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t. Diagrams have many uses in mathemati
s, one of the mostambitious of whi
h is as a form of proof. The domain we 
onsider isreal analysis, where quanti�
ation issues are subtle but 
ru
ial. Com-puters o�er new possibilities in diagrammati
 reasoning, one of whi
his animation. Here we develop animated rules as a solution to problemsof quanti�
ation. We show a simple appli
ation of this to 
onstraint di-agrams, and also how it 
an deal with the more 
omplex questions ofquanti�
ation and generalisation in diagrams that use more spe
i�
 rep-resentations. This allows us to ta
kle diÆ
ult theorems that previously
ould only be proved algebrai
ally.1 Introdu
tionIn adapting diagrammati
 reasoning to 
omputers, there is the ex
iting possibil-ity of developing diagrams in new ways. Diagrams in textbooks are ne
essarilystati
. However, if we 
onsider the very real di�eren
es between text and hy-pertext, we see that diagrammati
 reasoning on 
omputers need not be just astraight 
onversion of diagrammati
 reasoning on paper. One su
h new dire
tionis the use of animation. In this paper we des
ribe how animation 
an be appliedto represent and reason about quanti�
ation. Other appli
ations are possible:although unrelated to our present work, animated diagrams may also be use-ful in representing and reasoning about temporal relations. There is an obviousattra
tion in using time to represent itself.1From the very beginning of mathemati
s, diagrams have been used to giveproofs in subje
ts su
h as geometry and number theory. Nevertheless diagram-mati
 proof is only partially understood today. In parti
ular, we do not have ageneral theory for handling quanti�
ation and the related topi
 of generalisation.1 This would probably not be suitable for domains whi
h involve pre
ise time 
al
u-lations, as these would be hard to judge in an animation. For qualitative reasoningthough, or as part of a mixed system, it seems an interesting line for future resear
h.



2 We identify three distin
t problems in this area: quanti�er hierar
hy, quanti-�er type and identifying generalisation 
onditions. In sentential reasoning, quan-ti�er hierar
hy is determined by reading from left-to-right. Quanti�er type isdetermined by the semanti
s atta
hed to the symbols 8; 9 (whi
h are part of the
ommon language of s
ientists and mathemati
ians), and generalisation is 
on-trolled by expli
it 
onditions (e.g. 8A;B;C:triangle(ABC) ^ angle(A;B) =90o ) :::). Unfortunately these solutions do not naturally 
arry over to dia-grams.The use of two dimensions with several spatial relations being signi�
antremoves the neat left-to-right ordering on obje
ts that we have in sententialreasoning. For quanti�er type, we 
ould try to label obje
ts with the 8; 9 symbolsas in algebra, but it is not always 
lear whi
h obje
t su
h a label applies to,espe
ially if the diagram involves 
omposite obje
ts. Fig. 1 gives an exampleof how this 
ould be less than 
lear (does the 8 symbol apply to the 
losestline, triangle or square?). Unlike algebra, where the 
onditions on a theoremare expli
itly stated, diagrams often 
ontain a lot of information that may ormay not be relevant. Thus several generalisations are possible, some of whi
hmay be false. For example in Fig. 1, we might generalise to `all triangles', `allright angled triangles', or `all similar triangles2 to the one drawn'. Often thereis a 
lear intuitive generalisation, but this must be formalised if we are to giverigorous proofs (
.f. [9℄ for a detailed dis
ussion of this). So diagrams require afresh approa
h to all three problems.
Fig. 1. Problems in Pythagoras' Theorem: It is not 
lear what the 8 symbol appliesto, and we have not spe
i�ed whi
h aspe
ts of the triangle are important.1.1 Related workSeveral approa
hes have ta
kled the problem of quanti�
ation in diagrams byintrodu
ing new notation. This 
an produ
e systems as powerful as predi
atelogi
. However, it generally leads to more 
omplex diagrams, and great 
are isrequired if these are to retain their intuitive feel. For example, in 1976 S
hubert,starting from semanti
 nets, developed (by adding more and more notation) adiagrammati
 representation that is as expressive as modal lambda 
al
ulus (seeFig. 2) [12℄. Unfortunately, the resulting diagrams are extremely diÆ
ult to readand, to the best of our knowledge, were not generally used.2 Two triangles are similar if they di�er only in s
ale or left-right orientation.
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Fig. 2. A S
hubert diagram for \Several 
hildren are on the playground. Most of themare playing in the sandbox."A more re
ent example is [8℄, whi
h extends Venn diagrams with extra no-tation and some inferen
e rules to give a heterogenous system3 as expressive as�rst-order predi
ate logi
. It is shown to be sound and 
omplete, but also seemstoo diÆ
ult to use. As Ambrose Bier
e's inventor said: \I have demonstratedthe 
orre
tness of my details, the defe
ts are merely basi
 and fundamental" [2℄.By extending diagram systems on purely logi
al 
riterion without 
onsideringease-of-use issues, the �nal systems lost the very qualities that make diagramsattra
tive.

