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We encounter mathematics in every aspect of our lives. Some of the deep-
est and greatest insights into reasoning were made in mathematics. Hence, it is
not surprising that emulating such powerful reasoning on machines is one of the
important and difficult aims of artificial intelligence and automated reasoning.
Human mathematicians often use diagrams to better convey problems and gen-
erate intuitive and easily understandable solutions. Theyalso often learn general
solutions from examples of solutions to related problems. Sometimes, they may
use analogy or symmetry in solving problems. My research is in the exploration
of the nature of such informal reasoning.

Informal human reasoning is very powerful, yet its potential has largely not
been exploited in the design ofmechanised reasoning systems (i.e., systems which
use some logic formalism to (semi-) automatically solve problems). This can per-
haps be explained by the fact that we do not have a deep understanding of informal
techniques and their use in problem solving. In order to advance further the state
of the art of automated reasoning systems, I think it is important to integrate some
of the informal human reasoning techniques with the proven successful formal
techniques, such as different types of logic. This will not only make the reasoning
systems more powerful, but such systems can then serve as tools with which we
can study and explore the nature of human reasoning. My aim isto formalise and
emulate, in particular, human reasoning with diagrams and human learning, on
machines.

Theorems in automated theorem proving are usually proved with formal log-
ical proofs, so called symbolic proofs. However, there is a subset of problems
which humans can prove by the use of geometric operations on diagrams, so called
diagrammatic proofs. Figure 1 presents an example of a diagrammatic proof1 of
a theorem concerning the sum of odd naturalsn2 = 1 + 3 + 5 + � � �+ (2n� 1).
The proof consists of repeatedly applyinglcuts to a square (anlcut removes an
ell shape which is formed from two adjacent sides of a square – seeFigure 1).

1



Figure 1: Figure 1: oddint.epsn2 = 1 + 3 + 5 + � � �+ (2n� 1)
Notice that anell represents an odd natural number since both sides of a squareof
sizen are joined (2n), but the joining vertex was counted twice (hence2n � 1).
We showed how such diagrammatic reasoning about mathematical theorems can
be automated, and demonstrated the approach with the diagrammatic reasoning
system called DIAMOND .2

In DIAMOND , concrete, rather than general diagrams are used to prove par-
ticular instances of a universal statement (e.g., in the example in Figure 1, the
instance isn = 6). The ”inference steps” of a diagrammatic proof are formulated
in terms of geometric operations on the diagram (e.g., thelcuts in the diagram-
matic proof in Figure 1). A general schematic proof of the universal statement
is induced from these proof instances by means of the constructive omega-rule.
Schematic proofs are represented as recursive programs which, given a particular
diagram, return the proof for that diagram. It is necessary to reason about this
recursive program to show that it outputs a correct proof. One method of confirm-
ing that the abstraction of the schematic proof from the proof instances is sound
is proving the correctness of schematic proofs in the meta-theory of diagrams.

DIAMOND can tackle only theorems which can be expressed as diagrams.
However, there are theorems which may require a combinationof symbolic and
diagrammatic reasoning steps in the same proof attempt, so called heterogeneous
proofs. I am currently investigating how a system could automatically reason
about such proofs, and learn them in general from examples ofproofs. An ex-
ample below demonstrates a heterogeneous proof that consists of a combination
of symbolic and diagrammatic inference steps. The theorem states an inequality:a+b2 � pab wherea; b � 0. The first few symbolic steps of the proof are:a + b2 � pab# square both sides of�(a+ b)222 � ab# �4 on both sides of�(a+ b)2 � 4ab
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#a2 + 2ab+ b2 � 4ab
The second part of the proof1, which is presented in Figure 2, shows diagrammat-
ically the inequalitya2 + 2ab + b2 � 4ab.
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Figure 2: Figure 2: ineq.epsa2 + 2ab+ b2 � 4ab
Rather than learning low-level proofs, I aim for a system that can learn dia-

grammaticproof plans. Proof planning3 is an approach to theorem proving which
uses high-levelproof methods rather than low-level logical inference rules to find
a proof of a conjecture at hand. It is a technique that searches for a proof plan,
and a proof plan consists of some combination of proof methods. A proof method
specifies and encodes a general reasoning strategy that can be used in a proof,
and typically represents a number of individual inference rules (e.g., mathemat-
ical induction can be represented as a proof method). Our heterogeneous proof
plans will be formed from geometric operations plus symbolic inference steps.
The system will be able to learn such proof methods from examples of the use
of lower-level methods, and eventually, it will be able to learn new diagrammatic
and heterogeneous proof plans.

The hope is that ultimately learning new, general and complex proof meth-
ods and proof plans may lead to the discovery of new and interesting proofs of
theorems of mathematics that use diagrams for inferencing.
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