
Diabelli: A Heterogeneous Proof System�

Matej Urbas and Mateja Jamnik

Computer Laboratory, University of Cambridge, UK
{Matej.Urbas,Mateja.Jamnik}@cl.cam.ac.uk

Abstract. We present Diabelli, a formal reasoning system that enables users to
construct so-called heterogeneous proofs that intermix sentential formulae with
diagrams.

1 Introduction

Despite the fact the people often prove theorems with a mixture of formal sentential
methods as well as the use of more informal representations such as diagrams, mecha-
nised reasoning tools still predominantly use sentential logic to construct proofs – dia-
grams have not yet made their way into traditional formal proof systems. In this paper,
we do just that: we present a novel heterogeneous theorem prover Diabelli that allows
users to seamlessly mix traditional logic with diagrams to construct completely formal
heterogeneous proofs – Fig. 1 shows an example of such a proof. In particular, Diabelli
connects a state-of-the-art sentential theorem prover Isabelle [1] with our new formal
diagrammatic theorem prover for spider diagrams called Speedith [2]. The interactive
user interface allows for displaying typical sentential proof steps as well as visual di-
agrammatic statements and inferences. The derived heterogeneous proof is certified to
be (logically) correct. Our heterogeneous framework is designed to allow reasonably
easy plugin of other external proof tools (sentential or diagrammatic), thus potentially
widening the domain of problems that can be tackled heterogeneously.

The motivation for our work is not to produce shorter and faster proofs, but to provide
a different perspective on formulae as well as to enable a flexible way of proving them.
The users can switch representation and type of proof steps at any point, which gives
them options and freedom in the way they construct the proof, tailored to their level
of expertise and their cognitive preference. The integration in Diabelli’s framework
benefits both: diagrammatic reasoners gain proof search automation and expressiveness
of sentential reasoners, while sentential reasoners gain access to another, diagrammatic
view of the formula and its proof which might provide a better insight into the problem.

2 Heterogeneous Reasoning Components
The kind of problems that can be tackled in our Diabelli heterogeneous framework de-
pends on the choice of sentential and diagrammatic reasoners, thus on the domains of
Isabelle and Speedith. Isabelle, as a general purpose theorem prover, covers numer-
ous different domains. Speedith’s domain is monadic first-order logic with equality

� Supported by EPSRC Advanced Research Fellowship GR/R76783 (Jamnik), EPSRC Doctoral
Training Grant and Computer Lab Premium Research Studentship (Urbas).

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 559–566, 2012.
© Springer-Verlag Berlin Heidelberg 2012



560 M. Urbas and M. Jamnik

Fig. 1. A heterogeneous proof of a statement with sentential steps (i), (v), (vi) and diagrammatic
steps (ii), (iii), (iv). (i) splits the lemma into a diagrammatic and a sentential sub-goal. (ii), (iii) and
(iv) prove the diagrammatic sub-goal. (v) discharges the goal (f) and proceeds to the sentential
goal in (c), which is discharged by auto in (vi) – a powerful proof tactic in Isabelle. All steps are
verified by Isabelle’s logical kernel.

(MFOLE). Thus, heterogeneously, in Diabelli system we can currently prove all the-
orems that contain subformulae of MFOLE provided they are expressed with spider
diagrams. Even though this domain is decidable, so potentially Isabelle alone could
sententially prove any theorem of MFOLE, our motivation lies elsewhere, namely in
heterogeneous proofs and in showing the feasibility of formal heterogeneous reasoning,
rather than in sentential proofs alone. Spider diagrams are a case study and a prototype
diagrammatic language for the Diabelli framework. When Diabelli is extended with
new theorem provers, the domain of problems covered will extend accordingly.

2.1 The Diagrammatic Reasoner

Spider Diagrams. The language of spider diagrams is used in Speedith, which consti-
tutes the diagrammatic reasoning part of our heterogeneous system. It is equivalent to
MFOLE, and is sound and complete (see [3] for details).

Spider diagrams are composed of contours, zones, spiders, shading, and logical
connectives. Contours are closed curves which represent sets and assert relationships
between them through relative spatial positioning. For example, the enclosure of one
contour in another denotes the subset and superset relations. Fig. 1(c) shows a diagram
containing two contours named with labels A and B. The set of all contour labels in a
diagram d is denoted by L(d).



Diabelli: A Heterogeneous Proof System 561

A zone is an area lying within some (or no) collection of contours and lying outside
the others. It denotes a set and is represented as a pair of finite, disjoint sets of contour
labels (in, out), such that in ∪ out = L(d). A zone (in, out) lies within contours in
and outside of contours out. The diagrams in Fig. 1(c) contains the zones (∅, {A,B}),
({A}, {B}), ({B}, {A}), and ({A,B}, ∅). The set of zones in a diagram is denoted by
Z(d). The zones in Z(d) can be shaded, denoted by ShZ(d). Shading indicates that the
zone’s only elements are the spiders, which places an upper bound on the cardinality of
the set.

