
Towards Learning New Methodsin Proof PlanningMateja Jamnik, Manfred Kerber, and Christoph Benzm�ullerShool of Computer Siene, The University of BirminghamBirmingham, B15 2TT, England, UKfM.Jamnik|M.Kerber|C.E.Benzmullerg�s.bham.a.ukhttp://www.s.bham.a.uk/~fmxj|mmk|ebgAbstrat. In this paper we propose how proof planning systems anbe extended by an automated learning apability. The idea is that a proofplanner would be apable of learning new proof methods from well hosenexamples of proofs whih use a similar reasoning strategy to prove relatedtheorems, and this strategy ould be haraterised as a proof method. Wepropose a representation framework for methods, and a mahine learningtehnique whih an learn methods using this representation framework.The tehnique an be applied (amongst other) to learn whether and when toall external systems suh as theorem provers or omputer algebra systems.This is work in progress, and we hope to gain useful feedbak from theCALCULEMUS ommunity.1 IntrodutionProof planning [2℄ is an approah to theorem proving whih uses proofmethods rather than low level logial inferene rules to prove a theorem athand. A proof method spei�es and enodes a general reasoning strategythat an be used in a proof, and hene represents a number of individualinferene rules. For example, an indution strategy an be enoded as aproof method. Proof planners searh for a proof plan of a theorem whihonsists of appliations of several methods. An objet level logial proofan be generated from a proof plan. Proof planning is a powerful tehniquebeause it often dramatially redues the searh spae, allows reuse of proofmethods, and moreover generates proofs where the reasoning strategies ofproofs are transparent, so they may have an intuitive appeal to a human1



2mathematiian.One of the ways to extend the power of a proof planning system is toenlarge the set of available proof methods. Often a number of theorems anbe proved in a similar way, hene a new proof method an enapsulate thegeneral struture, i.e., the reasoning strategy of a proof for suh theorems.A diÆulty in applying a strategy to many domains is that in the urrentproof planning systems new methods have to be implemented and added bythe developer of a system. Our aim is to explore how a system an learnnew methods automatially given a number of well hosen examples ofrelated proofs of theorems. This would be a signi�ant improvement, sineexamples exist typially in abundane, while the extration of methodsfrom these examples an be onsidered as a major bottlenek of the proofplanning methodology. In this paper we therefore propose an approah toautomati learning of proof methods within a proof planning framework.There is a twofold, albeit loose, relation to the Calulemus idea. The�rst relation is with respet to Kowalski's equation algorithm = logi +ontrol [9℄ { our work aims at exploring general reasoning patterns and theontrol knowledge hidden in the sets of well hosen proof examples. Theextrated knowledge, whih is in Kowalski's sense a form of algorithmiknowledge, is represented in suh a way that it an be reused for taklingnew problems. The exploration of algorithmi knowledge is espeially de-sirable in ases when this knowledge is not a priori available to a reasoningsystem (e.g., in form of a built-in or onneted omputer algebra system).The seond relation is that our approah, whih is desribed and appliedhere solely in the ontext of simpli�ation proof examples in group theory,is not restrited only to this domain. It an analogously be applied tolearn ontrol knowledge from proof examples that already ontain alls toomputer algebra systems. Therefore, note that omputer algebra systemsmay be employed in a subordinated way in proof planning by alling themwithin proof methods to perform partiular omputations [8℄. Given a setof examples eah of whih ontains probably several suh alls to omputeralgebra systems, our approah would enable a system to learn the over-all pattern of these alls (if there is one). In this sense the learnt methodsalso enode knowledge of the ontrolled usage of omputer algebra systems.More generally, this argument also applies to other external reasoning sys-tem whih are subordinately employed within proof methods, and is notrestrited to omputer algebra systems only.Figure 1 gives a struture of our approah to learning proof methods,and hene an outline of the rest of this paper. First, we give some bak-ground and motivation for our work. In Setion 2 we examine what needsto be learnt, hoose our problem domain and give some examples of proofs