Fig. 3. We are unsure what this S
hubert diagram means.A more su

essful diagrammati
 system with quanti�ers is Gil et al 's 
on-straint diagrams, whi
h are an extension of spider diagrams [5℄. The obje
ts inspider diagrams are oval 
ontours (representing sets with overlap=interse
tion),points (representing members of sets) and `spiders' (linked points representingstatements of the form x 2 A [B). Constraint diagrams introdu
e arrows (rep-resenting relationships) and quanti�ers. Only points and spiders are quanti�edover. Quanti�er type is handled by drawing points in di�erent ways. That is,they have di�erent primitive obje
ts for the di�erent quanti�ers: � = 9point,3 A system whose representations mix diagrams and text [1℄.



4? = 8points. Quanti�er ordering problems are dealt with by labelling quanti�erswith numbers.The solutions in [5℄ for handling quanti�
ation have similarities to the oneswe will present here. However the abstra
t indire
t nature of 
onstraint diagramsmakes them `
loser' to algebra, and thus the problems are easier than for morespe
i�
 diagrams (
.f. x2.2).The generalisation problem arises only in a limited form for [5℄. This is be-
ause, ex
ept for set membership, all 
onditions must be made expli
it { as inalgebra. Set membership 
onditions are handled by �xing the interpretation: apoint x is interpreted as belonging to the smallest region 
ontaining it. `Spiders'provide a means for over-riding this default interpretation. We shall look at howthis idea of a default reading with extra syntax to give other readings 
an beextended to 
over diagrams where a wide range of 
onditions 
an be represented.Using di�erent obje
ts to represent quanti�er type would not be suitable forour analysis diagrams, where we variously wish to quantify over points, sets,fun
tions, lengths, et
., as it would involve introdu
ing multiple primitives forea
h type of obje
t. This would qui
kly get 
onfusing.2 Prerequisites: some de�nitions2.1 Real analysisOur work is in the domain of real analysis (whi
h gives a rigorous underpinningfor 
al
ulus, and leads on to �elds su
h as topology). Analysis is a form of geome-try, but one whose dry algebrai
 formalism 
an make it hard to learn. This makesit an attra
tive area for applying diagrammati
 reasoning. We have implementeda prototype intera
tive theorem prover using a diagrammati
 logi
 [14℄. Our aimis to produ
e a tea
hing system based on this, so issues of 
omprehension andunderstanding are paramount.We follow Cau
hy's � � Æ analysis (also known as standard analysis), basedon arbitrarily small error terms [11℄. De�nitions often involve arbitrarily smallopen balls. We write Br(x) = fx0 : jx � x0j < rg for the ball of radius r with
entre x (this notation is 
ommon but not universal). Our examples in this paperwill be based on open sets, whi
h are de�ned as follows:De�nition 21. If X is open... open(X)) set(X)^8x 2 X; 9� > 0:B�(x) � XDe�nition 22. X is open if... set(X);8x 2 X; 9� > 0:B�(x) � X ) open(X)2.2 DiagramsDiagrammati
 representations are by their nature quite spe
i�
, however thelevel of spe
i�
ity varies. We introdu
e the term dire
t to informally des
ribethe degree of this. A more dire
t diagram is one where the representation usedis 
losely linked to its meaning. For example drawing a triangle to reason abouttriangles. By 
ontrast, an indire
t diagram is one where the relation between



