
Towards Learning New Methodsin Proof PlanningMateja Jamnik, Manfred Kerber, and Christoph Benzm�ullerS
hool of Computer S
ien
e, The University of BirminghamBirmingham, B15 2TT, England, UKfM.Jamnik|M.Kerber|C.E.Benzmullerg�
s.bham.a
.ukhttp://www.
s.bham.a
.uk/~fmxj|mmk|
ebgAbstra
t. In this paper we propose how proof planning systems
anbe extended by an automated learning
apability. The idea is that a proofplanner would be
apable of learning new proof methods from well
hosenexamples of proofs whi
h use a similar reasoning strategy to prove relatedtheorems, and this strategy
ould be
hara
terised as a proof method. Wepropose a representation framework for methods, and a ma
hine learningte
hnique whi
h
an learn methods using this representation framework.The te
hnique
an be applied (amongst other) to learn whether and when to
all external systems su
h as theorem provers or
omputer algebra systems.This is work in progress, and we hope to gain useful feedba
k from theCALCULEMUS
ommunity.1 Introdu
tionProof planning [2℄ is an approa
h to theorem proving whi
h uses proofmethods rather than low level logi
al inferen
e rules to prove a theorem athand. A proof method spe
i�es and en
odes a general reasoning strategythat
an be used in a proof, and hen
e represents a number of individualinferen
e rules. For example, an indu
tion strategy
an be en
oded as aproof method. Proof planners sear
h for a proof plan of a theorem whi
h
onsists of appli
ations of several methods. An obje
t level logi
al proof
an be generated from a proof plan. Proof planning is a powerful te
hniquebe
ause it often dramati
ally redu
es the sear
h spa
e, allows reuse of proofmethods, and moreover generates proofs where the reasoning strategies ofproofs are transparent, so they may have an intuitive appeal to a human1

2mathemati
ian.One of the ways to extend the power of a proof planning system is toenlarge the set of available proof methods. Often a number of theorems
anbe proved in a similar way, hen
e a new proof method
an en
apsulate thegeneral stru
ture, i.e., the reasoning strategy of a proof for su
h theorems.A diÆ
ulty in applying a strategy to many domains is that in the
urrentproof planning systems new methods have to be implemented and added bythe developer of a system. Our aim is to explore how a system
an learnnew methods automati
ally given a number of well
hosen examples ofrelated proofs of theorems. This would be a signi�
ant improvement, sin
eexamples exist typi
ally in abundan
e, while the extra
tion of methodsfrom these examples
an be
onsidered as a major bottlene
k of the proofplanning methodology. In this paper we therefore propose an approa
h toautomati
 learning of proof methods within a proof planning framework.There is a twofold, albeit loose, relation to the Cal
ulemus idea. The�rst relation is with respe
t to Kowalski's equation algorithm = logi
 +
ontrol [9℄ { our work aims at exploring general reasoning patterns and the
ontrol knowledge hidden in the sets of well
hosen proof examples. Theextra
ted knowledge, whi
h is in Kowalski's sense a form of algorithmi
knowledge, is represented in su
h a way that it
an be reused for ta
klingnew problems. The exploration of algorithmi
 knowledge is espe
ially de-sirable in
ases when this knowledge is not a priori available to a reasoningsystem (e.g., in form of a built-in or
onne
ted
omputer algebra system).The se
ond relation is that our approa
h, whi
h is des
ribed and appliedhere solely in the
ontext of simpli�
ation proof examples in group theory,is not restri
ted only to this domain. It
an analogously be applied tolearn
ontrol knowledge from proof examples that already
ontain
alls to
omputer algebra systems. Therefore, note that
omputer algebra systemsmay be employed in a subordinated way in proof planning by
alling themwithin proof methods to perform parti
ular
omputations [8℄. Given a setof examples ea
h of whi
h
ontains probably several su
h
alls to
omputeralgebra systems, our approa
h would enable a system to learn the over-all pattern of these
alls (if there is one). In this sense the learnt methodsalso en
ode knowledge of the
ontrolled usage of
omputer algebra systems.More generally, this argument also applies to other external reasoning sys-tem whi
h are subordinately employed within proof methods, and is notrestri
ted to
omputer algebra systems only.Figure 1 gives a stru
ture of our approa
h to learning proof methods,and hen
e an outline of the rest of this paper. First, we give some ba
k-ground and motivation for our work. In Se
tion 2 we examine what needsto be learnt,
hoose our problem domain and give some examples of proofs