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method languageFigure 1. An approah to learning proof methods.that use a similar reasoning strategy. Then, in Setion 3, the represen-tation of methods that renders the learning proess as easy as possibleis disussed. We ontinue in Setion 4 to present one possible learningalgorithm for learning proof methods from examples of proofs. Some alter-native learning tehniques are also disussed. Next, in Setion 5, we revisitour method representation and enrih it so that the newly learnt meth-ods an be used in a proof planner for proofs of other theorems. We usepreondition analysis to aquire the information for extending the methodrepresentation. Finally, in Setion 6, we relate our work to that of others,and onlude with some future diretions and �nal remarks.2 Motivating ExampleA proof method in proof planning basially onsists of a triple { preon-dition, postondition and a tati. A tati is a program whih given thatthe preonditions are satis�ed exeutes a number of inferene steps in orderto transform an expression representing a subgoal so that the postondi-tions are satis�ed by the transformed subgoal. If no appropriate method isavailable in a given planning state, then the user (in ase of interative sys-tems) or the planner (in ase of automated systems) has to expliitly applya number of lower level methods (with inferene rules as the lowest levelmethods) in order to prove a given theorem. It often happens that suha pattern of lower level methods is applied time and time again in proofsof di�erent problems. In this ase it is sensible and useful to enapsulatethis inferene pattern in a new proof method. Suh a higher level proofmethod based on lower level methods an either be implemented and addedto the system by the user or the developer of the system. Alternatively, wepropose that these methods ould be learnt by the system automatially.



4 The idea is that the system starts with learning simple proof methods.As the database of available proof methods grows, the system an learnmore omplex proof methods. Initially, the user onstruts simple proofswhih onsist only of basi inferene rules rather than proof methods. Alearning mehanism built into the proof planner then spots the proof pat-tern ourring in a number of proofs and extrats it in a new proof method.Hene, there is a hierarhy of proof steps from inferene rules to omplexmethods. Inferene rules an be treated as methods by assigning to thempre- and postonditions. Thus, from the learning perspetive we an have auni�ed view of inferene rules and methods as given sequenes of elementsfrom whih the system is learning a pattern.1To demonstrate our ideas with an example we need to �rst determineour problem domain { we hoose theorems of abstrat algebra, and inpartiular theorems of group theory. An example of a proof method isa simpli�ation method whih simpli�es an expression using a number ofsimpli�ation inferene rules (whih are in our uni�ed view just basi levelproof methods).2 In the ase of group theorems, the simpli�ation methodmay onsist of applying both (left and right) axioms of identity, both ax-ioms of inverse and the axioms of assoiativity. Note that e is the identityelement, i is the inverse funtion, and LHS ) RHS stands for rewritingLHS to RHS: (X Æ Y ) Æ Z ) X Æ (Y Æ Z) (A-r)X Æ (Y Æ Z) ) (X Æ Y ) Æ Z (A-l)e ÆX ) X (Id-l)X Æ e ) X (Id-r)X ÆX i ) e (Inv-r)X i ÆX ) e (Inv-l)We now give two examples of proof steps whih simplify given expressionsand whih are onrete appliations of a simpli�ation method that wewant a system to learn.1Note that as a onsequene of the hierarhi harater of the method language {with methods orresponding to alulus level rules at the lowest level { the approah isin priniple general enough to learn methods on every level of abstration. While someheuristi information for the ompound method an be omputed from the omponentmethods, learning more preise heuristi information for the ompound method will beneessary. We do not address this problem in this paper.2One may assume that the simpli�ation inferene rules are already learnt as ba-si proof methods from rewriting style of proofs employing a single rewriting rule andappropriately instantiated group axioms.