5sign and meaning is arbitrary, and based on 
onvention. Constraint diagramsare an example of this, where a dot 
an represent anything from a spatial pointto a person. Textual representations are always indire
t.In general, the 
loser the link between signi�er and signi�ed,4 the more spe-
i�
 the representations are (i.e. more dire
t diagrams tend to be more spe
i�
).Spe
i�
 representations lead to the generalisation problem outlined in x1. Also,it seems that the more spe
i�
 the representations are, the harder it is to prop-erly perform universal quanti�
ation. This is be
ause there is extra informationthat the user must ignore. For example, it is easier to reason with `let X repre-sent any man...' than `let the late Jon Barwise, who had fading brown hair and
ontributed so mu
h to diagrammati
 reasoning, represent any man...'. Never-theless, spe
i�
 representations do seem to have strong advantages. In parti
ular,more dire
t diagrams give representations for geometri
 obje
ts whi
h are bothvery natural, and seem to lend themselves well to diagrammati
 reasoning. See[7℄ or [13℄ for dis
ussions of this issue. Our domain is in geometry, hen
e we haveadopted a system based on fairly dire
t diagrams. This gives us quite naturalrepresentations for many of the obje
ts in the domain, but makes quanti�
ationa diÆ
ult issue.Our diagrams 
onsist of labelled graphi
al obje
ts with relations betweenthem. Relations may be represented either graphi
ally or algebrai
ally (thismakes our representations heterogenous, although we will 
ontinue to refer tothem as diagrams).2.3 Proof systemOften diagrammati
 reasoning is presented as a question of interpreting stati
diagrams. Here we 
onsider dynami
 diagrammati
 reasoning, where the pro
essof drawing is important, as opposed to just the �nished diagram.Our logi
 is de�ned using redraw rules, whi
h are similar to rewrite rulesbut transform diagrams rather than formulae. This re
e
ts our belief that di-agrammati
 reasoning is often linked to the drawing pro
ess, rather than justthe �nished diagram. These rules are expressed diagrammati
ally by an exampletransformation. A simple redraw rule, D0 ,! D1, 
onsists of an initial diagram(D0, the ante
edent or pre-
ondition) and a modi�ed diagram (D1, the 
onse-quent, or post-
ondition). Fig. 4 gives an example redraw rule.Theorems are stated as rules rather than statements (e.g. sin2�+ 
os2� ) 1,1 ) sin2� + 
os2� rather than 8�:sin2� + 
os2� = 1), and are also expresseddiagrammati
ally (i.e. as redraw rules). A proof 
onsists of a demonstration thatthe ante
edent of the theorem 
an always be redrawn to give the 
onsequentdiagram using an a