3
Sequences of

Examples Proofs of other

New compound

Common rep. of all

method specifiers

of proof theorems

method

examples - method outlines

abstract
apply

learn analysis
precondition

extension to
method languageFigure 1. An approa
h to learning proof methods.that use a similar reasoning strategy. Then, in Se
tion 3, the represen-tation of methods that renders the learning pro
ess as easy as possibleis dis
ussed. We
ontinue in Se
tion 4 to present one possible learningalgorithm for learning proof methods from examples of proofs. Some alter-native learning te
hniques are also dis
ussed. Next, in Se
tion 5, we revisitour method representation and enri
h it so that the newly learnt meth-ods
an be used in a proof planner for proofs of other theorems. We usepre
ondition analysis to a
quire the information for extending the methodrepresentation. Finally, in Se
tion 6, we relate our work to that of others,and
on
lude with some future dire
tions and �nal remarks.2 Motivating ExampleA proof method in proof planning basi
ally
onsists of a triple { pre
on-dition, post
ondition and a ta
ti
. A ta
ti
 is a program whi
h given thatthe pre
onditions are satis�ed exe
utes a number of inferen
e steps in orderto transform an expression representing a subgoal so that the post
ondi-tions are satis�ed by the transformed subgoal. If no appropriate method isavailable in a given planning state, then the user (in
ase of intera
tive sys-tems) or the planner (in
ase of automated systems) has to expli
itly applya number of lower level methods (with inferen
e rules as the lowest levelmethods) in order to prove a given theorem. It often happens that su
ha pattern of lower level methods is applied time and time again in proofsof di�erent problems. In this
ase it is sensible and useful to en
apsulatethis inferen
e pattern in a new proof method. Su
h a higher level proofmethod based on lower level methods
an either be implemented and addedto the system by the user or the developer of the system. Alternatively, wepropose that these methods
ould be learnt by the system automati
ally.

4 The idea is that the system starts with learning simple proof methods.As the database of available proof methods grows, the system
an learnmore
omplex proof methods. Initially, the user
onstru
ts simple proofswhi
h
onsist only of basi
 inferen
e rules rather than proof methods. Alearning me
hanism built into the proof planner then spots the proof pat-tern o

urring in a number of proofs and extra
ts it in a new proof method.Hen
e, there is a hierar
hy of proof steps from inferen
e rules to
omplexmethods. Inferen
e rules
an be treated as methods by assigning to thempre- and post
onditions. Thus, from the learning perspe
tive we
an have auni�ed view of inferen
e rules and methods as given sequen
es of elementsfrom whi
h the system is learning a pattern.1To demonstrate our ideas with an example we need to �rst determineour problem domain { we
hoose theorems of abstra
t algebra, and inparti
ular theorems of group theory. An example of a proof method isa simpli�
ation method whi
h simpli�es an expression using a number ofsimpli�
ation inferen
e rules (whi
h are in our uni�ed view just basi
 levelproof methods).2 In the
ase of group theorems, the simpli�
ation methodmay
onsist of applying both (left and right) axioms of identity, both ax-ioms of inverse and the axioms of asso
iativity. Note that e is the identityelement, i is the inverse fun
tion, and LHS) RHS stands for rewritingLHS to RHS: (X Æ Y) Æ Z) X Æ (Y Æ Z) (A-r)X Æ (Y Æ Z)) (X Æ Y) Æ Z (A-l)e ÆX) X (Id-l)X Æ e) X (Id-r)X ÆX i) e (Inv-r)X i ÆX) e (Inv-l)We now give two examples of proof steps whi
h simplify given expressionsand whi
h are
on
rete appli
ations of a simpli�
ation method that wewant a system to learn.1Note that as a
onsequen
e of the hierar
hi

hara
ter of the method language {with methods
orresponding to
al
ulus level rules at the lowest level { the approa
h isin prin
iple general enough to learn methods on every level of abstra
tion. While someheuristi
 information for the
ompound method
an be
omputed from the
omponentmethods, learning more pre
ise heuristi
 information for the
ompound method will bene
essary. We do not address this problem in this paper.2One may assume that the simpli�
ation inferen
e rules are already learnt as ba-si
 proof methods from rewriting style of proofs employing a single rewriting rule andappropriately instantiated group axioms.