5Example 1a Æ ((ai Æ ) Æ b)+ (A-l)(a Æ (ai Æ )) Æ b+ (A-l)((a Æ ai) Æ ) Æ b+ (Inv-r)(e Æ ) Æ b+ (Id-l) Æ b
Example 2a Æ (ai Æ b)+ (A-l)(a Æ ai) Æ b+ (Inv-r)e Æ b+ (Id-l)bIn pseudoode, one appliation of simpli�ation ould be desribed as fol-lows (notie that a repeated appliation of simpli�ation an be learntseparately):Preondition:there are subterms in the initial term that are inverses of eah other,and that are not separated by other subterms, but only by brakets.Tati:1. apply assoiativity (A-r) and/or (A-l) for as many times as ne-essary (inluding 0 times) to bring the subterms whih are in-verses of eah other together, and then2. apply inverse inferene rule (Inv-r) or (Inv-l) to redue the ex-pression, and then3. apply the identity inferene rule (Id-r) or (Id-l).Postondition:the initial term is redued, i.e., it onsists of fewer subterms.Note that this is a general simpli�ation method, and the two examplesgiven above would not be suÆient to learn it (e.g., the examples do notuse (A-r), (Inv-l), (Id-r), hene additional examples that use these inferenerules would have to be provided). Furthermore, our simpli�ation methodneeds to be able to do loop appliations of methods, where the number ofloops is determined by the theorem the method is used to prove. In a sense,this type of ontrol onstrut is similar to the notion of tatials, hene werefer to them as methodials. We are realising our ideas on learning meth-ods in the proof planner of 
mega [1℄ whih does not expliitly representloops. Loops in 
mega are simulated by the use of ontrol rules (see [4℄).



6Therefore, we are urrently extending the existing representations used in
mega to provide expliit representation of loop appliations of methods.An alternative to this approah is to re-represent our problems, forinstane, so as to omit the brakets in the presene of the assoiativityrules. However, this would be a muh harder learning problem. In thispaper we do not take this approah.3 Method Outline RepresentationThe representation of a problem is of ruial importane for solving it { agood representation of a problem renders the searh for its solution easy.This is a well known piee of advie from P�olya [14℄. The diÆulty isin �nding a good representation. Our problem is to devise a mehanismfor learning methods. Hene, the representation of a method is importantand should make the learning proess as easy as possible. Furthermore,it should be possible to represent loop appliations of inferene rules inmethods. Here we present a simple representation formalism for methods,whih abstrats away as muh information as possible for the learning pro-ess, and then restores the neessary information so that the proof planneran use the newly learnt method. At the same time it aters for loopappliations of inferene rules in a method.A major problem we are faed with when we want to learn ompoundmethods from lower-level ones is the intrinsi omplexity of methods, whihgoes beyond the omplexity that an typially be takled in the �eld ofmahine learning. For this reason we �rst simplify the problem by tryingto learn the so-alledmethod outlines (whih is disussed next), and seond,we reonstrut the full information by extending outlines to methods usingpreondition analysis (whih will be disussed in Setion 5).Let us assume the following language L, where P is a set of primitives(whih are the known identi�ers of methods used in a method that is beinglearnt). In essene, this language de�nes regular expressions over methodidenti�ers. The weight w de�nes the omplexity of an expression:� for any p 2 P , let p 2 L and w(p) = 0,� for any l1; l2 2 L, let [l1; l2℄ 2 L and w([l1; l2℄) = w(l1) + w(l2) + 1,� for any l1; l2 2 L, let [l1jl2℄ 2 L and w([l1jl2℄) = w(l1) + w(l2) + 1,� for any l 2 L, let l� and w(l�) = w(l) + 1.\[" and \℄" are auxiliary symbols used to separate subexpressions, \j" de-notes an exlusive-or-disjuntion, \," denotes a sequene, and \�" denotesa repetition of a subexpression any number of times (inluding 0). Let