epted set of rules (i.e. the axioms). Hen
e a proof is a 
hainof diagrams, starting with the theorem ante
edent and ending with the theorem
onsequent. We refer to an in
omplete or 
omplete proof as a reasoning 
hain.Informally, the pro
edure for applying a simple rule is:4 A signi�er is the method (e.g. a word or pi
ture) used to represent a 
on
ept (thesigni�ed); together they make up a sign [4℄.
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Fig. 4. De�nition 21 as a redraw rule.1. The ante
edent diagram is mat
hed with some part of the working diagram(i.e. the last diagram in the reasoning 
hain).2. The working diagram is modi�ed in an equivalent way to the modi�
ationbetween the ante
edent and 
onsequent diagrams. This modi�ed diagram isadded to the end of the reasoning 
hain.The prin
ipal di�eren
es from rewrite rules are:{ There 
an be an in�nite number of valid (but equivalent) redrawings for agiven diagram, a given rule and a given mat
hing (e.g. a rule may spe
ifythat a point should be drawn, but leave open the 
hoi
e of whi
h point todraw).{ Due to the problem of multiple possible generalisations, there is no 
lear
hoi
e for how the mat
hing algorithm should work.Fig. 4 shows how De�nition 21 
an be implemented as a redraw rule. The an-te
edent will mat
h any point y in any open set Y ; the 
onsequent guaranteesthe existen
e of a ball B�(y) � Y .Consider implementing the 
onverse rule (De�nition 22). This de�nition 
anbe read as `X is open if, given any point x in X , we 
an �nd an � > 0 su
hthatB�(x) � X '. Note the verb `we 
an �nd...' { this 
ondition 
an be thoughtof as dynami
: it gives a type of behaviour whi
h we must demonstrate to showthat X is open (by 
ontrast, the 
onditions in De�nition 21 
an be thought ofas adje
tival). Stati
 diagrams are not well suited to representing behaviour.They are better suited to adje
tives than verbs. Instead, we introdu
e animatedredraw rules. An animation here is a 
hain of diagrams. Animated redraw ruleshave an animation as their pre-
ondition. Where simple redraw rules mat
h thelast diagram in the reasoning 
hain, animated rules must mat
h a se
tion ofthe reasoning 
hain.5 Fig. 5 gives an example redraw rule with an animatedante
edent.5 The full system in
ludes two further types of rule for 
ase-split introdu
tion and 
aseelimination.
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Fig. 5. De�nition 22 as an animated redraw rule. The terms stri
t and 
exible areexplained in se
tion 3.3.3 Using animation for quanti�
ation3.1 Quanti�er hierar
hyAs with sentential reasoning, quanti�er order 
an be important. Animation givesa reliable and intuitive ordering without introdu
ing extra notation. This is be-
ause of 
ausality: it is obvious that obje
t A 
annot depend on obje
t B if Bwas drawn after A. Fig. 6 gives an example based on the joke \Every minute,somewhere in the world a woman gives birth. We must �nd this woman andstop her." This shows how animation in a very simple way eliminates the order-ing ambiguity whi
h allows two 
on
i
ting interpretations of the �rst senten
e.Stru
turally this is equivalent to quanti�er numbering in [5℄, although in pre-sentational terms it is very di�erent.

Fig. 6. `For any minute, there is a woman who gives birth' vs. `There is a womanwho gives birth every minute'. The se
ond diagram is identi
al for both 
ases, but thestarting diagram shows whi
h obje
t 
omes �rst.



