Towards Learning New Methods
in Proof Planning

Mateja Jamnik, Manfred Kerber, and Christoph Benzmiiller
School of Computer Science, The University of Birmingham
Birmingham, B15 2TT, England, UK
{M.Jamnik |M.Kerber |C.E.Benzmuller}@cs.bham.ac.uk
http://www.cs.bham.ac.uk/~ {mxj|mmk|ceb}

Abstract. In this paper we propose how proof planning systems can
be extended by an automated learning capability. The idea is that a proof
planner would be capable of learning new proof methods from well chosen
examples of proofs which use a similar reasoning strategy to prove related
theorems, and this strategqy could be characterised as a proof method. We
propose a representation framework for methods, and a machine learning
technique which can learn methods using this representation framework.
The technique can be applied (amongst other) to learn whether and when to
call external systems such as theorem provers or computer algebra systems.
This is work in progress, and we hope to gain useful feedback from the
CALCULEMUS community.

1 Introduction

Proof planning [2] is an approach to theorem proving which uses proof
methods rather than low level logical inference rules to prove a theorem at
hand. A proof method specifies and encodes a general reasoning strategy
that can be used in a proof, and hence represents a number of individual
inference rules. For example, an induction strategy can be encoded as a
proof method. Proof planners search for a proof plan of a theorem which
consists of applications of several methods. An object level logical proof
can be generated from a proof plan. Proof planning is a powerful technique
because it often dramatically reduces the search space, allows reuse of proof
methods, and moreover generates proofs where the reasoning strategies of
proofs are transparent, so they may have an intuitive appeal to a human

mathematician.

One of the ways to extend the power of a proof planning system is to
enlarge the set of available proof methods. Often a number of theorems can
be proved in a similar way, hence a new proof method can encapsulate the
general structure, i.e., the reasoning strategy of a proof for such theorems.
A difficulty in applying a strategy to many domains is that in the current
proof planning systems new methods have to be implemented and added by
the developer of a system. Our aim is to explore how a system can learn
new methods automatically given a number of well chosen examples of
related proofs of theorems. This would be a significant improvement, since
examples exist typically in abundance, while the extraction of methods
from these examples can be considered as a major bottleneck of the proof
planning methodology. In this paper we therefore propose an approach to
automatic learning of proof methods within a proof planning framework.

There is a twofold, albeit loose, relation to the Calculemus idea. The
first relation is with respect to Kowalski’s equation algorithm = logic +
control [9] — our work aims at exploring general reasoning patterns and the
control knowledge hidden in the sets of well chosen proof examples. The
extracted knowledge, which is in Kowalski’s sense a form of algorithmic
knowledge, is represented in such a way that it can be reused for tackling
new problems. The exploration of algorithmic knowledge is especially de-
sirable in cases when this knowledge is not a priori available to a reasoning
system (e.g., in form of a built-in or connected computer algebra system).
The second relation is that our approach, which is described and applied
here solely in the context of simplification proof examples in group theory,
is not restricted only to this domain. It can analogously be applied to
learn control knowledge from proof examples that already contain calls to
computer algebra systems. Therefore, note that computer algebra systems
may be employed in a subordinated way in proof planning by calling them
within proof methods to perform particular computations [8]. Given a set
of examples each of which contains probably several such calls to computer
algebra systems, our approach would enable a system to learn the over-
all pattern of these calls (if there is one). In this sense the learnt methods
also encode knowledge of the controlled usage of computer algebra systems.
More generally, this argument also applies to other external reasoning sys-
tem which are subordinately employed within proof methods, and is not
restricted to computer algebra systems only.

Figure 1 gives a structure of our approach to learning proof methods,
and hence an outline of the rest of this paper. First, we give some back-
ground and motivation for our work. In Section 2 we examine what needs
to be learnt, choose our problem domain and give some examples of proofs

Examples Proofs of other

of proof theorems
abstract
appl
Seguences of New compound
method specifiers method
teng

precondition
learn analysis/” gy nto
methogd'language
Common rep. of all

examples - method outlines

Figure 1. An approach to learning proof methods.

that use a similar reasoning strategy. Then, in Section 3, the represen-
tation of methods that renders the learning process as easy as possible
is discussed. We continue in Section 4 to present one possible learning
algorithm for learning proof methods from examples of proofs. Some alter-
native learning techniques are also discussed. Next, in Section 5, we revisit
our method representation and enrich it so that the newly learnt meth-
ods can be used in a proof planner for proofs of other theorems. We use
precondition analysis to acquire the information for extending the method
representation. Finally, in Section 6, we relate our work to that of others,
and conclude with some future directions and final remarks.

