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Abstract. This paper presents one approach to the formalisation of dia-
grammatic proofs as an alternative to algebraic logic. An idea of ‘generic
diagrams’ is developed whereby one diagram (or rather, one sequence
of diagrams) can be used to prove many instances of a theorem. This
allows the extension of Jamnik’s ideas in the DIAMOND system to con-
tinuous domains. The domain is restricted to non-recursive proofs in real
analysis whose statement and proof have a strong geometric component.
The aim is to develop a system of diagrams and redraw rules to allow a
mechanised construction of sequences of diagrams constituting a proof.
This approach involves creating a diagrammatic theory. The method is
justified formally by (a) a diagrammatic axiomatisation, and (b) an ap-
peal to analysis, viewing the diagram as an object in R?. The idea is
to then establish an isomorphism between diagrams acted on by redraw
rules and instances of a theorem acted on by rewrite rules. We aim to
implement these ideas in an interactive prover entitled RApP (the Real
Analysis Prover).

1 Introduction

There are some conjectures which people can prove by the use of geometric
operations on diagrams, so called diagrammatic proofs. Insight is often more
clearly perceived in these diagrammatic proofs than in the algebraic proofs.

It is not surprising that geometry (and geometric reasoning) was the origi-
nal form of mathematics. For example, Pythagoras’ Theorem was proved circa
500BC. The Pythagoreans’ proof was lost, and as with anything relating to
Pythagoras, it is impossible to know just what was done, when and by whom.
However his proof would certainly have been geometric [9]. The elegant proof in
Figure 1 is due to an unknown Chinese mathematician writing ~200 BC [7]. By
comparison, algebra is a recent invention, usually attributed to al-Khwarizmi in
830AD![8]. The modern algebraic formalism is barely a hundred years old, the
! One could argue it began with Diophantus ¢250AD, but this does not affect our

argument.
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Fig.1. The geometric proof of Pythagoras’ Theorem is a classic example of
diagrammatic reasoning. How can such a proof be formalised?

result of the axiomatisation project of Hilbert, Frege, Russell et al. A side-effect
of this great project is that diagrams have fallen out of favour as acceptable
methods of proof. Only algebra is regarded as formal. The current monopoly of
algebraic formal mathematics is summed up by Tennant [2]:

“[the diagram] is only an heuristic... it has no proper place in the proof
as such... For the proof is a syntactic object consisting only of sentences
arranged in a finite & inspectable array.”

This insistence on algebraic formalism is a curious position, as Barker-
Plummer observes: “most mathematicians deny that diagrams have any formal
status, but on the other hand, diagrams are ubiquitous in mathematics texts” [1].
In the light of this, it is interesting to note that in al-Khwarizmi’s work, the use
of algebra is justified with geometric proofs [3].

2 Axiom: n. Received or Accepted Principle; Self Evident
Truth

- Collins Gem English Dictionary

In spite of current doctrine, the concepts of axioms and proof are not inherently
restricted to sentential reasoning. The only necessary criterion for rigorous proof
is that all inferences are valid. That is, any conclusions reached are genuinely
implicit in the hypothesis.

However, the problem remains that formally, drawings cannot prove anything
about algebra, and vice versa. R? is an abstract object? and not identical to an
(infinite) sheet of paper, which is subject to physical laws and limitations, i.e. a
line does not define a set in R x R, nor does {(z,y)|y = ax + b} define a line.
People can make the connection and reason with visual representations, but
syntactic manipulations only act on algebra. Since we wish to make inferences
about (algebraic) objects beyond the diagram, an interpretation of the diagram is

2 R denotes all real numbers, and hence R? denotes the real plane.
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needed. This can be justified by “homomorphic” mappings of diagrams to target
domains, as described by Barwise & Etchemendy (“homomorphic mapping” is
not a technical term, but it denotes any mapping where significant parts of
diagram structure are preserved) [2].

