem to lend themselves well to diagrammati reasoning. See[7℄ or [13℄ for disussions of this issue. Our domain is in geometry, hene we haveadopted a system based on fairly diret diagrams. This gives us quite naturalrepresentations for many of the objets in the domain, but makes quanti�ationa diÆult issue.Our diagrams onsist of labelled graphial objets with relations betweenthem. Relations may be represented either graphially or algebraially (thismakes our representations heterogenous, although we will ontinue to refer tothem as diagrams).2.3 Proof systemOften diagrammati reasoning is presented as a question of interpreting statidiagrams. Here we onsider dynami diagrammati reasoning, where the proessof drawing is important, as opposed to just the �nished diagram.Our logi is de�ned using redraw rules, whih are similar to rewrite rulesbut transform diagrams rather than formulae. This reets our belief that di-agrammati reasoning is often linked to the drawing proess, rather than justthe �nished diagram. These rules are expressed diagrammatially by an exampletransformation. A simple redraw rule, D0 ,! D1, onsists of an initial diagram(D0, the anteedent or pre-ondition) and a modi�ed diagram (D1, the onse-quent, or post-ondition). Fig. 4 gives an example redraw rule.Theorems are stated as rules rather than statements (e.g. sin2�+ os2� ) 1,1 ) sin2� + os2� rather than 8�:sin2� + os2� = 1), and are also expresseddiagrammatially (i.e. as redraw rules). A proof onsists of a demonstration thatthe anteedent of the theorem an always be redrawn to give the onsequentdiagram using an aepted set of rules (i.e. the axioms). Hene a proof is a hainof diagrams, starting with the theorem anteedent and ending with the theoremonsequent. We refer to an inomplete or omplete proof as a reasoning hain.Informally, the proedure for applying a simple rule is:4 A signi�er is the method (e.g. a word or piture) used to represent a onept (thesigni�ed); together they make up a sign [4℄.
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Fig. 4. De�nition 21 as a redraw rule.1. The anteedent diagram is mathed with some part of the working diagram(i.e. the last diagram in the reasoning hain).2. The working diagram is modi�ed in an equivalent way to the modi�ationbetween the anteedent and onsequent diagrams. This modi�ed diagram isadded to the end of the reasoning hain.The prinipal di�erenes from rewrite rules are:{ There an be an in�nite number of valid (but equivalent) redrawings for agiven diagram, a given rule and a given mathing (e.g. a rule may speifythat a point should be drawn, but leave open the hoie of whih point todraw).{ Due to the problem of multiple possible generalisations, there is no learhoie for how the mathing algorithm should work.Fig. 4 shows how De�nition 21 an be implemented as a redraw rule. The an-teedent will math any point y in any open set Y ; the onsequent guaranteesthe existene of a ball B�(y) � Y .Consider implementing the onverse rule (De�nition 22). This de�nition anbe read as `X is open if, given any point x in X , we an �nd an � > 0 suhthatB�(x) � X '. Note the verb `we an �nd...' { this ondition an be thoughtof as dynami: it gives a type of behaviour whih we must demonstrate to showthat X is open (by ontrast, the onditions in De�nition 21 an be thought ofas adjetival). Stati diagrams are not well suited to representing behaviour.They are better suited to adjetives than verbs. Instead, we introdue animatedredraw rules. An animation here is a hain of diagrams. Animated redraw ruleshave an animation as their pre-ondition. Where simple redraw rules math thelast diagram in the reasoning hain, animated rules must math a setion ofthe reasoning hain.5 Fig. 5 gives an example redraw rule with an animatedanteedent.5 The full system inludes two further types of rule for ase-split introdution and aseelimination.
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Fig. 5. De�nition 22 as an animated redraw rule. The terms strit and exible areexplained in setion 3.3.3 Using animation for quanti�ation3.1 Quanti�er hierarhyAs with sentential reasoning, quanti�er order an be important. Animation givesa reliable and intuitive ordering without introduing extra notation. This is be-ause of ausality: it is obvious that objet A annot depend on objet B if Bwas drawn after A. Fig. 6 gives an example based on the joke \Every minute,somewhere in the world a woman gives birth. We must �nd this woman andstop her." This shows how animation in a very simple way eliminates the order-ing ambiguity whih allows two oniting interpretations of the �rst sentene.Struturally this is equivalent to quanti�er numbering in [5℄, although in pre-sentational terms it is very di�erent.

Fig. 6. `For any minute, there is a woman who gives birth' vs. `There is a womanwho gives birth every minute'. The seond diagram is idential for both ases, but thestarting diagram shows whih objet omes �rst.