7the set of primitives P be fA-l;A-r; Inv-l; Inv-r; Id-l; Id-rg. Using this lan-guage, and given the appropriate pre- and postonditions, the tati of oursimpli�ation method desribed above ould be expressed as:simplify � h��A-l �� A-r��; �Inv-l �� Inv-r��; �Id-l �� Id-r�iwith w(simplify) = 6. We refer to expressions in language L whih desribeompound methods (as in the example above) as method outlines. simplifyis a typial method outline that we would like our system to be able to learnautomatially. The representation is simple enough that a mehanism anbe devised to learn methods using this representation. We propose suh amehanism next.4 How to Learn?As explained in the previous setion, we use our language L for an abstratrepresentation of methods, i.e., method outlines, in order to simplify therepresentation and render the learning proess easier. Here we addresshow suh method outlines an be learnt given a number of well hosenexamples of proofs. Typially, there are many possible method outlineswhih desribe a method that the system is learning. The general ideais to learn the simplest (following Oam's razor priniple) and optimalmethod outline, and we measure simpliity (in our �rst approah) in termsof weight as de�ned before in Setion 3. Notie that our deision to usesimpliity to selet a possible method outline is a heuristi hoie. It maybe that it is not the appropriate hoie, that is, that we sometimes do notprefer the simplest method outline, but perhaps the most general one, oreven the least general one.3 As part of our future work we may have tore�ne our notion of simpliity.We disuss three possible approahes to learning: a omplete generationof method outlines, a guided generation of method outlines, and a tehniquesimilar to least general generalisation (see [12, 13℄).3Here, we give an example of the simplest method outline, whih is too generalgiven our set of training example. Consider a set of 4 primitives fa; b; ; dg, and thetraining examples: fa; b; b; ; ; dg, fa; b; a; b; b; ; b; ; ; d; ; dg, fa; b; a; b; a; b; b; ; : : : g.These examples an be desribed by the following method outlines: [[[ajb℄j℄jd℄� and[[a; b℄�; [b; ℄�; [; d℄�℄. The �rst outline is of weight 4, whereas the seond outline is ofweight 8. If only simpliity heuristi is used, then the �rst outline is the hosen one.However, this is too general sine it desribes examples whih it is not intended todesribe, e.g. fa; a; a; a; ag.



8Exhaustive Generation of All Outlines Our �rst attempt at a learn-ing tehnique is to generate all possible method outlines in language Lof a ertain weight. We then prune this set by eliminating the methodoutlines whih ould not be instantiated to the representation of the exam-ples. This tehnique is similar to breadth �rst searh in that the solutionis guaranteed to be found and to be optimal. Similarly to breadth �rstsearh, the tehnique is very ineÆient, and may turn out to be unusablein pratie for omplex method outlines. Clearly, the size of the set with allthe possibilities depends on the number of primitives and on the maximumweight of the method outline representing a possible method desription.For example, if we have 3 primitives fm1;m2;m3g then the size of theset of all possible method outlines of weight 0 is 3, the size of the set ofall possible method outlines of weight 1 is 15, et.4 If the examples ofsimpli�ation inluded only fInv-r; Id-rg and fInv-r; Id-lg, then the onlypossible method outline of weight 2 representing a generalised method out-line is �Inv-r; �Id-rjId-l�� whih is the same as �Inv-r; �Id-ljId-r�� (wheredisjuntion is ommutative, but a sequene is not). Note also, that weexlude method outlines suh as �Inv-r�; �Id-rjId-l��, �Inv-r; �Id-r�jId-l��,�Inv-r; �Id-rjId-l���, �Inv-r; �Id-rjId-l��� or any ombination of these starredsubexpressions { they are not as simple as possible.Guided Generation of Outlines The size of the set of possible methodoutlines inreases hyper-exponentially whih poses a severe problem.5 Wean improve upon this performane by generating only the relevant methodoutlines { this is our seond attempt at a learning tehnique. For instane,given any example, we ould avoid generating all those method outlinesthat annot be part of the method outline to be learnt (for instane, if thesequene Inv-r; Inv-r does not our in any of the training examples then nomethod outline ontaining this sequene should be generated). This wouldprune the possibilities dramatially. Suh an approah an be justi�ed asa valid heuristi approah beause we do not expet the methods to be soomplex (of large weight) that they are intratable, but rather that theyare as simple as possible. In fat, we ould argue that if a method needs tohave a omplexity beyond a ertain weight, then it is better to �rst learnseveral less omplex methods that omprise it, and then put these together4The 15 terms of weight 1 are: [mi;mj ℄ for i; j 2 f1; 2; 3g, [m1jm2℄, [m2jm3℄,[m1jm3℄, [m1�℄, [m2�℄, [m3�℄. The andidates [mijmi℄ and [m2jm1℄; [m3jm2℄; [m3jm1℄are �ltered out due to idempoteny and ommutativity of \j".5For example, using only 4 primitives it is possible to generate all method outlinesof weight 6, but method outlines of weight 7 are already beyond reasonable omputerresoures.