Our basic framework will be to establish two isomorphisms:?

diagrams «— objects in R? «— mathematical target domain

Only the second mapping can be proved to be an isomorphism. In spite of this
we will talk interchangeably of concrete diagrams drawn on paper, blackboards,
computer screens, etc. and diagrams ‘drawn’ on a bounded subset of R2. The
universal use in mathematics of R? to represent flat surfaces, and the obvious
mapping between them, justify this laxness. Where we wish to distinguish, we
will use ‘pure diagrams’ to refer to drawn diagrams, and ‘Real diagrams’ for the
equivalent objects in R2.

3 An Example Proof

Figure 2 gives an example proof demonstrating the use of diagrams with redraw
rules in place of algebra with rewrite rules. The example is a typical analysis
theorem (it assumes some familiarity with the subject).

Theorem 1 (Metric space continuity implies topological continuity®).
For X, Y metric spaces, (Vx € X,e >0 36 > 0 such that |z —y| < § =
|f(x) — f(y)| < e) implies (VS C Y, S open inY = f~1(S) open in X ).

Our proposed approach is to give diagrammatic definitions for the mathematical
concepts in the form of “redraw rules” — rewrite rules with diagrammatic pre-
and post-conditions. An individual diagram can be suggestive and convey much
to the viewer, but it is only the behaviour of diagrams that can produce rigorous
proofs. We ignore the degenerate case f~1(S) = () — where the theorem is true by
definition — by excluding it from the antecedent. The proofis not a single diagram
but an ordered sequence of diagrams, in the same way that an algebraic proof is
not a single statement but an ordered list of statements. The comments explain
the steps taken, but are not necessary to the proof process. As we will show,
the reasoning involved can be given entirely in diagrammatic inference rules.
This approach requires defining diagrams, redraw rules and interpretations. The
behaviour of the diagrams under the redraw rules can then be shown to be
isomorphic (via the interpretation) to the behaviour of objects in the target
domain.

3 A function that is both one-to-one and onto is called an isomorphism.
4 This theorem roughly says that if a function maps nearby points to nearby points,
then its inverse will preserve open sets.
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Notation: we usefiii to mark the edges of a diagram,C"D  to represent general sets and .~ "_} to represent open sets

’\ 2: consider an arbitrary point in f' (S)

1: Diagrammatic statement of the antecedent

/ﬂ// ’_\ 4: 'S open => for any point in S, all nearby points are in S
s
I ey
/
X ) Y

5: fis (metric space) continuous, X Y
so0 apply the definition of continuous

Fig. 2. An example diagrammatic proof: metric space continuity implies topo-
logical continuity

4 Related Work

Diagrammatic reasoning is a relatively new area of research and there is lit-
tle directly related work. Barwise and Etechemendy’s HYPERPROOF system,
which currently sets the standard for the educational applications of theorem
provers [3], uses diagrams to great effect. It combines a first order logic prover
with a visual representation for reasoning in a blocks world domain [2]. However,
although HYPERPROOF mixes diagrammatic logic with sentential (predicate)
logic, it does not have any diagrammatic inference rules. To date, most systems
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have concentrated on using diagrams to guide an essentially algebraic proof [4].
For example, systems such as “&” /GROVER use diagrams as heuristics [1].

The exception to this is the DIAMOND system, which proves theorems in
natural number theory. It uses the constructive w-rule to generalise from dia-
grammatic proofs of individual cases by showing that the given proof defines a
uniform proof procedure for any instance [5]. The constructive w rule works via
meta-induction, and is therefore restricted to countable domains. However, we
claim in this paper that the idea of using a uniform proof procedure to show that
all cases can be proved (and are therefore true) can be adapted to continuous
domains. We also draw on ideas from Shin’s work for Venn Diagrams, where
results from real analysis are used to show soundness of diagrammatic inference
rules [11].

5 Some Formal Notation for Scribbling

Here we present our ideas for the formalisation of a diagrammatic system that
reasons in continuous domains. Perhaps the main purpose of such formalisations
is to avoid questions of human interpretation and intuition. This is analogous
to the development of formal methods for sentential logic, allowing for truly
rigorous proofs. Let £ be a language. We now define a drawing and a drawing
Sfunction.