83.2 GeneralisationIn our logi, a mathing algorithm allows redraw rules to be applied to a widerange of diagrams. Thus the mathing algorithm determines generalisation ofthe rule (and vie-versa: speifying generalisations would establish a mathingriterion) [14℄. As disussed in x1, there are often several possible generalisations,hene several mathing algorithms are possible. It seems unlikely that there willbe a anonial answer to the question of what aspets of a diagram should beread as generalisation onditions.We ould simply make all the relevant information expliit in the diagram,and assume everything else is unimportant. However this would make for lut-tered, less legible, diagrams. A more sensible approah is to have a default inter-pretation that ertain aspets of a diagram are assumed to be important. Ideally,this should be the same as the intuitive reading of the diagram. The onditionsspei�ed by this default interpretation an be strengthened or relaxed, but onlythrough expliit onditions in the diagram. Spider diagrams show how this anbe used for representing set membership, where spiders are used to override thedefault reading. It an be extended to over other relations. Some of the defaultreadings we use are:{ Lengths are onsidered unimportant (to be generalised), unless a statementof the form length(A) < length(B) or length(A) = B is added.{ Right angles are onsidered salient,6 unless the angle is tagged with a ℄symbol indiating an aribtrary angle.3.3 Quanti�er behaviourStatements in our logi are expressed as rules, hene the question of `how doquanti�ers behave?' beomes `when should a rule anteedent math a reasoninghain?' That is, the question of what does a diagram/animation mean is reastas `what diagrams/reasoning hains does it math?'We have to be areful working in diret diagrams, as a quanti�ed objet is alsoa spei� example.7 For example, when reasoning about an abstrat universallyquanti�ed point, we must nevertheless draw a partiular point, and this point willhave properties that do not hold universally. However, as long as suh propertiesare not used in the reasoning that follows, they will not a�et the generality ofthe proof. The reasoning that follows would work for any point, so it does notmatter whih point was atually drawn. The spei� ase that is drawn omesto represent a lass of equivalent ases. What matters is that the reasoning isgeneri (with indiret representations, this is automatially enfored by usinggeneri objets; with diret representations the generality of the reasoning mustbe heked).Consider again Fig. 5, where there is a universally quanti�ed point x in themiddle of the rule anteedent. Suppose we wish to apply this rule to show that6 Assumed to be an intentional feature and therefore not to be generalised.7 To be preise, it is interpreted as a spei� example.



9the set Y = B1((0; 0)) is open. First we introdue an arbitrary point y 2 Y tomath the point x in the rule anteedent. We still have further reasoning to dobefore the rule will math: we have to �nd an �-ball about y that lies withinthe set Y . The reasoning that follows must be universally appliable, whihmeans that it must not use the spei� nature of the point y, only the fat thaty 2 Y . For example, suppose we onluded B0:1(y) � Y from y = (0:7; 0:8).The reasoning is sound, but it does not apply to other values of y. Our hain ofreasoning �nds an � for y = (0:7; 0:8), but this reasoning ould not be appliedto any point. Hene the rule { whih requires that suh an � exists for any point{ is not appliable If the reasoning that follows draws on non-universal aspetsof the point, then we say that the point y has been ompromised ; it is no longeruniversally quanti�ed. This is simple to hek: an objet is ompromised if laterreasoning alters its generalisation (by adding extra onditions).This leads us to the following method for reliably enforing generi reasoning:suppose an animated redraw rule has the anteedent D0 �D1 � :::�Dn, wherethe Di are diagrams. When a universally quanti�ed objet is introdued intothe proof, it must be done exatly as shown in the rule. The interpretationof the objet introdued into the reasoning hain must be equivalent to theinterpretation of the objet introdued in the rule anteedent. If diagram Diintrodues a universally quanti�ed objet, we all the transition Di�1 � Di astrit transition, sine it will only math a transition Pj � Pj+1 if Pj � Pj+1shows equivalent modi�ations to Di�1 � Di and no other modi�ations (i.e.no extra onstrutions or onditions). Moreover, subsequent reasoning on Pj+1must not ompromise the new universally quanti�ed objet drawn. This ensuresthat the reasoning that follows will be as general as the rule requires.When the rule anteedent ontains an existentially quanti�ed objet, all thatmust be shown is that some mathing objet an be onstruted in the reasoninghain. How this is done does not matter (as long as it does not ompromise auniversally quanti�ed objet). Hene an existentially quanti�ed objet an bedrawn in any manner using several redraw operations, sine all we require forthe rule anteedent to math is that some suh objet exists. If diagram Djintrodues an existentially quanti�ed objet we all the transition Dj�1 �Dj aexible transition. A exible transition allows arbitrary other onstrutions tobe drawn in the reasoning hain when moving from one diagram in the rule tothe next.For example, to prove the theorem open(Br(x)) takes 11 steps in our logi.A sketh of this proof is given in Fig. 7. We start with the set Br(x) (diagramP0 in Fig. 7). The �rst step is to introdue an arbitrary point in Br(x) to maththe universally quanti�ed point in diagram D1, Fig. 5. It then takes three stepsto onstrut a suitable �-ball (P5 in Fig. 7) and �ve more steps to show thatit lies inside Br(x) (diagram P10). All these steps are performed using simpleredraw rules. The �nal step is to apply the animated rule shown in Fig. 5. LetP0� :::�P11 be the proof. Then D0 mathes P0, D1 mathes P1 and D2 mathesP10, as shown in Fig. 8.
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Fig. 7. Sketh proof for open(Bx(r)). Spae limitations prevent us giving the full proofor the rules used.
Fig. 8. Anteedent mathing with strit and exible transitions.The method desribed above syntatially presribes quanti�er type in ruleanteedents in terms of the mathing riterion regarding transitions.3.4 Quanti�ation in the rule onsequentRule onsequents are always a single diagram ontaining new objets or new on-ditions.8 New objets are assumed to be existentially quanti�ed. More omplexinferenes an be expressed in this formalism by two rules linked with a syntatitag. For example, the statement p ) 9x:8y:q(x; y) would be onverted into tworules: p ) 9x:r(x) and r(x); y ) q(x; y), where r is the syntati tag reatedto link the two.3.5 Representing quanti�er typeA side-bene�t of animation is that it lears up labelling ambiguities. When deal-ing with emergent or omposite objets (i.e. objets formed as a result of drawingother objets, suh as some of the squares in Fig. 1), it is not neessarily learwhat objet a label applies to. However if objets are introdued one at a time8 If we allowed objets/onditions to be deleted or hanged it would give a non-monotoni logi.