2 Motivating Example

A proof method in proof planning basically consists of a triple — precon-
dition, postcondition and a tactic. A tactic is a program which given that
the preconditions are satisfied executes a number of inference steps in order
to transform an expression representing a subgoal so that the postcondi-
tions are satisfied by the transformed subgoal. If no appropriate method is
available in a given planning state, then the user (in case of interactive sys-
tems) or the planner (in case of automated systems) has to explicitly apply
a number of lower level methods (with inference rules as the lowest level
methods) in order to prove a given theorem. It often happens that such
a pattern of lower level methods is applied time and time again in proofs
of different problems. In this case it is sensible and useful to encapsulate
this inference pattern in a new proof method. Such a higher level proof
method based on lower level methods can either be implemented and added
to the system by the user or the developer of the system. Alternatively, we
propose that these methods could be learnt by the system automatically.

The idea is that the system starts with learning simple proof methods.
As the database of available proof methods grows, the system can learn
more complex proof methods. Initially, the user constructs simple proofs
which consist only of basic inference rules rather than proof methods. A
learning mechanism built into the proof planner then spots the proof pat-
tern occurring in a number of proofs and extracts it in a new proof method.
Hence, there is a hierarchy of proof steps from inference rules to complex
methods. Inference rules can be treated as methods by assigning to them
pre- and postconditions. Thus, from the learning perspective we can have a
unified view of inference rules and methods as given sequences of elements
from which the system is learning a pattern.!

To demonstrate our ideas with an example we need to first determine
our problem domain — we choose theorems of abstract algebra, and in
particular theorems of group theory. An example of a proof method is
a simplification method which simplifies an expression using a number of
simplification inference rules (which are in our unified view just basic level
proof methods).? In the case of group theorems, the simplification method
may consist of applying both (left and right) axioms of identity, both ax-
ioms of inverse and the axioms of associativity. Note that e is the identity
element, ¢ is the inverse function, and LHS = RHS stands for rewriting
LHS to RHS:

(XoY)oZ = XO(YOZ) (A—r)
Xo(YoZ) = (XoY)oZ (A-1)
eocX = X (Id-1)

Xoe = X (Id—r)
XoX! = e (Tnv-r)
XioX = e (Inv-1)

We now give two examples of proof steps which simplify given expressions
and which are concrete applications of a simplification method that we
want a system to learn.

INote that as a consequence of the hierarchic character of the method language —
with methods corresponding to calculus level rules at the lowest level — the approach is
in principle general enough to learn methods on every level of abstraction. While some
heuristic information for the compound method can be computed from the component
methods, learning more precise heuristic information for the compound method will be
necessary. We do not address this problem in this paper.

20One may assume that the simplification inference rules are already learnt as ba-
sic proof methods from rewriting style of proofs employing a single rewriting rule and
appropriately instantiated group axioms.

Example 1 Example 2
ao((a’ o ¢)ob) a o (a'ob)
b bo(A)
(ao(a’ o ¢)ob (@ o a')ob
bo(A) b (nvr)
((aoa’) o ¢)ob e o b
U (Inv-r) U (Id-1)
(eoc) o b b
b
c o b

In pseudocode, one application of simplification could be described as fol-
lows (notice that a repeated application of simplification can be learnt
separately):

Precondition:
there are subterms in the initial term that are inverses of each other,
and that are not separated by other subterms, but only by brackets.

Tactic:
1. apply associativity (A-r) and/or (A-l) for as many times as nec-
essary (including O times) to bring the subterms which are in-
verses of each other together, and then

2. apply inverse inference rule (Inv-r) or (Inv-1) to reduce the ex-
pression, and then

3. apply the identity inference rule (Id-r) or (Id-1).