Definition 1. A drawing D is a set {(X1,t1,41), (X2,t2,12),...} where X; C
R2, t;eLl,i; €N

Fig. 3. An example drawing: D = {({(z,y) | 22 +y* =2} U{(2,y) |y =z, x €
[0,v/2]}, closed_-ball, 1), ({(1,1)},point,2)} Implicit in this conversion is that the
scale of the diagram does not matter

Definition 2. A graphic object or drawing function is a partial function d,, :
(D, P) — D' where D,D" are drawings, P are parameters in N, R or L, and
D" = DU{(X,n,i)} such that i = 1+ maz{j : (Y,m,j) € D}. i is called
the instance number. An instantiated or drawn object is a particular value for a
drawing function.

Often a construct depends upon a previously drawn part of the diagram. For
example, in the definition of a continuous function:
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Va,e > 03 0(x,e) such that |z —y| <d = |f(z) — f(y)| <e

¢ is dependent on £ and x. In our framework, these dependencies are handled
implicitly: objects are assumed to be dependent on everything that was drawn
before them, and independent of anything drawn afterwards. This information
is ‘stored’ in the instance numbers of each object (e.g., see Figure 4).

Fig. 4. One possible point drawing function dy (D, z,y) — DU{{(z,y)}, point, 1}

We now define a label and a diagram.
Definition 3. A label is a partial function | : {drawings} — L x R.

Let dy(p1) o da(p2) denote da(di(,p1),p2). Given a set of graphic objects and
labels P = dy,ds, ..l1, 15, ..., we now define a diagram type.

Definition 4. Dp is a diagram of type P if Dp = {d = di(p1) o da(p2) ©
w11y ooy b)) where the 1; are label functions, such that 1;(d) = (n,z),l;(d) =
(n,y) = x =y (we will refer to this as the labelling condition).

Let D = D(P) denote the set of all diagrams of type P. Or, to put it another
way, Dp is a drawing of various objects in specific positions, marked according
to object type and instance. Labels are used to show equal values for lengths
or other such properties. The extra structure in the form of labels and diagram
types on top of R? prevents ambiguity such as in the diagram in Figure 5.

Fig. 5. Ambiguity in diagrams: is the ‘O’ a label for the area of the rectangle, a
label for the length of a side, or just a passing circle?
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Definition 5. A diagrammatic theory is a tuple
< L,{objects},{labels}, ~,{R1, Ra, .., } >
where the R; : 1D — D are called redraw rules.

We say a diagram D is within a theory, if the theory contains redraw
rules Ry, Ra, ... such that D = Ry o...0 Ry(0).

5.1 Generic Diagrams

One big stumbling block in diagrammatic reasoning is the problem of universally
quantified variables. Diagrams are inherently existentially quantified by the fact
that they are drawn, and therefore specific objects. We cannot draw an abstract
object. For any concept we wish to express there will usually be a continuum
of different instances, and we can only ever draw a finite selection of these. For
example, a theorem may mention a line of any length, but a drawn line must
have a fixed length.

There are two solutions to this, and we will use a combination of both in
this project. One is to let the interpretation do some of the work. The other is
to define equivalence classes of diagrams, and work with proof processes which
can be shown to be valid for all equivalent diagrams. In this way, each diagram
is allowed to stand for a class of related diagrams.

Consider the two triangle diagrams in Figure 6. Are they equivalent? This

b

Fig. 6. Are these diagrams equivalent?

depends on what we are trying to show. The proof that the internal angles
of a triangle add up to 180° can be drawn with either. On the other hand,
Pythagoras’ Theorem is only true for the right angled triangle. It is envisioned
that the automated theorem prover we propose here would have access to several
related diagrammatic theories. It would choose an appropriate one to work in
when given a conjecture.

A useful category of equivalence relations is one that includes equivalence
relations induced by groups of geometric transformations. Given a group G of
transformations of R? we can define an equivalence relation ~ over the diagrams.
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Definition 6. If D = {(X1,11,1),...}, D' = {(X],t},1),...} then D ~ D' iff
V(Xj,t5,45) € D, t; =t and g € G,g(X;) = X]’-,g’l(X]'-) = X, or 3 redraw
rule R, diagrams C,C" such that C ~ C', R(C) = D,R(C") = D'.