11with their labels, then this ambiguity vanishes. In our logi we require a reason-ing step to reognise a omposite objet, so omposite objets are `drawn' (andlabelled) after their parts.With labelling ambiguity removed, we ould simply reinstate the algebraisymbols 8; 9 and represent quanti�er type by labelling objets with them. Dia-grams also allow other, potentially more interesting, possibilities. These inludesome form of drawing onvention, suh as olour-oding or using di�erent shapedobjets. Or { sine quanti�ers are introdued one at a time { quanti�er type anbe represented by having di�erent transitions between frames in the animation.Any of these representation methods would be suÆient to distinguish thetwo quanti�er types, but they have di�erent advantages. Using the establishedsymbols gives the user something they may already be familiar with. Colour-oding is `leaner' sine it does not introdue extra labelling, and this may aidomprehension.Both of the above methods rely purely on onvention for their meaning. How-ever, sine quanti�er behaviour (i.e. their syntati meaning) omes from thediagram transitions, we ould also represent quanti�ers by labelling the transi-tions. A more interesting option is to use speial transitions that an attemptto onvey the di�erene in meaning. These speial transitions are animations ofa di�erent kind. They are independent of the reasoning rather than a part of it.For example, a universally quanti�ed point ould `roam it's habitat', indiatingthat it is not a spei� point. With an existentially quanti�ed objet in a ruleanteedent, the transition ould indiate `misellaneous drawing' to illustratethat, when applying the rule, other unspei�ed onstrutions will be neessaryat this stage. Suh an approah would not be of interest to professional users,but ould be helpful in teahing appliations. However the quanti�er type is notvisible in the �nal diagram. To a ertain extent, the strengths and weaknesses ofthese representation methods omplement eah other, and so they an be om-bined. We urrently use a ombination of olour-oding and speial transitions,although in the future the system will be ustomisable to a user's preferenes.Colour-oding is idential at the syntati level to the di�erent primitive objetsused in [5℄, plus it an be used uniformly aross types of objet that are drawn inquite di�erent ways { although it does restrit the use of olour for representingother properties.4 Open issuesConsider the rule in Fig. 5. The natural way of using this rule requires at leastone point in the set - so it annot be applied to the empty set. This introduesa dilemma: our de�nition of an open set is slightly di�erent from the standardone in that it exludes the empty set. The ause of this disrepany is that ourdiagrammati universal quanti�er has existential import. That is, the statement8x 2 X implies 9x 2 X . This is also true in aristotelian logi [10℄ and naturallanguage, but of ourse false in prediate alulus. Currently we handle the empty



