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We encounter mathematics in every aspect of our lives. Sdntieeadeep-
est and greatest insights into reasoning were made in matitsn Hence, it is
not surprising that emulating such powerful reasoning ochirees is one of the
important and difficult aims of artificial intelligence anditamated reasoning.
Human mathematicians often use diagrams to better conwygmns and gen-
erate intuitive and easily understandable solutions. ®&igy often learn general
solutions from examples of solutions to related problen@mn&imes, they may
use analogy or symmetry in solving problems. My research ihié exploration
of the nature of such informal reasoning.

Informal human reasoning is very powerful, yet its potdrtias largely not
been exploited in the design wichani sed reasoning systems (i.e., systems which
use some logic formalism to (semi-) automatically solvebpems). This can per-
haps be explained by the fact that we do not have a deep uadeénsg of informal
techniques and their use in problem solving. In order to adedurther the state
of the art of automated reasoning systems, | think it is irtgo@rto integrate some
of the informal human reasoning techniques with the prowatassful formal
techniqgues, such as different types of logic. This will notyamake the reasoning
systems more powerful, but such systems can then serve lasatito which we
can study and explore the nature of human reasoning. My aiocnf@@malise and
emulate, in particular, human reasoning with diagrams anddn learning, on
machines.

Theorems in automated theorem proving are usually provédfermal log-
ical proofs, so called symbolic proofs. However, there isibsgt of problems
which humans can prove by the use of geometric operationggnams, so called
diagrammatic proofs. Figure 1 presents an example of a aliagyatic proof of
a theorem concerning the sum of odd naturglls= 1 +3 + 5+ -+ + (2n — 1).
The proof consists of repeatedly applyilats to a square (ahcut removes an
ell shape which is formed from two adjacent sides of a square Figere 1).



Figure 1: Figure 1: oddint.eps =1 +3+5+---+ (2n — 1)

Notice that arell represents an odd natural number since both sides of a sgjuare
sizen are joined ?n), but the joining vertex was counted twice (herxze— 1).
We showed how such diagrammatic reasoning about matheahéteorems can
be automated, and demonstrated the approach with the dhagaic reasoning
system called DA\MOND .2

In DIAMOND, concrete, rather than general diagrams are used to prave pa
ticular instances of a universal statement (e.g., in thenga in Figure 1, the
instance i1 = 6). The "inference steps” of a diagrammatic proof are forneda
in terms of geometric operations on the diagram (e.g.|¢bes in the diagram-
matic proof in Figure 1). A general schematic proof of theversal statement
is induced from these proof instances by means of the cartsteuomega-rule.
Schematic proofs are represented as recursive progranchwjiven a particular
diagram, return the proof for that diagram. It is necessaryeson about this
recursive program to show that it outputs a correct proofe @ethod of confirm-
ing that the abstraction of the schematic proof from the pnestances is sound
is proving the correctness of schematic proofs in the nietatly of diagrams.

DiIAMOND can tackle only theorems which can be expressed as diagrams.
However, there are theorems which may require a combinati@ymbolic and
diagrammatic reasoning steps in the same proof attempglEmheterogeneous
proofs. | am currently investigating how a system could engtically reason
about such proofs, and learn them in general from examplgsaaffs. An ex-
ample below demonstrates a heterogeneous proof that t®on$ia combination
of symbolic and diagrammatic inference steps. The theotatesan inequality:
GT“’ > v/ab wherea, b > 0. The first few symbolic steps of the proof are:
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The second part of the progfwhich is presented in Figure 2, shows diagrammat-
ically the inequalitya® + 2ab + b* > 4ab.
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Figure 2: Figure 2: ineq.epg + 2ab + b? > 4ab

Rather than learning low-level proofs, | aim for a systent tten learn dia-
grammatigproof plans. Proof planning?® is an approach to theorem proving which
uses high-levebroof methods rather than low-level logical inference rules to find
a proof of a conjecture at hand. It is a technique that searfdrea proof plan,
and a proof plan consists of some combination of proof methAgroof method
specifies and encodes a general reasoning strategy thaecasel in a proof,
and typically represents a number of individual inferendges (e.g., mathemat-
ical induction can be represented as a proof method). Owrdgtneous proof
plans will be formed from geometric operations plus symbaiference steps.
The system will be able to learn such proof methods from exesnpf the use
of lower-level methods, and eventually, it will be able tarie new diagrammatic
and heterogeneous proof plans.

The hope is that ultimately learning new, general and cormpleof meth-
ods and proof plans may lead to the discovery of new and stiege proofs of
theorems of mathematics that use diagrams for inferencing.

1. R.B. NelsenProofs without Words: Exercisesin Visual Thinking. The
Mathematical Association of America, 1993.

2. M. Jamnik.M athematical Reasoning with Diagrams: From Intuition to
Automation. CSLI Press, Stanford, 2001.

3. A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk
and R. Overbeek, editors, 9th Conference on Automated Diedipages 111—
120. Springer Verlag, 1988.