For example, in Figure 6, the diagrams would be equivalent if G contained rota-
tions and stretches. We call G the group of unimportant deformations, and say
a diagram D is a generic diagram for the equivalence class of D.

Definition 6 allows any equivalence relation, but in practice only a few are
of interest. In an informal survey, students were presented with a collection of
diagrams and asked to judge which ones should be considered equivalent. There
was almost unanimous agreement as to which transformations should and should
not be allowed in G. Translation, rotation, reflection are always considered valid.
Transformations that do not preserve topological properties (i.e. inside/outside)
are never valid. Those which do not preserve shapes, or affect one area of the
diagram differently to another are accepted on diagrams containing ‘amorphous
blobs’, but not on those composed of ‘rigid’ straight line shapes. These informal
results can be summarised as: G should preserve the apparent properties (topol-
ogy, shapes, etc.) of the diagram. It seems that diagrams are assumed to give
all the relevant information: i.e. if a clearly recognisable shape is drawn, then
this is an important feature. Otherwise, shape does not matter. Such cognitive
issues do not affect the validity of a formalisation, but do affect it’s usefulness.

We have used the redraw rules in defining ~ in such a way as to ensure that
VD,D" € D, R a redraw rule, D ~ D' = R(D) ~ R(D’). It is this property,
which we call the generic diagram property, that allows us to generalise from a
proof of a theorem for one instance, to a proof for all equivalent instances. A
sequence of redraw rules must apply equally to all members of an equivalence
class, thus guaranteeing equivalent proofs. If we define the relation ~ differently
— as we will need to for some areas — the generic diagram property must be
proved. This should be possible using standard maths results and techniques.

6 Are Truth Values Relevant?

Sentential (predicate) logics do have many advantages, not least of which is the
existence of well developed methods for checking their validity. Statements are
associated with truth values and inference rules are valid if and only if they are
sound. That is, P can be deduced from @) only if, in all models where @ is true, P
is also true. This property of being sound can be tested quite simply using truth
tables.

It is not clear that the values ‘true’ and ‘false’ have any meaning when applied
to diagrams. Treating diagrammatic statements as predicate statements with a
few spatial relations gives rise to ‘diagrams’ such as the one in Figure 7 taken
from [6]. Here the diagram is viewed as an existentially quantified statement
which can then be judged true or false. However this approach is quite unnat-
ural, in that the objects considered are not diagrams themselves but sentential
descriptions of diagrams. As such it is more an attempt to develop a predicate
calculus with a visual interpretation. Our approach differs in that we do not
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B : boz = Li, La. Ls, Ly : line
such that L; connects_ta Lg A Le connects_to Lg A
Ly connects_to Ly A Ly connects_to L;
and set B.knes = {L; L. Ls. L;}.
A: and gote = B: boz, L: lzhel such that L inside B
with L.tezt = “4" and set A.frame = B.lines.
N : nand_gotr = A : and_gate, P : point such that P or A frame
and set N.frame = A.frame, N.out = P.
S arlatek = N1, No:nand gate L1, Lo, L3, La: line, Ls, La : polyline
such that L touches Ni frome A Lz touches Ne frame
ALy tonches Nroowt ALy tonches Ne.oout
ALy touches Ly A Ls; touches Ne. frame
ALs touches Ly A Ls touches Ni. frame
and set 5.5t = L, S.reset = Lo, S.out; = Lg, S.ande = Ly,

Fig. 7. Ceci n’est pas une diagramme

try to interpret or parse diagrams. Instead we look at inference rules that act
directly on diagrams.

A diagram cannot be true or false. How could we draw a false diagram? We
can only talk of the truth and falsity of algebraic statements associated with the
diagram by an ‘interpretation’ or ‘logic mapping’. We therefore do not define
soundness in diagrammatic reasoning at all. Hilbert would approve:

“Mathematics is a game played according to certain simple rules with
meaningless marks on paper.” [10]

Instead we define validity of interpretation.