Spiders are connected acyclic graphs whose nodes (feet) lie in a set of zones. A
spider asserts the existence of an element in the union of the zones where its feet reside.
The set of all spiders in a diagram d is denoted by S(d), and the function η : S(d) →
P(Z(d)) \ ∅ returns the habitat, that is, the set of zones in which a spider’s feet are
placed. The diagrams in Fig. 1(c) contains two spiders s1 and s2, with s1, for example,
having the habitat {({A}, {B}), ({B}, {A})}.

The diagrams considered so far are called unitary diagrams. Spider diagrams can be
negated with the ¬ operator, and joined with binary logical connectives ∧ (conjunc-
tion), ∨ (disjunction), ⇒ (implication), and ⇔ (equivalence) into compound diagrams
(e.g., Fig. 1(b)). For a complete formal specification of the semantics of spider dia-
grams, see [2]. In Isabelle/HOL we formalise it with the sd sem interpretation function
(Sec. 3.1).

Diagrammatic Inference Rules. Spider diagrams are equipped with inference rules
[2,3] that are all proved to be sound, hence proofs derived by using them are guaranteed
to be correct. Step (iii) in Fig. 1 from diagrams in (d) to (e) shows an application of the
diagrammatic inference rule add feet (which adds feet to an existing spider to assert that
it could live in another region too). Speedith allows interactive application of this and a
number of additional inference rules (see [2] for complete specification).

Speedith’s Architecture. Speedith [2] is our implementation of an interactive dia-
grammatic theorem prover for spider diagrams. It has four main components:

1. abstract representation of spider-diagrammatic statements,
2. the reasoning kernel with proof infrastructure,
3. verification of diagrammatic proofs, including input and output system for import-

ing and exporting formulae in many different formats, and
4. visualisation of spider-diagrammatic statements.

The abstract representation of spider diagrams is used internally in Speedith to repre-
sent all spider-diagrammatic formulae (see [2] for details). Speedith can be used as a
standalone interactive proof assistant, but it can also be easily plugged into other sys-
tems via its extensible mechanism for import and export of spider diagrams. Currently,
spider diagrams can be exported to Isabelle/HOL formulae or a textual format native to
Speedith; and for import, MFOLE formulae need to be translated to Speedith’s native
textual format.

2.2 The Sentential Reasoner - Isabelle

For the sentential part of our heterogeneous reasoning framework, we chose Isabelle,
which is a general purpose interactive proof assistant. This choice was arbitrary, any



562 M. Urbas and M. Jamnik

other highly expressive and interactive theorem prover could be used. In particular, Di-
abelli requires the reasoner to provide a way to interactively enter proof goals and proof
steps. The reasoner should also be able to output its current proof goals and incorpo-
rate new proof steps from external tools. In the future we could add a requirement that
the reasoner should support storage of arbitrary data – this could be utilized when a
diagrammatic language is not translatable into a reasoner’s format.

3 Integration of Diagrammatic and Sentential Reasoners

The Diabelli framework integrates diagrammatic and sentential provers on two levels.
Firstly, it connects them via drivers that in case of Speedith and Isabelle contain a bidi-
rectional translation procedures and a formal definition of the semantics of diagrams –
this is presented next. Secondly, the interactive construction of heterogeneous proofs is
facilitated through Diabelli’s graphical user interface, which is presented in Sec. 4.

3.1 Interpretation of Spider Diagrams in Isabelle/HOL

To formally define the semantics of spider diagrams we specify a theory of spider di-
agrams in Isabelle/HOL. In particular, we provide a formalisation of the abstract rep-
resentation and its interpretation, which verifies that our encoding is faithful to the for-
malisation in [3]. The main part of this theory is the function sd sem (Def. 2) which
translates the abstract representation of spider diagrams to Isabelle/HOL formulae. The
function sd sem interprets a data structure SD (Def. 1), which closely matches the ab-
stract representation of spider diagrams.

Definition 1. The SD data structure captures the abstract representation of spider dia-
grams and is defined in Isabelle/HOL as:

datatype SD = NullSD
| CompoundSD {operator: bool =>...=> bool, args: sd list}
| UnitarySD {habitats: region list, sm_zones: zone set}

The unitary diagram contains a list of regions (spider habitats that η generates) and a
set of zones. Regions are sets of zones, zones are pairs of in- and out-contours, and
contours are native Isabelle/HOL sets. The data structure SD does not contain a list of
spider names S – they are generated by the interpretation function usd sem (see Def. 3).