12set as a speial ase. However, sine orrespondene with onventional logi isdesirable in mathematial domains, this is not ideal.5 Converting animated rules into quanti�ed rulesSo far we have desribed how sentential rules orrespond to animated diagram-mati rules. Now we look into how animated diagrammati rules orrespond tothe sentential ones. The onept of well-formed formulae (w�) an be translatedto diagrams. We assume the following loose de�nition of a well formed diagram(wfd) here:De�nition 51. Suppose we have a diagram language L onsisting of graphialobjets, labelling onstants and �rst-order prediates, and for eah property thatan be inferred from the diagrams, there is a orresponding prediate in L (i.e.any diagram in L an also be desribed purely algebraially in L). Then say:{ The empty diagram is a wfd.{ If A is a wfd, X an objet within L, X has label lX and lX is not alreadyused in A, then A [X is a wfd.{ If A is a wfd, X some objets in A and p(X) a prediate in L, then A[p(X)is a wfd, where p(X) ould be drawn either graphially or algebraially usingobjet labels.Are any onjuntions of prediates allowed? Sine we are using heterogenousdiagrams, any ombination an be stated, but there are sensible restritions thatould be made (e.g. disallowing point(X) ^ line(X)).5.1 Well formed formulaeLet us assume we have an interpretation funtion I that maps single diagramsto unquanti�ed algebrai statements in a suitable domain. Let X denote avetor of variables, let p; q denote any onjuntion of prediates in L (e.g.equal area(X;Y ), point(X) ^ in(X;Y ), et.)Given diagrams D0; D1 the simple rule D0 ,! D1, is well-formed if D0; D1 arewfd and D0 � D1. Simple rules orrespond to statements of the form:�X:p(X) ) q(X)Here, p(X) = I(D0); q(X) = I(D1)nI(D0) (with the natural mapping betweenlabels and variables).Given any animated anteedent D0� :::�Dn, we an add another diagram Dn+1to it in two ways:1. With a exible transition, introduing existentially quanti�ed objets:If A ) B is a w�, var(A) are the variables (free and bound) in A, andX \ var(A) = ; thenA; 9X:p(var(A); X) ) B is a w�



132. With a strit transition, introduing universally quanti�ed objets:If A ) B is a w�, var(A) are the variables (free and bound) in A, andX \ var(A) = ; thenA; 9X 0:p(var(A); X 0);8X:p(var(A); X) ) B is a w�5.2 Example animated redraw rule (Fig. 5) revisitedFollowing the orrespondenes given above and assuming the behaviour of inter-pretation funtion I , we get:I(D0) = �X:set(X)I(D0 �D1) = I(D0); 9x0:point(x0); x0 2 X;8x:point(x); x 2 XI(D0 �D1 �D2) = I(D0 �D1); 9�:real(�)� > 0; B�(x) � XI(D0 �D1 �D2 ,! D3) = I(D0 �D1 �D2)) open(X)Hene the redraw rule onverts to the algebrai rule:set(X); X 6= ;;8x 2 X; 9� > 0:B�(x) � X ) open(X)whih is almost De�nition 22. As explained in x4 we urrently need a seperateredraw rule to over the ase X = ;.6 Conlusions & future workReal analysis is a domain where great are is required to avoid mistakes, andwhere quanti�er ordering is often important. As part of our projet to produea diagrammati formalisation for this subjet, we have developed rules with an-imated pre-onditions. This paper demonstrates how these rules work, showinghow they allow us to perform generi quanti�ed reasoning with spei� repre-sentations. We hope that this has appliations to other �elds; any domain thatonsiders dynami behaviour seems promising. A seond type of animation (spe-ial transitions for representing quani�er type) is also introdued to give moremeaningful representations.The treatment given in x5 is quite loose. We intend to develop a formalsemantis for animated redraw rules, plus a formal de�nition of our interpretationfuntion and mathing riterion (whose behaviour we have assumed here). Thisshould then allow us to show equivalene between redraw rules and algebrairules.There are drawbaks to our method of representing and reasoning aboutquanti�ation. The issue of existential import raises serious questions. The useof olour to represent quanti�er type severely limits the way in whih olouran be used elsewhere in the diagram. Also, the extra dimension of time in the



14representations might prove to be harder for users beause of `overloading' un-derstanding through extra demands on working memory. Perhaps the greatestdrawbak of animation is that it is not suited to being printed (e.g. in textbooksor papers), exept as umbersome omi strips where the simpliity of the rep-resentation is lost. Note that to a ertain extent, this does not apply to its useon blakboards, where animation an be performed, albeit a little rudely.However the advantages are a logi that is, we hope, more elegant and naturalto use. Using animation to extend diagrams avoids extra labelling and should bemore intuitive, sine it draws on ause-and-e�et for meaning rather than requir-ing onventions. Moreover rules with animated pre-onditions fous attention onthe reasoning used in a proof. This ould be bene�ial from an eduational pointof view. Using extra notation it is possible to avoid the use of animation withinour system. For example, Fig. 9 gives a non-animated version of the redraw rulein Fig. 5. We feel that by ompressing all the information into one diagram, thenon-animated version obsures the relations between the objets. We will teststudent responses to this di�erene as part of our system evaluation. We are alsoinvestigating how expressive our analysis diagrams are (i.e. how good a overageof theorems we an ahieve). Our preliminary work suggests that diagrammatireasoning an be suessful in teahing this domain [14℄.
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