Postcondition:
the initial term is reduced, i.e., it consists of fewer subterms.

Note that this is a general simplification method, and the two examples
given above would not be sufficient to learn it (e.g., the examples do not
use (A-r), (Inv-1), (Id-r), hence additional examples that use these inference
rules would have to be provided). Furthermore, our simplification method
needs to be able to do loop applications of methods, where the number of
loops is determined by the theorem the method is used to prove. In a sense,
this type of control construct is similar to the notion of tacticals, hence we
refer to them as methodicals. We are realising our ideas on learning meth-
ods in the proof planner of QMEGA [1] which does not explicitly represent

loops. Loops in OMEGA are simulated by the use of control rules (see [4]).

Therefore, we are currently extending the existing representations used in
QMEGA to provide explicit representation of loop applications of methods.

An alternative to this approach is to re-represent our problems, for
instance, so as to omit the brackets in the presence of the associativity
rules. However, this would be a much harder learning problem. In this
paper we do not take this approach.

3 Method Outline Representation

The representation of a problem is of crucial importance for solving it — a
good representation of a problem renders the search for its solution easy.
This is a well known piece of advice from Pélya [14]. The difficulty is
in finding a good representation. Our problem is to devise a mechanism
for learning methods. Hence, the representation of a method is important
and should make the learning process as easy as possible. Furthermore,
it should be possible to represent loop applications of inference rules in
methods. Here we present a simple representation formalism for methods,
which abstracts away as much information as possible for the learning pro-
cess, and then restores the necessary information so that the proof planner
can use the newly learnt method. At the same time it caters for loop
applications of inference rules in a method.

A major problem we are faced with when we want to learn compound
methods from lower-level ones is the intrinsic complexity of methods, which
goes beyond the complexity that can typically be tackled in the field of
machine learning. For this reason we first simplify the problem by trying
to learn the so-called method outlines (which is discussed next), and second,
we reconstruct the full information by extending outlines to methods using
precondition analysis (which will be discussed in Section 5).

Let us assume the following language L, where P is a set of primitives
(which are the known identifiers of methods used in a method that is being
learnt). In essence, this language defines regular expressions over method
identifiers. The weight w defines the complexity of an expression:

e for any p € P, let p € L and w(p) =0,
e for any ll,lg €L, let [ll,lg] € L and ’w([ll,lg]) = ’w(l1) + ’w(lg) +1,
e for any l;,ls € L, let [l1]la] € L and w([l1]l2]) = w(ly) + w(lz) + 1,
e for any I € L, let I* and w(l*) = w(l) + 1.
“[” and “)” are auxiliary symbols used to separate subexpressions, “|” de-

notes an exclusive-or-disjunction, “,” denotes a sequence, and “x” denotes
a repetition of a subexpression any number of times (including 0). Let

7

the set of primitives P be {A-l, A-r, Inv-l, Inv-r,Id-1, Id-r}. Using this lan-
guage, and given the appropriate pre- and postconditions, the tactic of our
simplification method described above could be expressed as:

simplify = [[[A—l A—r]*, [Inv—l

Inv—r]] [Id—l

Y

Td-1] |

with w(simplify) = 6. We refer to expressions in language L which describe
compound methods (as in the example above) as method outlines. simplify
is a typical method outline that we would like our system to be able to learn
automatically. The representation is simple enough that a mechanism can
be devised to learn methods using this representation. We propose such a
mechanism next,.

4 How to Learn?

As explained in the previous section, we use our language L for an abstract
representation of methods, i.e., method outlines, in order to simplify the
representation and render the learning process easier. Here we address
how such method outlines can be learnt given a number of well chosen
examples of proofs. Typically, there are many possible method outlines
which describe a method that the system is learning. The general idea
is to learn the simplest (following Occam’s razor principle) and optimal
method outline, and we measure simplicity (in our first approach) in terms
of weight as defined before in Section 3. Notice that our decision to use
simplicity to select a possible method outline is a heuristic choice. It may
be that it is not the appropriate choice, that is, that we sometimes do not
prefer the simplest method outline, but perhaps the most general one, or
even the least general one.®> As part of our future work we may have to
refine our notion of simplicity.