Definition 7. Consider interpretations of the form I : D — L where L is some
conventional logic for the target domain and I is an injective function. We say I

is valid iff YD € D, D & D' = I(D) = I(D').

Proofs of validity will vary. For example, if we wish to prove a theorem about
a property p (e.g., area), then it suffices to show that the relevant redraw rules
preserve property p.

If we do not have ‘false’ diagrams then we cannot use proof by contradiction.
Such proofs can often be reformulated as proofs of the contrapositive without
explicitly using contradiction.” It is hoped that using proof of the contrapositive
will eliminate the need for proof by contradiction.

7 The Constructive N; Rule

The constructive w-rule allows us to deduce VaP(z) by providing a uniform pro-
cedure to generate proofs for every x. In practice, this involves meta-induction:

® If we have a proof of P = Q by [P,—Q] = R, [P,—Q] = —R. Then we can prove
-Q = (P = R) and -Q = (P = —R). So -Q = (=P A R), -Q = (=P A =R) and
by resolution (that is, a case split rather than contradiction) -Q = —P.
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instead of induction on n, induction is carried out on the proof of n to show a
valid proof exists for every case. This was introduced by Baker, and was used in
Jamnik’s DIAMOND system to generate general proofs from diagrammatic base
case proofs [5].

We wish to extend this idea to prove theorems with a continuum (i.e. an
uncountable number) of cases. This gives the inference rule:

{P(z)|r € X}
VaP(x)

where X may be of any cardinality. We are interested in the case where X has
cardinality N;, which we call the constructive Xy rule. Whilst very similar in
concept, it leads to completely different proofs. Instead of using meta-induction,
the existence of a uniform proof procedure for all cases is proved by showing
that a specific proof for xy defines a valid proof for an arbitrary case x € X.
In the formalism outlined above, this amounts to showing that a proof from
one diagram defines a valid proof from any other diagram in it’s equivalence
class. Intuitively, it can be seen that the generic diagram property and validity
of interpretation as defined above are exactly what is needed to do this. Future
work on this project should include a rigorous treatment of this.

8 Another Example: Pythagoras’ Theorem

The generality of the proof of Theorem 1 given in Figure 2 (see §3) relied on
multiple interpretations of diagrams. Here we demonstrate the use of equivalence
classes for generalisation. Let G be the group of stretches along an axis, 90°
rotations, and translations. Assume that we have definitions for the following
redraw rules:

1. draw_right_angled_triangle(a,b) (draw the triangle {(0,0), (a,0), (0,b)} and
add length labels to the short sides),

translate_triangle,

rotate_triangle_90°,

copy-triangle (draw a copy of specified triangle object with identical labels),
label_square_area (add an area label to a square area, i.e. recognise an emer-

gent property),
6. subtract_triangle.

Al e

We only define one interpretation — each triangle is interpreted as itself. By
stretching, one triangle can become any right-angled triangle, and so all right
angled triangles are in the same equivalence class. Thus the correct generalisation
from the specific traingle used in the diagrams to the general theorem is set by
the equivalence class. The use of labels keeps the copied triangles identical to the
original (since if a stretch breaks the identical size of two triangles, the result
will fail the labelling condition and therefore will not be a valid diagram). By
applying these rules (in order: 1,4,3,2,4,3,3,2,4,3,3,3,2,5) we draw the diagram in
Figure 8. We then use rule 2 to transform this diagram to the diagram in Figure 9.
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Fig. 8. Pythagoras’ Theorem I

Fig. 9. Pythagoras’ Theorem II

Rule 6 strips away the extra triangles. Pythagoras’ Theorem, as presented here,
is an area theorem and so to show the validity of our interpretation, we need to
show that the translate and rotate redraw rules preserve the area, and the copy
and subtract rules cancel each other out. In the purely diagrammatic theory, this
is true by definition. In the Real diagrams, it is trivial for translation, copy and
subtract, but not for rotation. In general, the fact that rotation preserves area
is a corollary of Pythagoras’ Theorem. However, for 90° rotations, Pythagoras’
Theorem is not necessary: we only require ‘(? Bl )‘ = 1. Thus the proof is valid for
the instance shown. Also, the ~ relation was induced from a group G as set out
in §5.1. Hence the generic diagram property holds. Therefore the proof carries
over from the proved instance (triangle {(0,0),(1,0),(0,2)}) to all equivalent
instances. The equivalence class contains all right angled triangles,® so we have
proved the theorem.