Definition 2. The sd sem function takes as an argument a description of the spider
diagram and produces a FOL formula that corresponds to the meaning of the given
spider diagram. The function is defined in Isabelle/HOL as:

fun sd_sem (spider_diagram : SD) =
NullSD -> True

| CompoundSD operator args -> apply operator (map sd_sem args)
| UnitarySD habitats sm_zones -> usd_sem habitats sm_zones

The function sd sem formally specifies the semantics of spider diagrams. The null spi-
der diagram is interpreted as the logical truth constant. The compound spider diagrams
are interpreted as a composition of a number of spider diagrams with operator. The
interpretation of a unitary spider diagram is central to the specification and is defined
by the function usd sem in Def. 3.



Diabelli: A Heterogeneous Proof System 563

Definition 3. The usd sem function interprets a unitary spider diagram which is given
through a list of regions (i.e., habitats of all spiders) and a set of shaded zones. It produces
a FOL formula that describes the meaning of the unitary spider diagram:

fun usd_sem (habs: region list, sm_zones: zone set) =
for each h in habs

conjunct ∃s. s ∈ ⋃
zone∈h sd_zone_sem zone

spiders ← spiders ∪ s
∧ distinct spiders
∧ ∀z ∈ sm_zones. sd_zone_sem z ⊆ spiders

where we use this shorthand: (for each x in [x1...xn] conjunct P(x)) ≡
P(x1)∧...∧ P(xn). We define sd zone sem as:

fun sd_zone_sem (in, out) = [
⋂

c∈in set_of c] \ [⋃c∈out set_of c]

where in and out are the sets of in- and out-contours of the given zone. For every habitat
h, usd sem introduces a fresh existentially quantified variable s (a spider) and asserts
that s lives in the region defined by h. Once all variables si are introduced, they are
declared distinct and shaded zones are interpreted as sets that may only contain spiders.

Here is an example of how sd sem interprets the spider diagram from Fig. 1(b):
(i) sd_sem CompoundSD{operator →,

[UnitarySD{[[(A,B),(B,A)],[(AB,∅)],{}},
UnitarySD{[[(A,B),(AB,∅)],[(B,A),(AB,∅)]],{}}]}

(ii) (usd_sem UnitarySD{[[(A,B),(B,A)],[(AB,∅)],{}}) →
(usd_sem UnitarySD{[[(A,B),(AB,∅)],[(B,A),(AB,∅)]],{}})

(iii) (∃s1.s1∈(sd_zone_sem(A,B) ∪ sd_zone_sem(B,A)) ∧
∃s2.s2∈ sd_zone_sem(AB,∅) ∧ distinct[s1,s2]) →
(∃s1.s1∈(sd_zone_sem(A,B) ∪ sd_zone_sem(AB,∅)) ∧
∃s2.s2∈(sd_zone_sem(B,A) ∪ sd_zone_sem(AB,∅)) ∧ distinct[s1,s2])

(iv) (∃s1.s1∈(A\B ∪ B\A) ∧ ∃s2.s2∈(A∩B) ∧ distinct[s1,s2]) →
(∃s1.s1∈(A\B ∪ A∩B) ∧ ∃s2.s2∈(B\A ∪ A∩B) ∧ distinct[s1,s2])

where step (i) is a call to the sd sem function, which applies the operator and calls
the function usd sem in step (ii). usd sem existentially quantifies variables with their
regions in step (iii). Lastly, in step (iv), sd zone sem interprets zones as sets, which
produces the final formula.

3.2 Translation of Isabelle/HOL to Spider Diagrams

Above, we showed how diagrams are translated to MFOLE expressions via sd sem
function. We now give a translation in the other direction: from MFOLE expressions in
Isabelle/HOL to spider diagrams.

An algorithm for conversion from MFOLE formulae to spider diagrams exists, but it
was shown to be intractable for practical applications [4]. Consequently, Diabelli cur-
rently translates formulae that are in a specific form, called SNF (spider normal form),
which is based on the sd sem function. Whilst SNF is a syntactic subset of MFOLE,
it is important to note that it is able to express any spider-diagrammatic formula. An
example of an SNF formula of a compound diagram was given in line (iv) of the trans-
lation example in Sec. 3.1 above.



564 M. Urbas and M. Jamnik

The translation procedure recursively descends into Isabelle’s formulae, which are
internally represented as trees, and returns the abstract representation of the correspond-
ing spider diagram by essentially reversing the sd sem function. A future goal is to
extend this translation with heuristics that would cover a wider range of formulae.