9in a larger method whih is now of smaller omplexity.Although the two learning mehanisms disussed above are rather inef-�ient, they form a standard whih an be used to measure the quality ofa solution found by a proedure whih is omputationally more eÆient.Generalisation A third possible approah for a learning tehnique issimilar to Plotkin's least general generalisation [12, 13℄. For more detailsee the full version of this paper [7℄.5 Method Representation RevisitedMethods expressed using the language introdued in Setion 3 do not spe-ify what their preonditions and postonditions are. They also do not spe-ify how the number of loop appliations of inferene rules is instantiatedwhen used to prove a theorem. Hene, the method representation needsto be enrihed to aount for these fators. We propose to use the ideasfrom preondition analysis developed by Silver [15℄ and later extended byDesimone [5℄ in order to enrih our method representation.5.1 Preondition AnalysisThe idea of preondition analysis is to examine the reasons for applyingeah inferene at eah step of the proof. This is ahieved by providing ex-planations for eah step in the proof whih are usually extrated from theinformation of preonditions and postonditions of a step. The preondi-tions of eah rule used in a method are paired with additional information,namely the methods that generated these preonditions. Similarly, thepostonditions of eah rule used in a method are paired with the methodsthat use these postonditions. We extend Desimone's method shema rep-resentation with the e�ets that an inferene rule has in the proof. E�etsare used to express a hange in the proof planning state whih is not expli-itly planned for, beause, for instane, the underlying language may not berih enough to express these hanges. We demonstrate a representation ofa method shema with an example.Let there be a proof of a theorem T whih onsists of three steps,M1;M2 and M3. These methods onsist of preonditions, postonditions,e�ets and tatis as demonstrated in the table below:Preonditions Postonditions E�ets TatiM1 x ^ y ^ p(d) x ^ y ^ z w = f(d) t1M2 y ^ p(w) m t2M3 z ^m n t3



10Notie that p(d) denotes some property p of d, where this property is apreondition ofM1. f denotes a funtion whih under the appliation ofM1hanges a term d ourring in a preondition p(d) to a term w. The initialstate of the proof of the theorem an be desribed in terms of x ^ y ^ p(d)whih holds for theorem T . The preonditions of eah method Mi used ina proof of an example are analysed to determine the explanations for usingthese partiular steps in the proof. The explanations are generated in abottom-up fashion starting with the appliation of the �nal method. M3was obviously applied in order to reah a solution denoted by n and is notan interesting ase. Now onsider reasons for applying method M2. Thisis done by the analysis of the preonditions of M3 whih may be providedas the postonditions of M2. The preonditions for method M3 are z ^m.The preondition z was already satis�ed before the appliation ofM2,6 butthe preondition m was generated as a postondition of the appliation ofmethod M2. Hene, one possible explanation is that method M2 wasapplied in order to generate preondition m for method M3. The samean be said for method M1 { it is applied in order to generate an e�etw whose property p(w) is a preondition for M2, and a preondition z forM3. Together, an explanation an be that methodsM1 andM2 are appliedin order to generate the preonditions z ^m for M3.7 Desimone apturesthese