We discuss three possible approaches to learning: a complete generation
of method outlines, a guided generation of method outlines, and a technique
similar to least general generalisation (see [12, 13]).

3Here, we give an example of the simplest method outline, which is too general
given our set of training example. Consider a set of 4 primitives {a,b,c,d}, and the
training examples: {a,b,b,c,c,d}, {a,b,a,b,b,¢c,b,¢,¢,d,c,d}, {a,b,a,b,a,b,b,c,...}.
These examples can be described by the following method outlines: [[[a]b]|c]|d]* and
[[a;b]*, [b,c]*,[e,d]*]. The first outline is of weight 4, whereas the second outline is of
weight 8. If only simplicity heuristic is used, then the first outline is the chosen one.
However, this is too general since it describes examples which it is not intended to
describe, e.g. {a,a,a,a,a}.

Exhaustive Generation of All Outlines Our first attempt at a learn-
ing technique is to generate all possible method outlines in language L
of a certain weight. We then prune this set by eliminating the method
outlines which could not be instantiated to the representation of the exam-
ples. This technique is similar to breadth first search in that the solution
is guaranteed to be found and to be optimal. Similarly to breadth first
search, the technique is very inefficient, and may turn out to be unusable
in practice for complex method outlines. Clearly, the size of the set with all
the possibilities depends on the number of primitives and on the maximum
weight of the method outline representing a possible method description.
For example, if we have 3 primitives {m,ma, m3} then the size of the
set of all possible method outlines of weight 0 is 3, the size of the set of
all possible method outlines of weight 1 is 15, etc.* If the examples of
simplification included only {Inv-r,Id-r} and {Inv-r,Id-1}, then the only
possible method outline of weight 2 representing a generalised method out-
line is [Inv-r, [Id-r[Id-1]] which is the same as [Inv-r, [Id-1|Id-r]] (where
disjunction is commutative, but a sequence is not). Note also, that we
exclude method outlines such as [Inv-r*, [Id-r\Id—l]], [Inv—r, [Id-r*|Id-l]],
[Inv—r, [Id—r|Id-1*]] [Inv—r, [Id—r|Id-l] *] or any combination of these starred

Y

subexpressions — they are not as simple as possible.

Guided Generation of Outlines The size of the set of possible method
outlines increases hyper-exponentially which poses a severe problem.? We
can improve upon this performance by generating only the relevant method
outlines — this is our second attempt at a learning technique. For instance,
given any example, we could avoid generating all those method outlines
that cannot be part of the method outline to be learnt (for instance, if the
sequence Inv-r, Inv-r does not occur in any of the training examples then no
method outline containing this sequence should be generated). This would
prune the possibilities dramatically. Such an approach can be justified as
a valid heuristic approach because we do not expect the methods to be so
complex (of large weight) that they are intractable, but rather that they
are as simple as possible. In fact, we could argue that if a method needs to
have a complexity beyond a certain weight, then it is better to first learn
several less complex methods that comprise it, and then put these together

4The 15 terms of weight 1 are: [m;,m;] for i,5 € {1,2,3}, [mi|ma], [m2|ms],
[m1|ms], [m1*], [m2*], [ms*]. The candidates [m;|m;] and [ma|m1], [m3|ma], [mg|m1]
are filtered out due to idempotency and commutativity of #|”.

5For example, using only 4 primitives it is possible to generate all method outlines
of weight 6, but method outlines of weight 7 are already beyond reasonable computer
resources.

in a larger method which is now of smaller complexity.

Although the two learning mechanisms discussed above are rather inef-
ficient, they form a standard which can be used to measure the quality of
a solution found by a procedure which is computationally more efficient.

Generalisation A third possible approach for a learning technique is
similar to Plotkin’s least general generalisation [12, 13]. For more detail
see the full version of this paper [7].

5 Method Representation Revisited

Methods expressed using the language introduced in Section 3 do not spec-
ify what their preconditions and postconditions are. They also do not spec-
ify how the number of loop applications of inference rules is instantiated
when used to prove a theorem. Hence, the method representation needs
to be enriched to account for these factors. We propose to use the ideas
from precondition analysis developed by Silver [15] and later extended by
Desimone [5] in order to enrich our method representation.