83.2 GeneralisationIn our logi
, a mat
hing algorithm allows redraw rules to be applied to a widerange of diagrams. Thus the mat
hing algorithm determines generalisation ofthe rule (and vi
e-versa: spe
ifying generalisations would establish a mat
hing
riterion) [14℄. As dis
ussed in x1, there are often several possible generalisations,hen
e several mat
hing algorithms are possible. It seems unlikely that there willbe a 
anoni
al answer to the question of what aspe
ts of a diagram should beread as generalisation 
onditions.We 
ould simply make all the relevant information expli
it in the diagram,and assume everything else is unimportant. However this would make for 
lut-tered, less legible, diagrams. A more sensible approa
h is to have a default inter-pretation that 
ertain aspe
ts of a diagram are assumed to be important. Ideally,this should be the same as the intuitive reading of the diagram. The 
onditionsspe
i�ed by this default interpretation 
an be strengthened or relaxed, but onlythrough expli
it 
onditions in the diagram. Spider diagrams show how this 
anbe used for representing set membership, where spiders are used to override thedefault reading. It 
an be extended to 
over other relations. Some of the defaultreadings we use are:{ Lengths are 
onsidered unimportant (to be generalised), unless a statementof the form length(A) < length(B) or length(A) = B is added.{ Right angles are 
onsidered salient,6 unless the angle is tagged with a ℄symbol indi
ating an aribtrary angle.3.3 Quanti�er behaviourStatements in our logi
 are expressed as rules, hen
e the question of `how doquanti�ers behave?' be
omes `when should a rule ante
edent mat
h a reasoning
hain?' That is, the question of what does a diagram/animation mean is re
astas `what diagrams/reasoning 
hains does it mat
h?'We have to be 
areful working in dire
t diagrams, as a quanti�ed obje
t is alsoa spe
i�
 example.7 For example, when reasoning about an abstra
t universallyquanti�ed point, we must nevertheless draw a parti
ular point, and this point willhave properties that do not hold universally. However, as long as su
h propertiesare not used in the reasoning that follows, they will not a�e
t the generality ofthe proof. The reasoning that follows would work for any point, so it does notmatter whi
h point was a
tually drawn. The spe
i�
 
ase that is drawn 
omesto represent a 
lass of equivalent 
ases. What matters is that the reasoning isgeneri
 (with indire
t representations, this is automati
ally enfor
ed by usinggeneri
 obje
ts; with dire
t representations the generality of the reasoning mustbe 
he
ked).Consider again Fig. 5, where there is a universally quanti�ed point x in themiddle of the rule ante
edent. Suppose we wish to apply this rule to show that6 Assumed to be an intentional feature and therefore not to be generalised.7 To be pre
ise, it is interpreted as a spe
i�
 example.