explanations in a method shema.Using the language for method outlines desribed in Setion 3 we areable to re-represent methods in the way suggested by the preonditionanalysis. In our example above, the method shema, say M4 whih is�M1;M2;M3� in our language L, an be re-represented as a method asgiven in Figure 2, where \pre" is a prediate with two arguments: thepreondition and the method whih reated this preondition as a poston-dition; \post" is a prediate with two arguments: the postondition andthe method whih uses this postondition as a preondition; \ " standsfor no method, that is, the preondition is true before the appliation ofthe new method or the postondition is not used as a preondition for any6Note that all hanges to the state of the proof aused by the appliation of a methodhave to be expliitly stated in the spei�ation of the method (i.e., in its pre-, poston-ditions or e�ets). For example, nothing is mentioned about z in the spei�ation ofM2, hene the appliation of M2 preserves z.7Using the preondition analysis as explained in [15℄, we get the explanations for ap-plying all of the inferene rules used in the examples. In our example, the assoiativityinferene rules are applied to generate the preonditions for the inverse inferene rules.Furthermore, the inverse inferene rules are used to generate the preonditions for theidentity rules. Hene, this gives the partition of the rules that we need in the generali-sation learning proess, as disussed in Setion 4. The details of how the partitioning isdone still need to be worked out.



11Pre x ^ yTati Preonditions PostonditionsM1 pre(x; ); pre(y; ) post(x; ), post(y;M2);pre(p(d); ) post(z;M3)E�ets: w = f(d)M2 pre(y;M1); pre(p(w);M1) post(m;M3)M3 pre(z;M1); pre(m;M2) post(n; )Post n Figure 2. Compound method.other method used in the tati.Analogously, a method outline with a disjuntion suh as �M1jM2� anbe represented as a method shema, the preondition of whih is a disjun-tion of preonditions for M1 and M2. Similarly, the postondition of thismethod shema is a disjuntion of postonditions ofM1 andM2. The plan-ner has to be able to handle disjuntions of pre- and postonditions, whihis a non-trivial open problem in proof planning. Extending a planner to dealwith suh disjuntions needs to be addressed in detail in the future. Theseond argument of pre- and postondition pairs is determined as explainedabove. We further extend Desimone's method shema representation witha disjuntion of explanations for method appliations. Namely, if thereis more than one method whih generates/uses a pre-/postondition, thenthese are ombined disjuntively. This allows us to enode the fat that apostondition of a partiular rule is also a preondition of the same rule,hene, the rule an be applied several times.Depending on the example that the method is used to prove, the pre-and postondition pairs are instantiated di�erently. This determines if andhow many repeated appliations of a rule are needed. Hene, a methodoutline with a \�" suh as �M�1 ;M2� has pre(x; _M1); pre(y; _M1) aspreonditions of M1, and post(x; _ M1); post(y;M1 _ M2); post(z; ) aspostonditions of M1 (the rest is as expeted). Hene, if after the appli-ation of M1 all the postonditions of M1 satisfy its preonditions, andfurthermore no other method in the tati is appliable then M1 is appliedagain. If its postonditions satisfy the preonditions of another method,say M2, then M1 is no longer applied in the proof. This is of ourse aheuristi deision and further researh will have to examine whether it isappropriate.