5.1 Precondition Analysis

The idea of precondition analysis is to examine the reasons for applying
each inference at each step of the proof. This is achieved by providing ex-
planations for each step in the proof which are usually extracted from the
information of preconditions and postconditions of a step. The precondi-
tions of each rule used in a method are paired with additional information,
namely the methods that generated these preconditions. Similarly, the
postconditions of each rule used in a method are paired with the methods
that use these postconditions. We extend Desimone’s method schema rep-
resentation with the effects that an inference rule has in the proof. Effects
are used to express a change in the proof planning state which is not explic-
itly planned for, because, for instance, the underlying language may not be
rich enough to express these changes. We demonstrate a representation of
a method schema with an example.

Let there be a proof of a theorem T which consists of three steps,
My, M> and Mj5. These methods consist of preconditions, postconditions,
effects and tactics as demonstrated in the table below:

| Preconditions Postconditions Effects Tactic
M, x Ay Ap(d) TAYANz w = f(d) ty
M, y A p(w) m to

M5 zAm n t3

10

Notice that p(d) denotes some property p of d, where this property is a
precondition of M;. f denotes a function which under the application of M}
changes a term d occurring in a precondition p(d) to a term w. The initial
state of the proof of the theorem can be described in terms of A y A p(d)
which holds for theorem T'. The preconditions of each method M; used in
a proof of an example are analysed to determine the explanations for using
these particular steps in the proof. The explanations are generated in a
bottom-up fashion starting with the application of the final method. Mj3
was obviously applied in order to reach a solution denoted by n and is not
an interesting case. Now consider reasons for applying method M,. This
is done by the analysis of the preconditions of M3 which may be provided
as the postconditions of M,. The preconditions for method M3 are z A m.
The precondition z was already satisfied before the application of M>,% but
the precondition m was generated as a postcondition of the application of
method Ms. Hence, one possible explanation is that method M, was
applied in order to generate precondition m for method Mj3. The same
can be said for method M; — it is applied in order to generate an effect
w whose property p(w) is a precondition for M, and a precondition z for
Msj. Together, an explanation can be that methods M; and M, are applied
in order to generate the preconditions z A m for M3.” Desimone captures
these explanations in a method schema.

Using the language for method outlines described in Section 3 we are
able to re-represent methods in the way suggested by the precondition
analysis. In our example above, the method schema, say M, which is
[Ml,MQ,Mg] in our language L, can be re-represented as a method as
given in Figure 2, where “pre” is a predicate with two arguments: the
precondition and the method which created this precondition as a postcon-
dition; “post” is a predicate with two arguments: the postcondition and
the method which uses this postcondition as a precondition; “_” stands
for no method, that is, the precondition is true before the application of
the new method or the postcondition is not used as a precondition for any

6Note that all changes to the state of the proof caused by the application of a method
have to be explicitly stated in the specification of the method (i.e., in its pre-, postcon-
ditions or effects). For example, nothing is mentioned about z in the specification of
Ms>, hence the application of My preserves z.

7Using the precondition analysis as explained in [15], we get the explanations for ap-
plying all of the inference rules used in the examples. In our example, the associativity
inference rules are applied to generate the preconditions for the inverse inference rules.
Furthermore, the inverse inference rules are used to generate the preconditions for the
identity rules. Hence, this gives the partition of the rules that we need in the generali-
sation learning process, as discussed in Section 4. The details of how the partitioning is
done still need to be worked out.

11

[Pre || zAy |
Preconditions Postconditions
My | pre(z,.),pre(y, -) post(z,), post(y, Ma),
Tactic pre(p(d), —) pOSt(Z, MS)

Effects: w = f(d)
M2 pre(szl)apre(p(w)aMl) pOSt(m7M3)

Ms | pre(z, M), pre(m, Ms) post(n, -)

| Post || n |

Figure 2. Compound method.

other method used in the tactic.