9the set Y = B1((0; 0)) is open. First we introdu
e an arbitrary point y 2 Y tomat
h the point x in the rule ante
edent. We still have further reasoning to dobefore the rule will mat
h: we have to �nd an �-ball about y that lies withinthe set Y . The reasoning that follows must be universally appli
able, whi
hmeans that it must not use the spe
i�
 nature of the point y, only the fa
t thaty 2 Y . For example, suppose we 
on
luded B0:1(y) � Y from y = (0:7; 0:8).The reasoning is sound, but it does not apply to other values of y. Our 
hain ofreasoning �nds an � for y = (0:7; 0:8), but this reasoning 
ould not be appliedto any point. Hen
e the rule { whi
h requires that su
h an � exists for any point{ is not appli
able If the reasoning that follows draws on non-universal aspe
tsof the point, then we say that the point y has been 
ompromised ; it is no longeruniversally quanti�ed. This is simple to 
he
k: an obje
t is 
ompromised if laterreasoning alters its generalisation (by adding extra 
onditions).This leads us to the following method for reliably enfor
ing generi
 reasoning:suppose an animated redraw rule has the ante
edent D0 �D1 � :::�Dn, wherethe Di are diagrams. When a universally quanti�ed obje
t is introdu
ed intothe proof, it must be done exa
tly as shown in the rule. The interpretationof the obje
t introdu
ed into the reasoning 
hain must be equivalent to theinterpretation of the obje
t introdu
ed in the rule ante
edent. If diagram Diintrodu
es a universally quanti�ed obje
t, we 
all the transition Di�1 � Di astri
t transition, sin
e it will only mat
h a transition Pj � Pj+1 if Pj � Pj+1shows equivalent modi�
ations to Di�1 � Di and no other modi�
ations (i.e.no extra 
onstru
tions or 
onditions). Moreover, subsequent reasoning on Pj+1must not 
ompromise the new universally quanti�ed obje
t drawn. This ensuresthat the reasoning that follows will be as general as the rule requires.When the rule ante
edent 
ontains an existentially quanti�ed obje
t, all thatmust be shown is that some mat
hing obje
t 
an be 
onstru
ted in the reasoning
hain. How this is done does not matter (as long as it does not 
ompromise auniversally quanti�ed obje
t). Hen
e an existentially quanti�ed obje
t 
an bedrawn in any manner using several redraw operations, sin
e all we require forthe rule ante
edent to mat
h is that some su
h obje
t exists. If diagram Djintrodu
es an existentially quanti�ed obje
t we 
all the transition Dj�1 �Dj a
exible transition. A 
exible transition allows arbitrary other 
onstru
tions tobe drawn in the reasoning 
hain when moving from one diagram in the rule tothe next.For example, to prove the theorem open(Br(x)) takes 11 steps in our logi
.A sket
h of this proof is given in Fig. 7. We start with the set Br(x) (diagramP0 in Fig. 7). The �rst step is to introdu
e an arbitrary point in Br(x) to mat
hthe universally quanti�ed point in diagram D1, Fig. 5. It then takes three stepsto 
onstru
t a suitable �-ball (P5 in Fig. 7) and �ve more steps to show thatit lies inside Br(x) (diagram P10). All these steps are performed using simpleredraw rules. The �nal step is to apply the animated rule shown in Fig. 5. LetP0� :::�P11 be the proof. Then D0 mat
hes P0, D1 mat
hes P1 and D2 mat
hesP10, as shown in Fig. 8.
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Fig. 7. Sket
h proof for open(Bx(r)). Spa
e limitations prevent us giving the full proofor the rules used.
Fig. 8. Ante
edent mat
hing with stri
t and 
exible transitions.The method des
ribed above synta
ti
ally pres
ribes quanti�er type in ruleante
edents in terms of the mat
hing 
riterion regarding transitions.3.4 Quanti�
ation in the rule 
onsequentRule 
onsequents are always a single diagram 
ontaining new obje
ts or new 
on-ditions.8 New obje
ts are assumed to be existentially quanti�ed. More 
omplexinferen
es 
an be expressed in this formalism by two rules linked with a synta
ti
tag. For example, the statement p ) 9x:8y:q(x; y) would be 
onverted into tworules: p ) 9x:r(x) and r(x); y ) q(x; y), where r is the synta
ti
 tag 
reatedto link the two.3.5 Representing quanti�er typeA side-bene�t of animation is that it 
lears up labelling ambiguities. When deal-ing with emergent or 
omposite obje
ts (i.e. obje
ts formed as a result of drawingother obje
ts, su
h as some of the squares in Fig. 1), it is not ne
essarily 
learwhat obje
t a label applies to. However if obje
ts are introdu
ed one at a time8 If we allowed obje
ts/
onditions to be deleted or 
hanged it would give a non-monotoni
 logi
.