5Example 1a Æ ((ai Æ
) Æ b)+ (A-l)(a Æ (ai Æ
)) Æ b+ (A-l)((a Æ ai) Æ
) Æ b+ (Inv-r)(e Æ
) Æ b+ (Id-l)
 Æ b
Example 2a Æ (ai Æ b)+ (A-l)(a Æ ai) Æ b+ (Inv-r)e Æ b+ (Id-l)bIn pseudo
ode, one appli
ation of simpli�
ation
ould be des
ribed as fol-lows (noti
e that a repeated appli
ation of simpli�
ation
an be learntseparately):Pre
ondition:there are subterms in the initial term that are inverses of ea
h other,and that are not separated by other subterms, but only by bra
kets.Ta
ti
:1. apply asso
iativity (A-r) and/or (A-l) for as many times as ne
-essary (in
luding 0 times) to bring the subterms whi
h are in-verses of ea
h other together, and then2. apply inverse inferen
e rule (Inv-r) or (Inv-l) to redu
e the ex-pression, and then3. apply the identity inferen
e rule (Id-r) or (Id-l).Post
ondition:the initial term is redu
ed, i.e., it
onsists of fewer subterms.Note that this is a general simpli�
ation method, and the two examplesgiven above would not be suÆ
ient to learn it (e.g., the examples do notuse (A-r), (Inv-l), (Id-r), hen
e additional examples that use these inferen
erules would have to be provided). Furthermore, our simpli�
ation methodneeds to be able to do loop appli
ations of methods, where the number ofloops is determined by the theorem the method is used to prove. In a sense,this type of
ontrol
onstru
t is similar to the notion of ta
ti
als, hen
e werefer to them as methodi
als. We are realising our ideas on learning meth-ods in the proof planner of
mega [1℄ whi
h does not expli
itly representloops. Loops in
mega are simulated by the use of
ontrol rules (see [4℄).

6Therefore, we are
urrently extending the existing representations used in
mega to provide expli
it representation of loop appli
ations of methods.An alternative to this approa
h is to re-represent our problems, forinstan
e, so as to omit the bra
kets in the presen
e of the asso
iativityrules. However, this would be a mu
h harder learning problem. In thispaper we do not take this approa
h.3 Method Outline RepresentationThe representation of a problem is of
ru
ial importan
e for solving it { agood representation of a problem renders the sear
h for its solution easy.This is a well known pie
e of advi
e from P�olya [14℄. The diÆ
ulty isin �nding a good representation. Our problem is to devise a me
hanismfor learning methods. Hen
e, the representation of a method is importantand should make the learning pro
ess as easy as possible. Furthermore,it should be possible to represent loop appli
ations of inferen
e rules inmethods. Here we present a simple representation formalism for methods,whi
h abstra
ts away as mu
h information as possible for the learning pro-
ess, and then restores the ne
essary information so that the proof planner
an use the newly learnt method. At the same time it
aters for loopappli
ations of inferen
e rules in a method.A major problem we are fa
ed with when we want to learn
ompoundmethods from lower-level ones is the intrinsi

omplexity of methods, whi
hgoes beyond the
omplexity that
an typi
ally be ta
kled in the �eld ofma
hine learning. For this reason we �rst simplify the problem by tryingto learn the so-
alledmethod outlines (whi
h is dis
ussed next), and se
ond,we re
onstru
t the full information by extending outlines to methods usingpre
ondition analysis (whi
h will be dis
ussed in Se
tion 5).Let us assume the following language L, where P is a set of primitives(whi
h are the known identi�ers of methods used in a method that is beinglearnt). In essen
e, this language de�nes regular expressions over methodidenti�ers. The weight w de�nes the
omplexity of an expression:� for any p 2 P , let p 2 L and w(p) = 0,� for any l1; l2 2 L, let [l1; l2℄ 2 L and w([l1; l2℄) = w(l1) + w(l2) + 1,� for any l1; l2 2 L, let [l1jl2℄ 2 L and w([l1jl2℄) = w(l1) + w(l2) + 1,� for any l 2 L, let l� and w(l�) = w(l) + 1.\[" and \℄" are auxiliary symbols used to separate subexpressions, \j" de-notes an ex
lusive-or-disjun
tion, \," denotes a sequen
e, and \�" denotesa repetition of a subexpression any number of times (in
luding 0). Let

7the set of primitives P be fA-l;A-r; Inv-l; Inv-r; Id-l; Id-rg. Using this lan-guage, and given the appropriate pre- and post
onditions, the ta
ti
 of oursimpli�
ation method des
ribed above
ould be expressed as:simplify � h��A-l �� A-r��; �Inv-l �� Inv-r��; �Id-l �� Id-r�iwith w(simplify) = 6. We refer to expressions in language L whi
h des
ribe
ompound methods (as in the example above) as method outlines. simplifyis a typi
al method outline that we would like our system to be able to learnautomati
ally. The representation is simple enough that a me
hanism
anbe devised to learn methods using this representation. We propose su
h ame
hanism next.4 How to Learn?As explained in the previous se
tion, we use our language L for an abstra
trepresentation of methods, i.e., method outlines, in order to simplify therepresentation and render the learning pro
ess easier. Here we addresshow su
h method outlines
an be learnt given a number of well
hosenexamples of proofs. Typi
ally, there are many possible method outlineswhi
h des
ribe a method that the system is learning. The general ideais to learn the simplest (following O

am's razor prin
iple) and optimalmethod outline, and we measure simpli
ity (in our �rst approa
h) in termsof weight as de�ned before in Se
tion 3. Noti
e that our de
ision to usesimpli
ity to sele
t a possible method outline is a heuristi