Analogously, a method outline with a disjunction such as [M;|M:] can
be represented as a method schema, the precondition of which is a disjunc-
tion of preconditions for M; and M,. Similarly, the postcondition of this
method schema is a disjunction of postconditions of M; and M,. The plan-
ner has to be able to handle disjunctions of pre- and postconditions, which
is a non-trivial open problem in proof planning. Extending a planner to deal
with such disjunctions needs to be addressed in detail in the future. The
second argument of pre- and postcondition pairs is determined as explained
above. We further extend Desimone’s method schema representation with
a disjunction of explanations for method applications. Namely, if there
is more than one method which generates/uses a pre-/postcondition, then
these are combined disjunctively. This allows us to encode the fact that a
postcondition of a particular rule is also a precondition of the same rule,
hence, the rule can be applied several times.

Depending on the example that the method is used to prove, the pre-
and postcondition pairs are instantiated differently. This determines if and
how many repeated applications of a rule are needed. Hence, a method
outline with a “x” such as [Ml*, Mg] has pre(z,_-V M), pre(y,-V My) as
preconditions of M;, and post(z,_V M), post(y, My V Ms),post(z,-) as
postconditions of M; (the rest is as expected). Hence, if after the appli-
cation of M; all the postconditions of M; satisfy its preconditions, and
furthermore no other method in the tactic is applicable then M, is applied
again. If its postconditions satisfy the preconditions of another method,
say My, then M; is no longer applied in the proof. This is of course a
heuristic decision and further research will have to examine whether it is
appropriate.

12

5.2 From Outlines to Methods

Now we can represent a method outline
[[A—1|A—r] " [Inv—r\Inv—l] , [Id—1|Id—r]]

as a simplification method using pairs of pre- and postconditions with meth-
ods that generate or use them, and the effects that the rules have. To save
space, but still convey the main points, we only consider a simplified version
of simplification, namely a method outline [A—l*, [Inv—r|Inv—1] , Id—l]. Notice
that in order to be able to attach explanations to the inference rules in the
style of precondition analysis, the method language needs to be extended.
We extend it with the following vocabulary: subt(X,Y’) for “X is a sub-
term of Y7, nb(X,Y) for “X is a neighbour of Y” (two subterms of a term
are neighbours if they are listed one after another when a tree represent-
ing the term is traversed in post-order), 6(X,Y, Z) for “a distance between
subterms X and Y in a term Z” (the distance between two subterms is
the number of nodes between the two subterms when a tree representing
a term is traversed in post-order decreased by 1), and red(E;, Es) for the
fact that an expression E; is reduced to Es (an expression is reduced when
it consists of fewer subterms than originally).® Figure 3 shows the relevant
inference rules augmented with appropriate explanations. E’ is the term

Rule | Preconditions Postconditions
subt((X oY) o Z,E)A subt(X o (Y o Z), E")A
(A-r) subt(A,Y) A subt(B, Z)A subt(A,Y)A
nb(A,B,E)AN§(A,B,E) >0 subt(B,Z) Anb(A, B, E")
Effects: §(A,B,E') =
(A,B.E) - 1
(Id-1) subt(e, E) red(E, E")
subt(X o X', E) A subt(X, E)A subt(e, E')
(Inv-r) | subt(X*, E)A (. B
nb(X, X)) AS(X, X!, E) =0 re
‘o
(Inv-1) ZZZig E))(;\E) bt I subt(e, E')
' red(E,E'")

nb(X, XHA6(X, X\, E) =0
Figure 3. Methods with explanations for their application.

generated from E by applying a corresponding method.

8The choice of this vocabulary is not important for this paper, and needs to be
discussed elsewhere.