9 Concept Overview for Real Analysis

Historically, real analysis was developed to justify the use of calculus. R? was
meant to be the real world, and the definitions were supposed to capture how
the universe works. Arguably most of the work went into coming up with the
right definitions.

As the universe is a notoriously geometric place, it is not surprising that
many of the concepts are best understood geometrically. This is why we choose
the theory of real analysis. It is an area whose algebra is often confusing to
students who meet it for the first time. Therefore it gives a good demonstration

5 The trivial cases, where the ‘triangle’ is a line or a point are in separate equivalence
classes and so must be considered separately.
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of these ideas, taking complex algebraic formulations and replacing them with
the geometric concepts they represent.

Working in Euclidean plane geometry, as with Pythagoras’ Theorem above,”
there is a canonical interpretation: that of each diagram as itself. Unfortunately
there can be no such canonical interpretation for diagrams applying to R™, since
R? is not homeomorphic to R™ for all n # 2.° Worse still, there are finite col-
lections of open connected sets Si,.., Sy in R™, such that there do not exist
S1, ..., S% in R? which are connected and have the same intersection relations as
the S;. These results mean that it is not possible to represent even finite collec-
tions of sets in R™ with sets in R? without potentially losing some topological
property. This is not a problem — it is actually quite convenient to ignore prop-
erties irrelevant to a theorem — but does introduce design choices and the need
for several diagrammatic theories.

Analysis proofs often require reasoning about countably large sets of objects
(e.g., infinite sequences or open covers). Whilst the framework we have outlined
here does allow us to ‘draw’ countable sets of objects, they cannot physically
be drawn. We therefore represent countable sets of objects by a single graphical
object whose behaviour is correct with regard to the properties we are interested
in (e.g., see Figure 10).

The Completeness Axiom as a redraw rule

using
HR—HK—HKAAK T redraws to Eaumramravavae o]
to represent a
ie. a convergent sequence in a closed bounded set converges to a point in the set closed bounded set

Fig. 10. Representing countable sets of objects: convergent sequences as illus-
trated by the (diagrammatic) completeness axiom

9.1 Example Proof for Theorem 1 Revisited

We can now begin to see how the example of a proof of Theorem 1 from §3
can be formalised. Drawing objects are needed for general sets, open sets, open
balls B.(z) = {y||r — y| < €}, points, and function application arrows, plus a
redraw rule for each step (e.g., see Figure 11). Here we define the equivalence
relation ~ by D ~ D’ iff there is a bijection f : D — D’ such that f(X,t,i) =
(X', t',i')=t=1t,i=1 and f is an isomorphism with respect to the relations
inside and intersects. Part of our future work is to prove that the redraw
rules used obey the generic diagram property.

" Pythagoras’ Theorem is also an analysis result, and part of this project’s remit.
8 Bizarrely, for all n there are continuous surjective maps of R* onto R™, but these are
not injective.
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Diagrammatic definition of a continuous function f
7T e : : ///’> N - '/;“\e

R Py R i R e e

x R R | i redrawsto | X v K
\\ ,’ ; i N R _ f ‘\ .

That is, given a point x and distance e, there is a distance r such that all points less than r from x are mapped by f to be closer than e from f(x)

Fig. 11. Redraw rules for proof of Theorem 1 from §3: a diagrammatic definition
for continuity

10 Limitations and Future Work

The next step in this project is to complete the formalisation of the ideas pre-
sented in this paper. We will then implement them in a prototype interactive
theorem prover (called the Real Analysis Prover — RAP). Finally, we aim to im-
plement an automated theorem prover for analysis theorems using diagrammatic
reasoning. This will require developing heuristics appropriate to diagrammatic
inference for guiding the proof search.

