
Resource Guided Concurrent Deduction

Christoph Benzmueller?; Mateja Jamnik?; Manfred Kerber?; Volker Sorgey?School of Computer Science, The University of Birmingham
Edgbaston, Birmingham B15 2TT, United KingdomyFachbereich Informatik (FB 14), Universitaet des Saarlandes

D-66041 Saarbruecken, Germany
C.E.BenzmullerjM.JamnikjM.Kerber@cs.bham.ac.uk; sorge@ags.uni-sb.de

1 Motivation

Our poster proposes an architecture for resource guided
concurrent mechanised deduction which is motivated by
some findings in cognitive science. Our architecture par-
ticularly reflects Hadamard’s “Psychology of Invention”
[Hadamard44]. In his study Hadamard describes the pre-
dominant role of the unconsciousness when humans try
to solve hard mathematical problems. He explains this
phenomenon by its most important feature, namely that it
can make (and indeed makes) use of concurrent search
(whereas conscious thought cannot be concurrent), see
p. 22 Hadamard (1944):“Therefore, we see that the uncon-
scious has the important property of being manifold; several
and probably many things can and do occur in it simultaneously.
This contrasts with the conscious ego which is unique. We also
see that this multiplicity of the unconscious enables it to carry
out a work of synthesis.”That is, in Hadamard’s view, it is
important to follow different lines of reasoning simulta-
neously in order to come to a successful synthesis.

Human reasoning has been described in traditional AI
(e.g., expert systems) as a process of applying rules to
a working memory of facts in a recognise-act cycle. In
each cycle one applicable rule is selected and applied.
While this is a successful and appropriate approximation
for many tasks (in particular for well understood domains),
it seems to have some limitations, which can be better
captured by an approach that is not only cooperative but
also concurrent. And Minsky (1985) gives convincing ar-
guments that the mind of a single person can and should
be considered as a society of agents. Put in the context of
mathematical reasoning this indicates that it is necessary
to go beyond the traditional picture of a single reasoner
acting on a working memory – even for adequately de-
scribing the reasoning process of a single human mathe-
matician.

There are two major approaches to automated theo-
rem proving, machine-oriented methods like the resolu-
tion method (with all its ramifications) and human-orien-
ted methods. Most prominent amongst the human-oriented
methods is the proof planning approach first introduced
by Bundy (1988). In our poster we argue that an integra-
tion of the two approaches and the simultaneous pursuit

of different lines in a proof can be very beneficial. One
way of integrating the approaches is to consider a rea-
soner as a collection of specialised problem solvers, in
which machine-oriented methods and planning play dif-
ferent rôles.

2 System Architecture

The architecture (for further details see Benzmüller et al.
(1999)) that we describe here allows a number of proof
search attempts to be executed in parallel. Each specialised
subsystem may try a different proof strategy to find the
proof of a conjecture. Hence, a number of different proof
strategies are used at the same time in the proof search.
However, following all the available strategies simulta-
neously would quickly consume the available system re-
sources consisting of computation time and memory space.
In order to prevent this, and furthermore, to guide the
proof search we developed and employ a resource man-
agement concept in proof search. Resource management
is a technique which distributes the available resources
amongst the available subsystems (cf. Zilberstein (1995)).
Periodically, it assesses the state of the proof search pro-
cess, evaluates the progress, chooses a promising direc-
tion for further search and redistributes the available re-
sources accordingly. If the current search direction be-
comes increasingly less promising then backtracking to
the previous points in the search space is possible. Hence,
only successful or promising proof attempts are allowed
to continue searching for a proof. This process is repeated
until a proof is found, or some other terminating condi-
tion is reached. An important aspect of our architecture
is that in each evaluation phase the global proof state is
updated, that is, promising partial proofs and especially
solved subproblems are reported to a special plan server
that maintains the progress of the overall proof search at-
tempt. Furthermore, interesting results may be communi-
cated between the subsystems (for instance, an open sub-
problem may be passed to a theorem prover that seems to
be more appropriate). This communication is supported
by the shells implemented around the specialised problem
solvers. The resource management mechanism analyses



the theorem and decides which subsystems, i.e., which
provers, should be launched and what proportion of the
resources needs to be assigned to a particular prover.
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The mechanism is also
responsible for restrict-
ing the amount of
information exchange
between subsystems,
so that not all of
the resources are allo-
cated to the commu-
nication. The Figure
to the right demon-
strates this concur-
rent resource man-
agement based proof
planning architecture.
The involved plan-
ning agents are rep-
resented by PAn and
the wals indicate the
ammount of resources
assigned to them in
each reasoning phase.

We argue that the
effect of resource man-
agement leads to a
less brittle search tech-
nique which we call
focused search.

Breadth-first search
is robust in the sense
that it is impossible to
miss a solution. However, it is normally prohibitively ex-
pensive. Heuristic search may be considered as the other
extreme case, it is possible to go with modest resources
very deep in a search tree. However, the search is brit-
tle in that a single wrong decision may make it go astray
and miss a solution, independently of how big the allo-
cated resources are. Focused search can be considered as
a compromise — it requires more resources than heuris-
tic search, but not as much as breadth-first search. As a
result, a solution can still be found even if the focus of the
search is misplaced. Clearly, more resources are neces-
sary in the case of a bad than of a good focus.

We currently realise the so-called focused proof search
as an adaptation of the multi-agent planning architecture,
MPA Wilkins and Myers (1998), in the proof planning
domain. Important infrastructure for this enterprise is pro-
vided by the
MEGAproof development environment. The
main component of MPA is a multi-agent proof planning
cell, which consists of 1) several planning agents, 2) a
plan server, 3) a domain server, and finally 4) a planning
cell manager.

1. The quite heterorgeneous reasoning systems (FO-
Reasoners, HO-Reasoners, CAS, etc.) already inte-
grated to
MEGA are available as planning agents.

And an interactive user may become a concurrent
planning agent as well.

2. The plan server stores promising partial proof plans
returned by the planning agents in their previous
runs within a unified data format. This enables back-
tracking on two distinct levels: we can backtrack
within the actual proof plan by taking back sin-
gle proof steps or subproofs contributed by some of
the planning agents and we can completely shift to
some alternative proof attempt that has been aban-
doned previously.

3. A domain server provides the necessary knowledge
for the planning cell manager as well as for the
single planning agents. In our context it consists
of a structured database of mathematical theories.
Moreover, it should contain domain specific knowl-
edge relevant to certain planning agents.

4. The planning cell manager re-organizes and con-
trols the reasoning process in each iteration phase
based on its (and/or the users) crucial evaluation
and assesment considerations. Its prototype is based
on the agent-architecture described in Benzmüller
and Sorge (1999) allowing for a close and flexi-
ble integration of an interactive user into automated
reasoning processes.

3 Conclusion

Our work does not directly follow the long-term goal of
building a ‘complete mind’. However we think that we
will encounter many of the problems in our limited do-
main which will have to be solved in building a complete
mind. In particular a distinction between different levels,
reactive and deliberative modes, meta-level reasoning and
so on, seems to be very important in the wider context of
mathematical reasoning, maybe even feelings play a role.
So we think that our work could be of general interest and
that we could benefit from the general work in the area.
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