4 Architecture of Diabelli

The architecture of Diabelli heterogeneous framework with Isabelle and Speedith plu-
gins is illustrated in Fig. 2. Diabelli utilizes a plugin system of the I3P framework [5]

Fig. 2. The architecture of the Diabelli framework with Isabelle and Speedith

to connect the user interfaces of the sentential and diagrammatic provers. Fig. 3 shows
Diabelli’s graphical user interface. User commands are passed from I3P to Isabelle to

Fig. 3. A screenshot of a heterogeneous proof in Diabelli

execute them. The results are returned back to I3P, which displays them in a separate
result window. The commands are read from a user-edited theory file, which may con-
tain, for example, custom definitions, lemmas, and proof scripts. Diabelli’s users may



Diabelli: A Heterogeneous Proof System 565

instruct I3P step by step to issue the sentential commands to Isabelle or the diagram-
matic instructions to Speedith.

Diagrammatic instructions take the same textual form in the theory file as any other
Isabelle tactic (see the sd tac entries in Fig. 3). These instructions, however, are not
manually written by the user, but are generated by Diabelli through the user’s point-
and-click interactions with the diagram (note the Speedith sub-window in Fig. 3).

Diabelli automatically presents every translatable sentential sub-goal as a spider di-
agram in the Speedith window. If the user chooses to apply a diagrammatic inference
rule on (part of) it, then Speedith executes the rule and produces a transformed diagram,
which it passes back to Diabelli to replace the old sub-goal.

Diabelli currently connects only one general purpose theorem prover with a single
diagrammatic language and its logic. However, we designed the Diabelli framework
to be easily extended with new diagrammatic or sentential languages and logical sys-
tems by leveraging on the extensibility of the I3P framework that can manage multiple
provers at the same time. Formalising the requirements for Diabelli plugins remains
part of our future work.

5 General Observations

Diabelli is a novel heterogeneous reasoning framework that is a proof of concept for the
connection of more powerful provers. It demonstrates how sentential and diagrammatic
theorem provers can be integrated into a single heterogeneous framework. We show that
using these to interactively reason with mixed diagrammatic and sentential inference
steps is feasible and formally verifiable – this is breaking new ground in mechanised
reasoning. Diabelli provides an intuitive interface for people wanting to understand the
nature of proof. It more closely models how humans solve problems than existing state-
of-the-art proof tools, is adaptable and flexible to the needs of the user, and capitalises
on the advantages of each individual proof system integrated into Diabelli.

Applying either or both, diagrammatic and sentential proof steps is seamless. The
normal workflow of Isabelle is not modified by the diagrammatic subsystem, moreover,
the diagrammatic steps may be applied whenever a sentential formula can be translated
into the diagrammatic language.

Closest to Diabelli is the Openproof [6] framework which is the only other existing
system that facilitates the construction of heterogeneous reasoning systems. However,
it does not integrate existing reasoning systems, but rather provides a way of combining
different representations and logics.

Diabelli is implemented in SML and Java; its sources are available from
https://gitorious.org/speedith. With Diabelli, we can heterogeneously prove
all theorems that contain subformulae of MFOLE expressed with spider diagrams – this
is a significant range and depth of theorems.

Despite our focus on the language of spider diagrams, Diabelli introduces a way
to extend its scope to other domains. It is designed as a plugable system for seamless
integration of other diagrammatic and sentential theorem provers – we are currently de-
veloping drivers for other systems to demonstrate the scalability of the Diabelli frame-
work. A future direction is to establish a formal and concise specification of the plugin
interface required to add new systems that extend Diabelli’s problem domain.

https://gitorious.org/speedith


566 M. Urbas and M. Jamnik

References

1. Paulson, L.C.: Isabelle - A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg
(1994)

2. Urbas, M., Jamnik, M., Stapleton, G., Flower, J.: Speedith - a diagrammatic reasoner for spider
diagrams. In: Diagrams. LNCS. Springer (2012)

3. Howse, J., Stapleton, G., Taylor, J.: Spider Diagrams. LMS JCM 8, 145–194 (2005)
4. Stapleton, G., Howse, J., Taylor, J., Thompson, S.J.: The expressiveness of spider diagrams.

JLC 14(6), 857–880 (2004)
5. Gast, H.: Towards a Modular Extensible Isabelle Interface. In: 22nd TPHOLs, pp. 10–19. TU

Muenchen, Institut fuer Informatik (2009)
6. Barker-Plummer, D., Etchemendy, J., Liu, A., Murray, M., Swoboda, N.: Openproof - A Flex-

ible Framework for Heterogeneous Reasoning. In: Stapleton, G., Howse, J., Lee, J. (eds.)
Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 347–349. Springer, Heidelberg (2008)


	Diabelli: A Heterogeneous Proof System
	Introduction
	Heterogeneous Reasoning Components
	The Diagrammatic Reasoner
	The Sentential Reasoner - Isabelle

	Integration of Diagrammatic and Sentential Reasoners
	Interpretation of Spider Diagrams in Isabelle/HOL
	Translation of Isabelle/HOL to Spider Diagrams

	Architecture of Diabelli
	General Observations
	References