125.2 From Outlines to MethodsNow we an represent a method outline��A-ljA-r��; �Inv-rjInv-l�; �Id-ljId-r��as a simpli�ation method using pairs of pre- and postonditions with meth-ods that generate or use them, and the e�ets that the rules have. To savespae, but still onvey the main points, we only onsider a simpli�ed versionof simpli�ation, namely a method outline �A-l�; �Inv-rjInv-l�; Id-l�. Notiethat in order to be able to attah explanations to the inferene rules in thestyle of preondition analysis, the method language needs to be extended.We extend it with the following voabulary: subt(X;Y ) for \X is a sub-term of Y ", nb(X;Y ) for \X is a neighbour of Y " (two subterms of a termare neighbours if they are listed one after another when a tree represent-ing the term is traversed in post-order), Æ(X;Y; Z) for \a distane betweensubterms X and Y in a term Z" (the distane between two subterms isthe number of nodes between the two subterms when a tree representinga term is traversed in post-order dereased by 1), and red(E1; E2) for thefat that an expression E1 is redued to E2 (an expression is redued whenit onsists of fewer subterms than originally).8 Figure 3 shows the relevantinferene rules augmented with appropriate explanations. E0 is the termRule Preonditions Postonditions(A-r) subt((X Æ Y ) Æ Z;E)^subt(A; Y ) ^ subt(B;Z)^nb(A;B;E) ^ Æ(A;B;E) > 0 subt(X Æ (Y Æ Z); E0)^subt(A; Y )^subt(B;Z) ^ nb(A;B;E0)E�ets: Æ(A;B;E0) =Æ(A;B;E)� 1(Id-l) subt(e; E) red(E;E0)(Inv-r) subt(X ÆX i; E) ^ subt(X;E)^subt(X i; E)^nb(X;X i) ^ Æ(X;X i; E) = 0 subt(e; E0)red(E;E0)(Inv-l) subt(X i ÆX;E) ^ subt(X;E)^subt(X i; E)^nb(X;X i) ^ Æ(X;X i; E) = 0 subt(e; E0)red(E;E0)Figure 3. Methods with explanations for their appliation.generated from E by applying a orresponding method.8The hoie of this voabulary is not important for this paper, and needs to bedisussed elsewhere.



13Figure 4 gives a method shema representation for a method outline�A-l�; �Inv-rjInv-l�; Id-l�.9 Note that appliable(x) means that all the pre-onditions for x are satis�ed. Additional information that all methods as-Pre nb(A;Ai; E) ^ (appliable(A-l) _ appliable(Inv-r) _ appliable(Inv-l))
Tati

Tat Preonditions Postonditions(A-l) pre(subt(K Æ (L ÆM); E1); _ (A-l))pre(subt(A1;K); _ (A-l))pre(subt(A2; L); _ (A-l))pre(nb(A;Ai; E1); _ (A-l))pre(Æ(A;Ai; E1) > 0; _ (A-l)) post(subt((K Æ L) ÆM;E2); )post(subt(A1;K);(A-l) _ (Inv-r) _ (Inv-l))post(subt(A2; L);(A-l) _ (Inv-r) _ (Inv-l))post(nb(A;Ai ; E2);(A-l) _ (Inv-r) _ (Inv-l))E�ets: Æ(A;Ai; E2) =Æ(A;Ai; E1)� 1(Inv-r) pre(subt(A Æ Ai; E3); _ (A-l))pre(subt(A;E3); _ (A-l))pre(subt(Ai; E3); _ (A-l))pre(nb(A;Ai); _ (A-l))pre(Æ(A;Ai; E3) = 0; _ (A-l)) post(subt(e;E4); (Id-l))post(red(E3; E4); )(Inv-l) pre(subt(Ai Æ A;E5); _ (A-l))pre(subt(A;E5); _ (A-l))pre(subt(Ai; E5); _ (A-l))pre(nb(A;Ai); _ (A-l))pre(Æ(A;Ai; E5) = 0; _ (A-l)) post(subt(e;E6); (Id-l))post(red(E5; E6); )(Id-l) pre(subt(e; E7); (Inv-r) _ (Inv-l)) post(red(E7; E8); )Post red(E;Ei)Figure 4. Newly learnt ompound method simplify.sume is a position parameter whih spei�es a subterm on whih a methodis applied. This information is used in the expansion of the method to thelower layer methods. That is, should the user want an objet level prooffrom a proof plan, then ultimately all the methods need to be expanded tothe inferene rule level. Therefore, our new simplify method also requiresthe position parameter information. Details about the extration of a po-sition parameter still need to be resolved, hene we do not disuss themhere.6 Further work and ConlusionIn this paper we introdued a language for method outlines whih anbe used for desribing ompound proof methods in proof planning on an9Notie in Figure 4 that in the appliation of (A-l), A1 mathes with A and A2mathes with Ai, or A1 mathes with Ai and A2 mathes with A.