hoi
e. It maybe that it is not the appropriate
hoi
e, that is, that we sometimes do notprefer the simplest method outline, but perhaps the most general one, oreven the least general one.3 As part of our future work we may have tore�ne our notion of simpli
ity.We dis
uss three possible approa
hes to learning: a
omplete generationof method outlines, a guided generation of method outlines, and a te
hniquesimilar to least general generalisation (see [12, 13℄).3Here, we give an example of the simplest method outline, whi
h is too generalgiven our set of training example. Consider a set of 4 primitives fa; b;
; dg, and thetraining examples: fa; b; b;
;
; dg, fa; b; a; b; b;
; b;
;
; d;
; dg, fa; b; a; b; a; b; b;
; : : : g.These examples
an be des
ribed by the following method outlines: [[[ajb℄j
℄jd℄� and[[a; b℄�; [b;
℄�; [
; d℄�℄. The �rst outline is of weight 4, whereas the se
ond outline is ofweight 8. If only simpli
ity heuristi
 is used, then the �rst outline is the
hosen one.However, this is too general sin
e it des
ribes examples whi
h it is not intended todes
ribe, e.g. fa; a; a; a; ag.

8Exhaustive Generation of All Outlines Our �rst attempt at a learn-ing te
hnique is to generate all possible method outlines in language Lof a
ertain weight. We then prune this set by eliminating the methodoutlines whi
h
ould not be instantiated to the representation of the exam-ples. This te
hnique is similar to breadth �rst sear
h in that the solutionis guaranteed to be found and to be optimal. Similarly to breadth �rstsear
h, the te
hnique is very ineÆ
ient, and may turn out to be unusablein pra
ti
e for
omplex method outlines. Clearly, the size of the set with allthe possibilities depends on the number of primitives and on the maximumweight of the method outline representing a possible method des
ription.For example, if we have 3 primitives fm1;m2;m3g then the size of theset of all possible method outlines of weight 0 is 3, the size of the set ofall possible method outlines of weight 1 is 15, et
.4 If the examples ofsimpli�
ation in
luded only fInv-r; Id-rg and fInv-r; Id-lg, then the onlypossible method outline of weight 2 representing a generalised method out-line is �Inv-r; �Id-rjId-l�� whi
h is the same as �Inv-r; �Id-ljId-r�� (wheredisjun
tion is
ommutative, but a sequen
e is not). Note also, that weex
lude method outlines su
h as �Inv-r�; �Id-rjId-l��, �Inv-r; �Id-r�jId-l��,�Inv-r; �Id-rjId-l���, �Inv-r; �Id-rjId-l��� or any
ombination of these starredsubexpressions { they are not as simple as possible.Guided Generation of Outlines The size of the set of possible methodoutlines in
reases hyper-exponentially whi
h poses a severe problem.5 We
an improve upon this performan
e by generating only the relevant methodoutlines { this is our se
ond attempt at a learning te
hnique. For instan
e,given any example, we
ould avoid generating all those method outlinesthat
annot be part of the method outline to be learnt (for instan
e, if thesequen
e Inv-r; Inv-r does not o

ur in any of the training examples then nomethod outline
ontaining this sequen
e should be generated). This wouldprune the possibilities dramati
ally. Su
h an approa
h
an be justi�ed asa valid heuristi
 approa
h be
ause we do not expe
t the methods to be so
omplex (of large weight) that they are intra
table, but rather that theyare as simple as possible. In fa
t, we
ould argue that if a method needs tohave a
omplexity beyond a
ertain weight, then it is better to �rst learnseveral less
omplex methods that
omprise it, and then put these together4The 15 terms of weight 1 are: [mi;mj ℄ for i; j 2 f1; 2; 3g, [m1jm2℄, [m2jm3℄,[m1jm3℄, [m1�℄, [m2�℄, [m3�℄. The
andidates [mijmi℄ and [m2jm1℄; [m3jm2℄; [m3jm1℄are �ltered out due to idempoten
y and
ommutativity of \j".5For example, using only 4 primitives it is possible to generate all method outlinesof weight 6, but method outlines of weight 7 are already beyond reasonable
omputerresour
es.