11with their labels, then this ambiguity vanishes. In our logi
 we require a reason-ing step to re
ognise a 
omposite obje
t, so 
omposite obje
ts are `drawn' (andlabelled) after their parts.With labelling ambiguity removed, we 
ould simply reinstate the algebrai
symbols 8; 9 and represent quanti�er type by labelling obje
ts with them. Dia-grams also allow other, potentially more interesting, possibilities. These in
ludesome form of drawing 
onvention, su
h as 
olour-
oding or using di�erent shapedobje
ts. Or { sin
e quanti�ers are introdu
ed one at a time { quanti�er type 
anbe represented by having di�erent transitions between frames in the animation.Any of these representation methods would be suÆ
ient to distinguish thetwo quanti�er types, but they have di�erent advantages. Using the establishedsymbols gives the user something they may already be familiar with. Colour-
oding is `
leaner' sin
e it does not introdu
e extra labelling, and this may aid
omprehension.Both of the above methods rely purely on 
onvention for their meaning. How-ever, sin
e quanti�er behaviour (i.e. their synta
ti
 meaning) 
omes from thediagram transitions, we 
ould also represent quanti�ers by labelling the transi-tions. A more interesting option is to use spe
ial transitions that 
an attemptto 
onvey the di�eren
e in meaning. These spe
ial transitions are animations ofa di�erent kind. They are independent of the reasoning rather than a part of it.For example, a universally quanti�ed point 
ould `roam it's habitat', indi
atingthat it is not a spe
i�
 point. With an existentially quanti�ed obje
t in a ruleante
edent, the transition 
ould indi
ate `mis
ellaneous drawing' to illustratethat, when applying the rule, other unspe
i�ed 
onstru
tions will be ne
essaryat this stage. Su
h an approa
h would not be of interest to professional users,but 
ould be helpful in tea
hing appli
ations. However the quanti�er type is notvisible in the �nal diagram. To a 
ertain extent, the strengths and weaknesses ofthese representation methods 
omplement ea
h other, and so they 
an be 
om-bined. We 
urrently use a 
ombination of 
olour-
oding and spe
ial transitions,although in the future the system will be 
ustomisable to a user's preferen
es.Colour-
oding is identi
al at the synta
ti
 level to the di�erent primitive obje
tsused in [5℄, plus it 
an be used uniformly a
ross types of obje
t that are drawn inquite di�erent ways { although it does restri
t the use of 
olour for representingother properties.4 Open issuesConsider the rule in Fig. 5. The natural way of using this rule requires at leastone point in the set - so it 
annot be applied to the empty set. This introdu
esa dilemma: our de�nition of an open set is slightly di�erent from the standardone in that it ex
ludes the empty set. The 
ause of this dis
repan
y is that ourdiagrammati
 universal quanti�er has existential import. That is, the statement8x 2 X implies 9x 2 X . This is also true in aristotelian logi
 [10℄ and naturallanguage, but of 
ourse false in predi
ate 
al
ulus. Currently we handle the empty



12set as a spe
ial 
ase. However, sin
e 
orresponden
e with 
onventional logi
 isdesirable in mathemati
al domains, this is not ideal.5 Converting animated rules into quanti�ed rulesSo far we have des
ribed how sentential rules 
orrespond to animated diagram-mati
 rules. Now we look into how animated diagrammati
 rules 
orrespond tothe sentential ones. The 
on
ept of well-formed formulae (w�) 
an be translatedto diagrams. We assume the following loose de�nition of a well formed diagram(wfd) here:De�nition 51. Suppose we have a diagram language L 
onsisting of graphi
alobje
ts, labelling 
onstants and �rst-order predi
ates, and for ea
h property that
an be inferred from the diagrams, there is a 
orresponding predi
ate in L (i.e.any diagram in L 
an also be des
ribed purely algebrai
ally in L). Then say:{ The empty diagram is a wfd.{ If A is a wfd, X an obje
t within L, X has label lX and lX is not alreadyused in A, then A [X is a wfd.{ If A is a wfd, X some obje
ts in A and p(X) a predi
ate in L, then A[p(X)is a wfd, where p(X) 
ould be drawn either graphi
ally or algebrai
ally usingobje
t labels.Are any 
onjun
tions of predi
ates allowed? Sin
e we are using heterogenousdiagrams, any 
ombination 
an be stated, but there are sensible restri
tions that
ould be made (e.g. disallowing point(X) ^ line(X)).5.1 Well formed formulaeLet us assume we have an interpretation fun
tion I that maps single diagramsto unquanti�ed algebrai
 statements in a suitable domain. Let X denote ave
tor of variables, let p; q denote any 
onjun
tion of predi
ates in L (e.g.equal area(X;Y ), point(X) ^ in(X;Y ), et
.)Given diagrams D0; D1 the simple rule D0 ,! D1, is well-formed if D0; D1 arewfd and D0 � D1. Simple rules 
orrespond to statements of the form:�X:p(X) ) q(X)Here, p(X) = I(D0); q(X) = I(D1)nI(D0) (with the natural mapping betweenlabels and variables).Given any animated ante
edent D0� :::�Dn, we 
an add another diagram Dn+1to it in two ways:1. With a 
exible transition, introdu
ing existentially quanti�ed obje
ts:If A ) B is a w�, var(A) are the variables (free and bound) in A, andX \ var(A) = ; thenA; 9X:p(var(A); X) ) B is a w�



132. With a stri
t transition, introdu
ing universally quanti�ed obje
ts:If A ) B is a w�, var(A) are the variables (free and bound) in A, andX \ var(A) = ; thenA; 9X 0:p(var(A); X 0);8X:p(var(A); X) ) B is a w�5.2 Example animated redraw rule (Fig. 5) revisitedFollowing the 
orresponden
es given above and assuming the behaviour of inter-pretation fun
tion I , we get:I(D0) = �X:set(X)I(D0 �D1) = I(D0); 9x0:point(x0); x0 2 X;8x:point(x); x 2 XI(D0 �D1 �D2) = I(D0 �D1); 9�:real(�)� > 0; B�(x) � XI(D0 �D1 �D2 ,! D3) = I(D0 �D1 �D2)) open(X)Hen
e the redraw rule 
onverts to the algebrai
 rule:set(X); X 6= ;;8x 2 X; 9� > 0:B�(x) � X ) open(X)whi
h is almost De�nition 22. As explained in x4 we 
urrently need a seperateredraw rule to 
over the 
ase X = ;.6 Con
lusions & future workReal analysis is a domain where great 
are is required to avoid mistakes, andwhere quanti�er ordering is often important. As part of our proje
t to produ
ea diagrammati
 formalisation for this subje
t, we have developed rules with an-imated pre-
onditions. This paper demonstrates how these rules work, showinghow they allow us to perform generi
 quanti�ed reasoning with spe
i�
 repre-sentations. We hope that this has appli
ations to other �elds; any domain that
onsiders dynami
 behaviour seems promising. A se
ond type of animation (spe-
ial transitions for representing quani�er type) is also introdu
ed to give moremeaningful representations.The treatment given in x5 is quite loose. We intend to develop a formalsemanti
s for animated redraw rules, plus a formal de�nition of our interpretationfun
tion and mat
hing 
riterion (whose behaviour we have assumed here). Thisshould then allow us to show equivalen
e between redraw rules and algebrai
rules.There are drawba
ks to our method of representing and reasoning aboutquanti�
ation. The issue of existential import raises serious questions. The useof 
olour to represent quanti�er type severely limits the way in whi
h 
olour
an be used elsewhere in the diagram. Also, the extra dimension of time in the



14representations might prove to be harder for users be
ause of `overloading' un-derstanding through extra demands on working memory. Perhaps the greatestdrawba
k of animation is that it is not suited to being printed (e.g. in textbooksor papers), ex
ept as 
umbersome 
omi
 strips where the simpli
ity of the rep-resentation is lost. Note that to a 
ertain extent, this does not apply to its useon bla
kboards, where animation 
an be performed, albeit a little 
rudely.However the advantages are a logi
 that is, we hope, more elegant and naturalto use. Using animation to extend diagrams avoids extra labelling and should bemore intuitive, sin
e it draws on 
ause-and-e�e
t for meaning rather than requir-ing 
onventions. Moreover rules with animated pre-
onditions fo
us attention onthe reasoning used in a proof. This 
ould be bene�
ial from an edu
ational pointof view. Using extra notation it is possible to avoid the use of animation withinour system. For example, Fig. 9 gives a non-animated version of the redraw rulein Fig. 5. We feel that by 
ompressing all the information into one diagram, thenon-animated version obs
ures the relations between the obje
ts. We will teststudent responses to this di�eren
e as part of our system evaluation. We are alsoinvestigating how expressive our analysis diagrams are (i.e. how good a 
overageof theorems we 
an a
hieve). Our preliminary work suggests that diagrammati
reasoning 
an be su

essful in tea
hing this domain [14℄.
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