14abstrat level. These methods an arry out loop appliations of less om-plex methods and an apply them disjuntively, depending on the theoremfor whih they are used to prove. We also introdued a tehnique forlearning optimal method outlines from a number of examples of methodappliations. This tehnique is ineÆient, hene we hinted how a moresophistiated approximative tehnique ould be devised.The method outlines of the introdued language an be enoded asproof method shemas in the style of Silver and Desimone in their work onpreondition analysis. We demonstrated how a method outline learnt froma number of examples of the simpli�ation method an be represented asa method shema.Our approah is restrited to learning new higher level proof methodson the basis of the already given ones. We annot learn language extensionssuh as a oloured term language whih would be a prerequisite for learningany kind of methods similar to rippling [3℄. In this paper we do not addressthe question how suh a voabulary an be learnt by a mahine. Work byFurse on MU learner [6℄ may be relevant for this task.Not muh work has been done in the past on applying mahine learningtehniques to theorem proving, in partiular proof planning. We alreadymentioned work by Silver [15℄ and Desimone [5℄ who used preonditionanalysis to learn new method shemas { we explained how we use theirideas in our work. Of interest is work on generalisation [13℄, and othermahine learning tehniques suh as indutive logi programming [11℄ andexplanation based generalisation [10℄.Finally, there are many open questions that remain to be worked out.Here are some of them:� Are the desriptions of preonditions, postonditions and e�ets asgiven in the example in this note adequate to desribe methods?Will a proof planner be able to use suh method shemas in orderto instantiate them into methods, and hene prove theorems? Whattype of extensions of a proof planner are needed to aommodate theuse of method shemas?� Does the representation of the method shema given in the exam-ple in this paper adequately desribe the method outline representedusing our language L? Can the method shema representation besimpli�ed?� So far we onsidered proofs whih are onstruted in a purely sequen-tial rewriting style without any ase splits; i.e., we onsidered proof



15hains and not general proof trees. Does our approah fully applyalso to styles of proofs other than rewriting?� Our reent experiments showed that our primitive proof methodsare assumed to fous on partiular subterm ourrenes. These arespei�ed by additional position parameters provided by the methods.Furthermore, the learnt simplify method has to ome with an addi-tional position parameter whih indiates where in the expression of atheorem the method is applied. How an the parameters required fora new method be inferred from the parameters given for the primitivemethods? How an the learnt method generally guide its expansion toan objet level proof by providing appropriate parameter informationto the primitive methods?� How an we most eÆiently learn a general method outline in lan-guage L desribing a method shema? Whih one of the two proposedapproahes, namely guided generation of all method outlines desrib-ing the example and then pruning them, and a tehnique similar toPlotkin's least general generalisation, is best to use? Are there exam-ples for whih the �rst tehnique is better than the seond, and vieversa? How an we determine when a tehnique is or is not appro-priate? Is there another, more appropriate tehnique that we oulduse in order to learn new methods automatially?Some of the answers to these questions have the potential to signi�antlyontribute to the strength of the proof planning approah to mehanisedreasoning.AknowledgementsWe would like to thank Alan Bundy for his ontinuing interest in andadvie on our work, and in partiular for pointing us to the work of Silverand Desimone. Furthermore we would like to thank Andreas Meier andVolker Sorge for their invaluable help in getting started to realise our ideasin 
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