9in a larger method whi
h is now of smaller
omplexity.Although the two learning me
hanisms dis
ussed above are rather inef-�
ient, they form a standard whi
h
an be used to measure the quality ofa solution found by a pro
edure whi
h is
omputationally more eÆ
ient.Generalisation A third possible approa
h for a learning te
hnique issimilar to Plotkin's least general generalisation [12, 13℄. For more detailsee the full version of this paper [7℄.5 Method Representation RevisitedMethods expressed using the language introdu
ed in Se
tion 3 do not spe
-ify what their pre
onditions and post
onditions are. They also do not spe
-ify how the number of loop appli
ations of inferen
e rules is instantiatedwhen used to prove a theorem. Hen
e, the method representation needsto be enri
hed to a

ount for these fa
tors. We propose to use the ideasfrom pre
ondition analysis developed by Silver [15℄ and later extended byDesimone [5℄ in order to enri
h our method representation.5.1 Pre
ondition AnalysisThe idea of pre
ondition analysis is to examine the reasons for applyingea
h inferen
e at ea
h step of the proof. This is a
hieved by providing ex-planations for ea
h step in the proof whi
h are usually extra
ted from theinformation of pre
onditions and post
onditions of a step. The pre
ondi-tions of ea
h rule used in a method are paired with additional information,namely the methods that generated these pre
onditions. Similarly, thepost
onditions of ea
h rule used in a method are paired with the methodsthat use these post
onditions. We extend Desimone's method s
hema rep-resentation with the e�e
ts that an inferen
e rule has in the proof. E�e
tsare used to express a
hange in the proof planning state whi
h is not expli
-itly planned for, be
ause, for instan
e, the underlying language may not beri
h enough to express these
hanges. We demonstrate a representation ofa method s
hema with an example.Let there be a proof of a theorem T whi
h
onsists of three steps,M1;M2 and M3. These methods
onsist of pre
onditions, post
onditions,e�e
ts and ta
ti
s as demonstrated in the table below:Pre
onditions Post
onditions E�e
ts Ta
ti
M1 x ^ y ^ p(d) x ^ y ^ z w = f(d) t1M2 y ^ p(w) m t2M3 z ^m n t3

10Noti
e that p(d) denotes some property p of d, where this property is apre
ondition ofM1. f denotes a fun
tion whi
h under the appli
ation ofM1
hanges a term d o

urring in a pre
ondition p(d) to a term w. The initialstate of the proof of the theorem
an be des
ribed in terms of x ^ y ^ p(d)whi
h holds for theorem T . The pre
onditions of ea
h method Mi used ina proof of an example are analysed to determine the explanations for usingthese parti
ular steps in the proof. The explanations are generated in abottom-up fashion starting with the appli
ation of the �nal method. M3was obviously applied in order to rea
h a solution denoted by n and is notan interesting
ase. Now
onsider reasons for applying method M2. Thisis done by the analysis of the pre
onditions of M3 whi
h may be providedas the post
onditions of M2. The pre
onditions for method M3 are z ^m.The pre
ondition z was already satis�ed before the appli
ation ofM2,6 butthe pre
ondition m was generated as a post
ondition of the appli
ation ofmethod M2. Hen
e, one possible explanation is that method M2 wasapplied in order to generate pre
ondition m for method M3. The same
an be said for method M1 { it is applied in order to generate an e�e
tw whose property p(w) is a pre
ondition for M2, and a pre
ondition z forM3. Together, an explanation
an be that methodsM1 andM2 are appliedin order to generate the pre
onditions z ^m for M3.7 Desimone
apturesthese explanations in a method s
hema.Using the language for method outlines des
ribed in Se
tion 3 we areable to re-represent methods in the way suggested by the pre
onditionanalysis. In our example above, the method s
hema, say M4 whi
h is�M1;M2;M3� in our language L,
an be re-represented as a method asgiven in Figure 2, where \pre" is a predi
ate with two arguments: thepre
ondition and the method whi
h
reated this pre
ondition as a post
on-dition; \post" is a predi
ate with two arguments: the post
ondition andthe method whi
h uses this post
ondition as a pre
ondition; \ " standsfor no method, that is, the pre
ondition is true before the appli
ation ofthe new method or the post
ondition is not used as a pre
ondition for any6Note that all
hanges to the state of the proof
aused by the appli
ation of a methodhave to be expli
itly stated in the spe
i�
ation of the method (i.e., in its pre-, post
on-ditions or e�e
ts). For example, nothing is mentioned about z in the spe
i�
ation ofM2, hen
e the appli
ation of M2 preserves z.7Using the pre
ondition analysis as explained in [15℄, we get the explanations for ap-plying all of the inferen
e rules used in the examples. In our example, the asso
iativityinferen
e rules are applied to generate the pre
onditions for the inverse inferen
e rules.Furthermore, the inverse inferen
e rules are used to generate the pre
onditions for theidentity rules. Hen
e, this gives the partition of the rules that we need in the generali-sation learning pro
ess, as dis
ussed in Se
tion 4. The details of how the partitioning isdone still need to be worked out.