13

Figure 4 gives a method schema representation for a method outline
[A—l*, [Inv-r\Inv—l] , Id—l] 2 Note that applicable(z) means that all the pre-
conditions for z are satisfied. Additional information that all methods as-

[Pre [[nb(A, A*, E) A (applicable(A-1) V applicable(Inv-r) V applicable(Inv-1)) |

Tact |Preconditions Postconditions
post(subt((K o L) o M, E»),)

re(nb(A, Az) v post(red(Es, Eg), J)

re (A Al E5) 0, -V
(I1d-1) | pre(subt(e, E7) (Inv-r) V (Inv-1)) post(red(E7, Eg), -)
[Post [[red(E, E;) |
Figure 4. Newly learnt compound method simplify.

pre(subt(K o (Lo M), E1), -V (A-l)) post(subt(A1,K),
pre(subt(Aq, K), -V (A1) (A-1) V (Inv-r) V (Inv-1))
(A-1) | pre(subt(As, L), _V (A-1)) post(subt(Asz, L),
pre(nb(A, A", E1), -V (A-1) (A-1) v (Inv-r) V (Inv-1))
T pre((A, A El) 0, _V (A-1)) post(nb(A, A, Es),
a (A-1) v (Inv-r) V (Inv-1))
(t: Effects: (A4, A%, Bp) =
; 0(A, A, Ey) —
c pre(subt(Ao A, E3), _V (A-]))
pre(subt(A, E3), _V (A-D)
Inv-r)| pre(subt(A?, Ez), v (Al post(subt(e, Eq), (Id-1)
() eEnb(é A’)) Ry EA-lgg post(red(Es, E4), 0
pre(6(A, A' E3) =0, _V (A-])
pre(subt(A' o A, E5), _V (A-l))
e(subt(A, E5 _V (A-1
(Inv-1) eEsuthA Eg) -V EA-S; post(subile, Ee), (Id-1))
((A-1)
E (A-1))

sume is a position parameter which specifies a subterm on which a method
is applied. This information is used in the expansion of the method to the
lower layer methods. That is, should the user want an object level proof
from a proof plan, then ultimately all the methods need to be expanded to
the inference rule level. Therefore, our new simplify method also requires
the position parameter information. Details about the extraction of a po-
sition parameter still need to be resolved, hence we do not discuss them
here.

6 Further work and Conclusion

In this paper we introduced a language for method outlines which can
be used for describing compound proof methods in proof planning on an

9Notice in Figure 4 that in the application of (A-1), A; matches with A and Ay
matches with A*, or A1 matches with A* and Ay matches with A.

14

abstract level. These methods can carry out loop applications of less com-
plex methods and can apply them disjunctively, depending on the theorem
for which they are used to prove. We also introduced a technique for
learning optimal method outlines from a number of examples of method
applications. This technique is inefficient, hence we hinted how a more
sophisticated approximative technique could be devised.

The method outlines of the introduced language can be encoded as
proof method schemas in the style of Silver and Desimone in their work on
precondition analysis. We demonstrated how a method outline learnt from
a number of examples of the simplification method can be represented as
a method schema.

Our approach is restricted to learning new higher level proof methods
on the basis of the already given ones. We cannot learn language extensions
such as a coloured term language which would be a prerequisite for learning
any kind of methods similar to rippling [3]. In this paper we do not address
the question how such a vocabulary can be learnt by a machine. Work by
Furse on MU learner [6] may be relevant for this task.

Not much work has been done in the past on applying machine learning
techniques to theorem proving, in particular proof planning. We already
mentioned work by Silver [15] and Desimone [5] who used precondition
analysis to learn new method schemas — we explained how we use their
ideas in our work. Of interest is work on generalisation [13], and other
machine learning techniques such as inductive logic programming [11] and
explanation based generalisation [10].

Finally, there are many open questions that remain to be worked out.
Here are some of them:

e Are the descriptions of preconditions, postconditions and effects as
given in the example in this note adequate to describe methods?
Will a proof planner be able to use such method schemas in order
to instantiate them into methods, and hence prove theorems? What
type of extensions of a proof planner are needed to accommodate the
use of method schemas?

e Does the representation of the method schema given in the exam-
ple in this paper adequately describe the method outline represented
using our language L? Can the method schema representation be
simplified?

e So far we considered proofs which are constructed in a purely sequen-
tial rewriting style without any case splits; i.e., we considered proof

15

chains and not general proof trees. Does our approach fully apply
also to styles of proofs other than rewriting?

