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Abstract

In this contribution we propose an agent architecture for theorem proving which we
intend to investigate in depth in the future. The work reported in this paper is in
an early state, and by no means finished. We present and discuss our proposal in
order to get feedback from the Calculemus community.

1 Introduction

There are two major approaches to automated theorem proving, machine-
oriented methods like the resolution method (with all its ramifications) and
human-oriented methods. Most prominent amongst the human-oriented meth-
ods is the proof planning approach first introduced by Bundy [8].

In this contribution we argue that an integration of the two approaches and
the simultaneous pursuit of different lines in a proof can be very beneficial.
One way of integrating the approaches is to consider a reasoner as a collection
of agents, in which machine-oriented methods and planning play different
roles.

One of the main distinctions between machine-oriented and human-orien-
ted methods is the generality of the approaches. Machine-oriented theorem
provers like classical first-order theorem provers (e.g., BLIKSEM, OTTER, SPASS),
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analytical provers (e.g., Satcumo or ProTEIN), and provers based on comple-
tion methods (e.g., Eqp, WaLDMEISTER) have reached a considerable reasoning
power. This is underlined by the recent solution of the Robbins problem
by Eqp [21]. However, these traditional systems follow fixed search strate-
gies which are unlikely to fully model the problem solving expertise of hu-
man mathematicians. Also classical higher-order theorem provers like Tps [1],
or the Lro-system [4] get lost in the enormous search spaces stretched on a
fine-grained calculus level. General complexity results demonstrate that no
practical algorithm can be constructed which can solve arbitrary tasks. Even
propositional logic is in a class that is generally considered intractable since
it is NP-complete.

The success of human mathematicians can largely be ascribed to the fact
that they are generally specialised in some fields and can rely on domain-
specific problem solving techniques they have accumulated throughout their
professional experiences. Mathematicians learn during their academic training
not only facts like definitions or theorems, but also problem-solving know-how
for proving mathematical theorems. An important part of this know-how can
be described in terms of reasoning methods like the diagonalisation procedure,
the application of a definition, or the application of the homomorphy prop-
erty. Human-oriented theorem proving tries to model this human approach
by making use of domain-specific knowledge.

One approach to model human-oriented theorem proving on a computer is
proof planning which adopts the planning paradigm. The so-called methods
play the role of plan operators and their executions fill gaps in a partial proof.
Bundy views methods essentially as a triple consisting of a tactic, a precon-
dition, and a postcondition. A tactic can be seen as a piece of program code
that can manipulate the actual proof in a controlled way. A precondition and
a postcondition form a declarative specification of the deductive ability of the
tactic. The approach to mechanising reasoning using methods had resulted
in a significant progress compared to a mere tactic language. Within such a
planning framework it is now possible to develop proof plans with the help
of the declarative knowledge in the preconditions and postconditions. In this
view proof planning makes use of traditional planning techniques in order to
find proofs on an abstract level. State of the art proof planners are CIAM [10],
A-CIAM [24], and the proof planner of QmEeca [3].

One of the first successful approaches to theorem proving within an agent
architecture is Denzinger’s Teamwork approach [12]. Some of the state of
the art agent architectures for automatic and interactive theorem proving are
discussed in [16,5]. The agent architecture for proof planning proposed here
will be developed within the framework of QMmeEca. An advantage of QmEca
is that it already provides various integrated classical reasoning systems (e.g.,
BLIkSEM, OTTER, EQP, SPASS, SATCHMO, PROTEIN, WALDMEISTER, TPS, LEo) as
well as some specialised decision procedures (for instance, a constraint solver
and the integrated computer algebra systems Mapre and pCAS [19]), and an
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analogy module [22]. Additional features are a multi-modal graphical user
interface [25], a proof verbalisation tool [18] and a connected database of
mathematical theories. Using the Matuwes agent architecture [17], most of
these integrated systems can be distributed over the Internet. Information
on successful or unsuccessful proof attempts of the integrated systems (e.g.,
partial proofs) can be translated back into Qmeca’s central proof data struc-
ture, which is based on a higher-order variant of Gentzen’s natural deduction
calculus. Translation of different results into the uniform representation in
Qureca clarifies the integrated results of very heterogeneous agents.