Working with actual diagrams, whilst possible, would be computationally
very inefficient. The RAP system will therefore use a visual language of predicates
with spatial relations.

Our current research and development of the formal structure is incomplete.
One interesting question is whether the equivalence relation between diagrams
can be relaxed to include so-called ‘degenerate’ or ‘trivial’ cases (such as empty
sets or identical points). Currently these must be treated as separate cases.
However, it is often possible to transform ‘normal’ diagrams into degenerate
versions, but not vice versa. Ideally, the ‘normal’ proof would then carry over to
degenerate cases.

So far, the proposed framework does not cover proofs of a recursive nature.
In the future we hope to extend our framework to include them, perhaps by
using a method used in DIAMOND, namely, generalisation via meta-induction.

Our aim in this project is to demonstrate the potential for applying dia-
grammatic reasoning in mathematical systems. The software we develop should
also have a practical application in mathematics teaching, where we hope it will
complement conventional methods.

The system outlined is only capable of incorporating algebraic manipulations
in a crude way (by ‘hiding’ the algebra in redraw rules). Hybrid proofs, fluently
combining diagrammatic and algebraic reasoning, are clearly a desirable goal.
Such systems might finally get close to reproducing the reasoning methods of
real-life mathematicians.



Diagrammatic Reasoning for Continuous Domains 299

References

10.

11.

. D. Barker-Plummer, S. C. Bailin, and S. M. Ehrlichman. Diagrams and mathe-

matics, November 1995. Draft copy of an unpublished paper. 287, 290

J. Barwise and J. Etchemendy. Heterogeneous logic. In J. Glasgow, N. H.
Narayanan, and B. Chandrasekaran, editors, Diagrammatic Reasoning: Cogni-
tive and Computational Perspectives, pages 211-234. AAAT Press/The MIT Press,
1995. 287, 288, 289

P. Hayes. Introduction to “Diagrammatic Reasoning: Theoretical Foundations”. In
J. Glasgow, N. H. Narayanan, and B. Chandrasekaran, editors, Diagrammatic Rea-
soning: Cognitive and Computational Perspectives. AAAI Press/The MIT Press,
1995. 289

M. Jamnik. Automating Diagrammatic Proofs of Arithmetic Arguments. PhD
thesis, Division of Informatics, University of Edinburgh, 1999. 290

M. Jamnik, A. Bundy, and I. Green. On automating diagrammatic proofs of
arithmetic arguments. Journal of Logic, Language and Information, 8(3):297-321,
1999. 290, 295

B Meyer. Constraint diagram reasoning. In J Jaffar, editor, Principles and Practice
of Constraint Programming (CP99), number 1713 in Lecture Notes in Computer
Science. Springer-Verlag, 1999. 293

R. B. Nelsen. Proofs without Words: Exercises in Visual Thinking. The Mathe-
matical Association of America, 1993. 286

J. J. OConnor and E. F. Robertson. Abu Jafar Muhammad ibn
Musa Al-Khwarizm, July 1999. From online software “The MacTutor
History of Mathematics Archive”. http://www-history.mcs.st-and.ac.uk/
history/Mathematicians/Al-Khwarizmi.html. 286, 287

J. J. O’Connor and E. F. Robertson. Pythagoras of Samos, July 1999.
From online software “The MacTutor History of Mathematics Archive”.
http://www-history.mcs.st-and.ac.uk/history/Mathematicians/
Pythagoras.html. 286

N. Rose. Mathematical Maxims and Minims. Rome Press Inc., Raleigh, NC, USA,
1988. 294

S. J. Shin. The Logical Status of Diagrams. Cambridge University Press, 1995.
290



	Introduction
	Axiom: n. Received or Accepted Principle; Self Evident Truth
	An Example Proof
	Related Work
	Some Formal Notation for Scribbling
	Generic Diagrams

	Are Truth Values Relevant?
	The Constructive 1 Rule
	Another Example: Pythagoras' Theorem
	Concept Overview for Real Analysis
	Example Proof for Theorem 1 Revisited

	Limitations and Future Work
	References