11Pre x ^ yTa
ti
 Pre
onditions Post
onditionsM1 pre(x;); pre(y;) post(x;), post(y;M2);pre(p(d);) post(z;M3)E�e
ts: w = f(d)M2 pre(y;M1); pre(p(w);M1) post(m;M3)M3 pre(z;M1); pre(m;M2) post(n;)Post n Figure 2. Compound method.other method used in the ta
ti
.Analogously, a method outline with a disjun
tion su
h as �M1jM2�
anbe represented as a method s
hema, the pre
ondition of whi
h is a disjun
-tion of pre
onditions for M1 and M2. Similarly, the post
ondition of thismethod s
hema is a disjun
tion of post
onditions ofM1 andM2. The plan-ner has to be able to handle disjun
tions of pre- and post
onditions, whi
his a non-trivial open problem in proof planning. Extending a planner to dealwith su
h disjun
tions needs to be addressed in detail in the future. These
ond argument of pre- and post
ondition pairs is determined as explainedabove. We further extend Desimone's method s
hema representation witha disjun
tion of explanations for method appli
ations. Namely, if thereis more than one method whi
h generates/uses a pre-/post
ondition, thenthese are
ombined disjun
tively. This allows us to en
ode the fa
t that apost
ondition of a parti
ular rule is also a pre
ondition of the same rule,hen
e, the rule
an be applied several times.Depending on the example that the method is used to prove, the pre-and post
ondition pairs are instantiated di�erently. This determines if andhow many repeated appli
ations of a rule are needed. Hen
e, a methodoutline with a \�" su
h as �M�1 ;M2� has pre(x; _M1); pre(y; _M1) aspre
onditions of M1, and post(x; _ M1); post(y;M1 _ M2); post(z;) aspost
onditions of M1 (the rest is as expe
ted). Hen
e, if after the appli-
ation of M1 all the post
onditions of M1 satisfy its pre
onditions, andfurthermore no other method in the ta
ti
 is appli
able then M1 is appliedagain. If its post
onditions satisfy the pre
onditions of another method,say M2, then M1 is no longer applied in the proof. This is of
ourse aheuristi
 de
ision and further resear
h will have to examine whether it isappropriate.

125.2 From Outlines to MethodsNow we
an represent a method outline��A-ljA-r��; �Inv-rjInv-l�; �Id-ljId-r��as a simpli�
ation method using pairs of pre- and post
onditions with meth-ods that generate or use them, and the e�e
ts that the rules have. To savespa
e, but still
onvey the main points, we only
onsider a simpli�ed versionof simpli�
ation, namely a method outline �A-l�; �Inv-rjInv-l�; Id-l�. Noti
ethat in order to be able to atta
h explanations to the inferen
e rules in thestyle of pre
ondition analysis, the method language needs to be extended.We extend it with the following vo
abulary: subt(X;Y) for \X is a sub-term of Y ", nb(X;Y) for \X is a neighbour of Y " (two subterms of a termare neighbours if they are listed one after another when a tree represent-ing the term is traversed in post-order), Æ(X;Y; Z) for \a distan
e betweensubterms X and Y in a term Z" (the distan
e between two subterms isthe number of nodes between the two subterms when a tree representinga term is traversed in post-order de
reased by 1), and red(E1; E2) for thefa
t that an expression E1 is redu
ed to E2 (an expression is redu
ed whenit
onsists of fewer subterms than originally).8 Figure 3 shows the relevantinferen
e rules augmented with appropriate explanations. E0 is the termRule Pre
onditions Post
onditions(A-r) subt((X Æ Y) Æ Z;E)^subt(A; Y) ^ subt(B;Z)^nb(A;B;E) ^ Æ(A;B;E) > 0 subt(X Æ (Y Æ Z); E0)^subt(A; Y)^subt(B;Z) ^ nb(A;B;E0)E�e
ts: Æ(A;B;E0) =Æ(A;B;E)� 1(Id-l) subt(e; E) red(E;E0)(Inv-r) subt(X ÆX i; E) ^ subt(X;E)^subt(X i; E)^nb(X;X i) ^ Æ(X;X i; E) = 0 subt(e; E0)red(E;E0)(Inv-l) subt(X i ÆX;E) ^ subt(X;E)^subt(X i; E)^nb(X;X i) ^ Æ(X;X i; E) = 0 subt(e; E0)red(E;E0)Figure 3. Methods with explanations for their appli
ation.generated from E by applying a
orresponding method.8The
hoi
e of this vo
abulary is not important for this paper, and needs to bedis
ussed elsewhere.