Human proof search behaviour may perhaps be best modelled as a mixture
of proof planning, classical theorem proving, computing, and model genera-
tion. In Qumrca (and in related systems like ILr [11] or Discount [14], which
integrate relatively homogeneous first-order reasoning systems) this largely
has to be done by the user. Rather poor support is provided for a fruitful and
guided cooperation of the available subsystems.

While Qveca and Matnwes provide the technical background, the work
described here aims to investigate how a meaningful cooperation between dif-
ferent agents within the architecture can be established. We want to draw
as much as possible on already existing technology both in 2meEca and in
other external systems (i.e., theorem provers, computer algebra systems, etc.).
Therefore, the communication between agents will be organised so that suc-
cessful and unsuccessful proof attempts or partial proofs are communicated
via Qmeca. The assessment of single agents and societies of agents will be em-
bedded within Qmrca as well as agent shells surrounding the single systems
in use. Hence, theorem provers which have communication features readily
available (e.g., Tps) will be used off the shelf, as black-box systems. The in-
formation they provide will be incorporated at run-time into the reasoning
process searching for a proof of a conjecture.

2 Deliberation versus Reactiveness

A classical approach to model intelligence consists of carefully selecting a
knowledge representation formalism and then modelling parts of a domain in
this formalism. The power of the reasoner depends on the ability to reason
in the knowledge representation formalism. In classical approaches to plan-
ning, the situation calculus [20] and in Strips [15], the domain is modelled
by an initial state, a goal state, and planning operators. Proof planning with
abstraction also makes use of a model of the world and can be viewed as a
deliberative approach to solve reasoning tasks.

As an antithesis to this classical AT paradigm (and in particular to the
planning paradigm) an approach has been developed that explicitly does not
make use of knowledge representation and complicated deliberations (such
as planning the best next step in the proof search). Brooks phrased it as
“Intelligence without Reason” [7]. In this approach it is possible to obtain

3



BENZMULLER, JAMNIK, KERBER, SORGE

complex, apparently goal directed and intentional behaviour which has no
long term internal state and no internal communication. This is referred to
as a reactive form of modelling behaviour. Its key notions are:

Situatedness: The world is its own best model.
Embodiment: The world grounds regress.

Intelligence: Intelligence is determined by the dynamics of interaction with
the world.

Emergence: Intelligence is in the eye of the observer.

Although the machine-oriented approaches were not designed in the light of
recent work in reactive systems, they can be reinterpreted in this framework.
The main aspect is the locality of the search for a solution. For instance,
when we consider binary resolution theorem proving, the decision on which
two literals to perform a resolution step is often made on the basis of the
knowledge of the current proof state only. That is, it does not depend on
what has been done previously (of course this view simplifies matters and is
not true in a strict sense for all strategies). In particular, there is no overall
long term strategy to derive the empty clause. We can view the behaviour
of the theorem prover as a reactive process: the world consists of clauses and
there is no abstract model of these clauses. The theorem prover acts directly
in this world, and the behaviour is determined by the interaction with the
world. It is a characteristic of reactiveness that some reactive systems such
as OTTeErR normally do not do any backtracking. Furthermore, some reactive
systems do complete restarts when the search for a proof is lost in the search
space. Such restarts can also be viewed as a typical characteristic of reactive
systems. For a detailed discussion of Brooks’ approach and its relationship to
theorem proving see [9].

Recent years have seen an attempt to reconcile the deliberative and the
reactive approaches in single agent architectures [26]. This is partly motivated
by looking at the human way of acting and reasoning which can be better
explained as a combination of the two cases rather than by any one of them
alone. Also, practical issues play an important role: in certain cases reactive
behaviour is computationally more efficient, while in others reactive behaviour
gets stuck. In the latter case deliberative behaviour can sometimes prevent
blocking of a reasoning process.

3 Agent based mathematical reasoning

A weakness of most state of the art reasoning systems is that they usually
follow rigid and inflexible solution strategies in their search for proofs. Instead,
human mathematicians use — depending on their level of expertise — “a
colourful mixture of proof strategies” (as Wittgenstein phrases it). In an
attempt to prove a mathematical theorem they typically first try a well known

standard technique in the focus of the mathematical theory. If this technique
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does not lead to the wanted results in a reasonable amount of time, they may
doubt that the theorem holds at all and look for a counterexample. If this
also fails, they may try again by widening or deepening the proof search.