e Our recent experiments showed that our primitive proof methods
are assumed to focus on particular subterm occurrences. These are
specified by additional position parameters provided by the methods.
Furthermore, the learnt simplify method has to come with an addi-
tional position parameter which indicates where in the expression of a
theorem the method is applied. How can the parameters required for
a new method be inferred from the parameters given for the primitive
methods? How can the learnt method generally guide its expansion to
an object level proof by providing appropriate parameter information
to the primitive methods?

e How can we most efficiently learn a general method outline in lan-
guage L describing a method schema? Which one of the two proposed
approaches, namely guided generation of all method outlines describ-
ing the example and then pruning them, and a technique similar to
Plotkin’s least general generalisation, is best to use? Are there exam-
ples for which the first technique is better than the second, and vice
versa? How can we determine when a technique is or is not appro-
priate? Is there another, more appropriate technique that we could
use in order to learn new methods automatically?

Some of the answers to these questions have the potential to significantly
contribute to the strength of the proof planning approach to mechanised
reasoning.

Acknowledgements

We would like to thank Alan Bundy for his continuing interest in and
advice on our work, and in particular for pointing us to the work of Silver
and Desimone. Furthermore we would like to thank Andreas Meier and
Volker Sorge for their invaluable help in getting started to realise our ideas
in OMEGA. Finally we would like to thank our referees for many useful
comments. This work was supported by EPSRC grants GR/M22031 and
GR/M99644.

References

[1] C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang,
M. Kerber, M. Kohlhase, E. Melis, A. Meier, W. Schaarschmidt,

16

[8]

[9]

[10]

[11]

[12]

J. Siekmann, and V. Sorge. Q: Towards a mathematical assistant. In
W. McCune, editor, 14th Conference on Automated Deduction, pages
252-255, 1997.

A. Bundy. The use of explicit plans to guide inductive proofs. In
R. Lusk and R. Overbeek, editors, 9th Conference on Automated De-
duction, pages 111-120. Springer Verlag, 1988. Longer version available
from Edinburgh as DAT Research Paper No. 349.

A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rip-
pling: A heuristic for guiding inductive proofs. Artificial Intelligence,
62:185-253, 1993. Also available from Edinburgh as DAI Research
Paper No. 567.

L. Cheikhrouhou. Forthcoming. PhD thesis, Fachbereich Informatik,
Universitit des Saarlandes, Saarbriicken, Germany, 2000.

R.V. Desimone. Learning control knowledge within an explanation-
based learning framework. In I. Bratko and N. Lavrac, editors, Progress
in Machine Learning — Proceedings of 2nd European Working Session
on Learning, EWSL-87, Bled, Yugoslavia, 1987. Sigma Press. Also
available from Edinburgh as DAI Research Paper 321.

E. Furse. The mathematics understander. In J.H. Johnson, S. McKee,
and A. Vella, editors, Artificial Intelligence in Mathematics. Clarendon
Press, Oxford, 1994.

M. Jamnik, M. Kerber, and C. Benzmiiller. Towards Learning New
Methods in Proof Planning. Technical Report, School of Computer
Science, The University of Birmingham, CSRP-00-9, 2000.

M. Kerber, M. Kohlhase, and V. Sorge. Integrating Computer Algebra
Into Proof Planning. Journal of Automated Reasoning, 21(3):327-355,
1998.

R. Kowalski. Algorithm = Logic + Control. Communications of the
Association for Computing Machinery, 22:424-436, 1979.

T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-
based generalization: A unifying view. Machine Learning, 1(1):47-80,
1986. Also available as Tech. Report ML-TR-2, SUNJ Rutgers, 1985.
S.H. Muggleton and L. De Raedt. Inductive logic programming: The-
ory and methods. Journal of Logic Programming, 19, 20:629-679, 1994.
G. Plotkin. A note on inductive generalization. In D. Michie and
B. Meltzer, editors, Machine Intelligence 5, pages 153-164. Edinburgh
University Press, 1969.

G. Plotkin. A further note on inductive generalization. In D. Michie
and B. Meltzer, editors, Machine Intelligence 6, pages 101-126. Edin-
burgh University Press, 1971.

G. Pdélya. How to solve it. Princeton University Press, 1945.

B. Silver. Precondition analysis: Learning control information. In
R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine
Learning 2. Tioga Publishing Company, 1984.