13Figure 4 gives a method s
hema representation for a method outline�A-l�; �Inv-rjInv-l�; Id-l�.9 Note that appli
able(x) means that all the pre-
onditions for x are satis�ed. Additional information that all methods as-Pre nb(A;Ai; E) ^ (appli
able(A-l) _ appli
able(Inv-r) _ appli
able(Inv-l))
Ta
ti

Ta
t Pre
onditions Post
onditions(A-l) pre(subt(K Æ (L ÆM); E1); _ (A-l))pre(subt(A1;K); _ (A-l))pre(subt(A2; L); _ (A-l))pre(nb(A;Ai; E1); _ (A-l))pre(Æ(A;Ai; E1) > 0; _ (A-l)) post(subt((K Æ L) ÆM;E2);)post(subt(A1;K);(A-l) _ (Inv-r) _ (Inv-l))post(subt(A2; L);(A-l) _ (Inv-r) _ (Inv-l))post(nb(A;Ai ; E2);(A-l) _ (Inv-r) _ (Inv-l))E�e
ts: Æ(A;Ai; E2) =Æ(A;Ai; E1)� 1(Inv-r) pre(subt(A Æ Ai; E3); _ (A-l))pre(subt(A;E3); _ (A-l))pre(subt(Ai; E3); _ (A-l))pre(nb(A;Ai); _ (A-l))pre(Æ(A;Ai; E3) = 0; _ (A-l)) post(subt(e;E4); (Id-l))post(red(E3; E4);)(Inv-l) pre(subt(Ai Æ A;E5); _ (A-l))pre(subt(A;E5); _ (A-l))pre(subt(Ai; E5); _ (A-l))pre(nb(A;Ai); _ (A-l))pre(Æ(A;Ai; E5) = 0; _ (A-l)) post(subt(e;E6); (Id-l))post(red(E5; E6);)(Id-l) pre(subt(e; E7); (Inv-r) _ (Inv-l)) post(red(E7; E8);)Post red(E;Ei)Figure 4. Newly learnt
ompound method simplify.sume is a position parameter whi
h spe
i�es a subterm on whi
h a methodis applied. This information is used in the expansion of the method to thelower layer methods. That is, should the user want an obje
t level prooffrom a proof plan, then ultimately all the methods need to be expanded tothe inferen
e rule level. Therefore, our new simplify method also requiresthe position parameter information. Details about the extra
tion of a po-sition parameter still need to be resolved, hen
e we do not dis
uss themhere.6 Further work and Con
lusionIn this paper we introdu
ed a language for method outlines whi
h
anbe used for des
ribing
ompound proof methods in proof planning on an9Noti
e in Figure 4 that in the appli
ation of (A-l), A1 mat
hes with A and A2mat
hes with Ai, or A1 mat
hes with Ai and A2 mat
hes with A.

14abstra
t level. These methods
an
arry out loop appli
ations of less
om-plex methods and
an apply them disjun
tively, depending on the theoremfor whi
h they are used to prove. We also introdu
ed a te
hnique forlearning optimal method outlines from a number of examples of methodappli
ations. This te
hnique is ineÆ
ient, hen
e we hinted how a moresophisti
ated approximative te
hnique
ould be devised.The method outlines of the introdu
ed language
an be en
oded asproof method s
hemas in the style of Silver and Desimone in their work onpre
ondition analysis. We demonstrated how a method outline learnt froma number of examples of the simpli�
ation method
an be represented asa method s
hema.Our approa
h is restri
ted to learning new higher level proof methodson the basis of the already given ones. We
annot learn language extensionssu
h as a
oloured term language whi
h would be a prerequisite for learningany kind of methods similar to rippling [3℄. In this paper we do not addressthe question how su
h a vo
abulary
an be learnt by a ma
hine. Work byFurse on MU learner [6℄ may be relevant for this task.Not mu
h work has been done in the past on applying ma
hine learningte
hniques to theorem proving, in parti
ular proof planning. We alreadymentioned work by Silver [15℄ and Desimone [5℄ who used pre
onditionanalysis to learn new method s
hemas { we explained how we use theirideas in our work. Of interest is work on generalisation [13℄, and otherma
hine learning te
hniques su
h as indu
tive logi
 programming [11℄ andexplanation based generalisation [10℄.Finally, there are many open questions that remain to be worked out.Here are some of them:� Are the des
riptions of pre
onditions, post
onditions and e�e
ts asgiven in the example in this note adequate to des
ribe methods?Will a proof planner be able to use su
h method s
hemas in orderto instantiate them into methods, and hen
e prove theorems? Whattype of extensions of a proof planner are needed to a

ommodate theuse of method s
hemas?� Does the representation of the method s
hema given in the exam-ple in this paper adequately des
ribe the method outline representedusing our language L? Can the method s
hema representation besimpli�ed?� So far we
onsidered proofs whi
h are
onstru
ted in a purely sequen-tial rewriting style without any
ase splits; i.e., we
onsidered proof