The aim of our approach is to emulate this flexible problem solving be-
haviour of human mathematicians in an agent based reasoning approach.
Thus, our system will reflect at least some of the ideas of a sophisticated
and experienced problem solver as described by Pélya in [23], p. 64: ... when
he does not succeed in guessing the whole answer, [he] tries to guess some part
of the answer, some feature of the solution, some approach to the solution,
or some feature of an approach to the solution. Then he seeks to expand his
guess, and so he seeks to adapt his guess to the best information he can get
at the moment.”

Agents allow a number of proof search attempts to be executed in par-
allel. Each agent may try a different proof strategy to find the proof of a
conjecture. Hence, a number of different proof strategies are used at the
same time in the proof search. However, following all the available strategies
simultaneously would quickly consume the available system resources consist-
ing of computation time and memory space. In order to prevent this, and
furthermore, to guide the proof search we propose to develop and employ
a resource management concept in proof search. Resource management is
a technique which distributes the available resources amongst the available
agents (cf. [28]). Periodically, it assesses the state of the proof search process,
evaluates the progress and redistributes the available resources accordingly.
Hence, only successful or promising proof attempts will be allowed to con-
tinue searching for a proof. This process is repeated until a proof is found, or
some other terminating condition is reached. An important aspect will be that
in each assessment/evaluation phase the global proof state is updated, that is,
promising partial proofs and especially solved subproblems are inserted into
the global proof tree. Furthermore, interesting results may be communicated
between the agents (for instance, an open subproblem may be passed to a the-
orem prover that seems to be more appropriate). The resource management
mechanism analyses the theorem and decides which agents, i.e., provers, need
to be launched and what proportion of the resources needs to be assigned to a
particular agent. The mechanism is also responsible for restricting the amount
of information exchange between agents, so that not all of the resources are
allocated to the communication. Figure 1 demonstrates this agent based proof
planning architecture.

Of course, the evaluation of the success of a proof strategy is crucial for
determining the amount of resources that is allocated to an agent. This eval-
uation is based on the contribution that the agent has made in the proof
attempt as well as on its prospect of success in the rest of the search. For
example, a favourable contribution is a partial problem solution. Qmrca inte-
grates most external systems as glass boxes. That is, it provides mechanisms
to map particular results of external systems (e.g., single clauses derived by
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Fig. 1. The reasoning process — iterative allocation of resources to proof agents
(PAx) by assessment/evaluation, and the subsequent construction of a proof of a
given theorem.

Spass or OTTER) to ND-derivations in QumEeca’s central proof data structure
(PDS). This feature of Qumeca will benefit our approach in that the evaluation
of the contribution of external systems can be based on the examination of
the corresponding ND-proofs or proof plans. The future prospect of an agent
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is estimated with respect to the updated global proof tree and according to
the information communicated between the agents.

The proposed system should be able to tackle mathematical problems that
are currently not automatically solvable by any of the embedded systems alone
(nor by any other system). An example of such a problem is described in
detail in [2], we briefly summarise it here. The problem states that if there
is a partition p of some set, then there is an equivalence relation ¢ whose
equivalence classes are exactly the elements of p:

Vp. partition(p) = (3¢- equivalence-rel(q) A (equivalence-classes(q) = p))

Note that partition, equivalence-classes, and equivalence-rel are derived higher-
order concepts defined in the Q2MEcA knowledge base of mathematical theories.

The search for a proof of this theorem has not been automated yet. We
indicate here how the proof might be found within our proposed architecture.
First, the initial proof goal is split into three subgoals (e.g., with the help of a
proof planner). Namely, from a given partition p we can derive the existence of
an equivalence relation ¢, constituting subgoal (1). For the same equivalence
relation ¢ it holds that its equivalence classes are exactly p. The two directions
of the set equality give us subgoals (2) and (3). Next, higher-order equality
and extensionality reasoning is required. The first two subgoals (1) and (2)
can be solved automatically by the higher-order prover Tps [1]. The last
subproblem (3), which requires a fair amount of extensionality reasoning, we
expect to be solvable by cooperation between the higher-order extensionality
prover Leo [4] and a first-order automated theorem prover. Leo provides
the necessary higher-order extensionality treatment, however, it cannot cope
with the large number of first-order clauses that are generated subsequently.
Therefore, this set of clauses could be passed via (QmMeca to the first-order
specialist available within our agent society. Our proposed system will be
able to organise the sketched cooperation between the integrated systems in
a goal oriented way in order to solve such kinds of problems automatically.