15
hains and not general proof trees. Does our approa
h fully applyalso to styles of proofs other than rewriting?� Our re
ent experiments showed that our primitive proof methodsare assumed to fo
us on parti
ular subterm o

urren
es. These arespe
i�ed by additional position parameters provided by the methods.Furthermore, the learnt simplify method has to
ome with an addi-tional position parameter whi
h indi
ates where in the expression of atheorem the method is applied. How
an the parameters required fora new method be inferred from the parameters given for the primitivemethods? How
an the learnt method generally guide its expansion toan obje
t level proof by providing appropriate parameter informationto the primitive methods?� How
an we most eÆ
iently learn a general method outline in lan-guage L des
ribing a method s
hema? Whi
h one of the two proposedapproa
hes, namely guided generation of all method outlines des
rib-ing the example and then pruning them, and a te
hnique similar toPlotkin's least general generalisation, is best to use? Are there exam-ples for whi
h the �rst te
hnique is better than the se
ond, and vi
eversa? How
an we determine when a te
hnique is or is not appro-priate? Is there another, more appropriate te
hnique that we
oulduse in order to learn new methods automati
ally?Some of the answers to these questions have the potential to signi�
antly
ontribute to the strength of the proof planning approa
h to me
hanisedreasoning.A
knowledgementsWe would like to thank Alan Bundy for his
ontinuing interest in andadvi
e on our work, and in parti
ular for pointing us to the work of Silverand Desimone. Furthermore we would like to thank Andreas Meier andVolker Sorge for their invaluable help in getting started to realise our ideasin
mega. Finally we would like to thank our referees for many useful
omments. This work was supported by EPSRC grants GR/M22031 andGR/M99644.Referen
es[1℄ C. Benzm�uller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang,M. Kerber, M. Kohlhase, E. Melis, A. Meier, W. S
haars
hmidt,

16 J. Siekmann, and V. Sorge.
: Towards a mathemati
al assistant. InW. M
Cune, editor, 14th Conferen
e on Automated Dedu
tion, pages252{255, 1997.[2℄ A. Bundy. The use of expli
it plans to guide indu
tive proofs. InR. Lusk and R. Overbeek, editors, 9th Conferen
e on Automated De-du
tion, pages 111{120. Springer Verlag, 1988. Longer version availablefrom Edinburgh as DAI Resear
h Paper No. 349.[3℄ A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rip-pling: A heuristi
 for guiding indu
tive proofs. Arti�
ial Intelligen
e,62:185{253, 1993. Also available from Edinburgh as DAI Resear
hPaper No. 567.[4℄ L. Cheikhrouhou. Forth
oming. PhD thesis, Fa
hberei
h Informatik,Universit�at des Saarlandes, Saarbr�u
ken, Germany, 2000.[5℄ R.V. Desimone. Learning
ontrol knowledge within an explanation-based learning framework. In I. Bratko and N. Lavra�
, editors, Progressin Ma
hine Learning { Pro
eedings of 2nd European Working Sessionon Learning, EWSL-87, Bled, Yugoslavia, 1987. Sigma Press. Alsoavailable from Edinburgh as DAI Resear
h Paper 321.[6℄ E. Furse. The mathemati
s understander. In J.H. Johnson, S. M
Kee,and A. Vella, editors, Arti�
ial Intelligen
e in Mathemati
s. ClarendonPress, Oxford, 1994.[7℄ M. Jamnik, M. Kerber, and C. Benzm�uller. Towards Learning NewMethods in Proof Planning. Te
hni
al Report, S
hool of ComputerS
ien
e, The University of Birmingham, CSRP-00-9, 2000.[8℄ M. Kerber, M. Kohlhase, and V. Sorge. Integrating Computer AlgebraInto Proof Planning. Journal of Automated Reasoning, 21(3):327{355,1998.[9℄ R. Kowalski. Algorithm = Logi
 + Control. Communi
ations of theAsso
iation for Computing Ma
hinery, 22:424{436, 1979.[10℄ T.M. Mit
hell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-based generalization: A unifying view. Ma
hine Learning, 1(1):47{80,1986. Also available as Te
h. Report ML-TR-2, SUNJ Rutgers, 1985.[11℄ S.H. Muggleton and L. De Raedt. Indu
tive logi
 programming: The-ory and methods. Journal of Logi
 Programming, 19, 20:629{679, 1994.[12℄ G. Plotkin. A note on indu
tive generalization. In D. Mi
hie andB. Meltzer, editors, Ma
hine Intelligen
e 5, pages 153{164. EdinburghUniversity Press, 1969.[13℄ G. Plotkin. A further note on indu
tive generalization. In D. Mi
hieand B. Meltzer, editors, Ma
hine Intelligen
e 6, pages 101{126. Edin-burgh University Press, 1971.[14℄ G. P�olya. How to solve it. Prin
eton University Press, 1945.[15℄ B. Silver. Pre
ondition analysis: Learning
ontrol information. InR.S. Mi
halski, J.G. Carbonell, and T.M. Mit
hell, editors, Ma
hineLearning 2. Tioga Publishing Company, 1984.