4 Theorem Proving by a Society of Agents

The system we propose will provide a powerful architecture for reasoning
systems consisting of a society of specialised reasoning agents. These agents
are aware of their own capabilities and partly even of those of the other agents.
The knowledge can initially be provided by the user or the implementor of a
single agent. However, additional knowledge can be gained by evaluating
successful and unsuccessful proof attempts in various mathematical domains
as well as by feedback from other agents (for instance, the usefulness of results
from some agents can be used in a reinforcement learning approach).
Initially, a given mathematical problem is investigated in order to estimate
and classify the potential of the solution strategies, i.e., of the agents, avail-
able for solving this problem. Depending on the evaluation process an initial
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resource distribution is computed, in particular, a main strategy line may
be manifested. An infrastructure allowing to distribute resources is already
provided by the Matnwes architecture [17]. An automatic evaluation module
will then be added to the system. The goal is not to remove the human in
this process; on the contrary, the agent and resource approach should strongly
facilitate the communication between the human and the machine. In fact,
human expertise can be incorporated during each of the assessment /evaluation
phases.

After consuming the available resources, the reasoning agents terminate
and investigate whether they have produced useful information or not. For
instance, the OrTER-agent could look for the shortest derived clauses with
assertion clauses as ancestors in order to estimate how close it is to a completed
proof. More interesting in our context will be contributions of the Tps system,
since it can return partial proofs to the {2mrca-system. These results may be
evaluated using adequate criteria like the complexity and the number of the
remaining open subproblems. For example, the only open subproblem might
be a first-order goal, whereas the original problem was a higher-order one.
Then, the partial proof may be communicated to other systems and the open
subgoal can be passed to first-order provers. Depending on the evaluation of
the agents’ contributions, a new resource distribution is computed.

The starting point for the design of the system we propose here consists
of a proof data structure and a proof planning mechanism. The first proto-
type of the system can use the existing proof data structure, proof planning
components, and proof methods of 2mrca. The system will be extended by
implementing a mechanism for knowledge based automatic distribution of sub-
problems to societies of agents, and an assessment module which will enable
an interaction between agents.

The agent results can be incorporated directly into Qmrca’s partial proofs,
enabling the evaluation of usefulness of heterogeneous agents on some uniform
level. The information can then be propagated to other agents. However, in
case of an unsuccessful proof attempt of the overall system a special back-
tracking mechanism needs to be supplied. It has to do book-keeping on the
parts of the proofs which have been computed by each agent. Furthermore,
the mechanism must be able to subsequently remove both, whole and partial
results of an agent from the overall proof.

One of the potential problems, which we foresee, is that increasing the
heterogeneity of a system might increase the organisational complexity of the
communication between the agents. Namely, the greater the variety of the
systems that are integrated, the less there might be a common interest to
the different agents, and furthermore, the general viewpoint of the problem
solving process of the overall system might be lost. For instance, some in-
termediate result that is of central importance to one prover might not be of
interest to another prover, because the proof strategies that they use are very
different. Hence, establishing the communication between agents might prove
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to be difficult. As a first approximation, our approach will be to broadcast the
results of each agent to every other agent in the hope that the results might be
useful to other agents. In further refinements we will look into more sophisti-
cated forms of communication which will allow for a more efficient exchange
of information between agents. The possibility to translate into the standard
form of QmEca’s partial proofs should help in this task.

5 Conclusion

We summarise our proposal by delineating some of the most challenging re-
search tasks in this project:

(i) The extension of Qumrca’s underlying Matnwes-architecture and its proof
data structure by suitable resource distribution, communication and back-
tracking facilities. In a first attempt we want to adapt the blackboard
mechanism underlying Qmeca’s interactive suggestion mechanism [5,6]
and integrate it with the MaraweB architecture.

(ii) The development and realisation of a suitable evaluation criteria; some
obvious candidates are the simplicity /complexity of partial proofs, the
theory/logic a subproblem belongs to (e.g., first-order logic, set theory),
and the similarity of open subproblems to already solved problems stored
in the database.

(iii) The extension of the system, such that it allows a grouping of homo-
geneous agents tackling similar kinds of problems into one single meta-
agent. For instance, it may be useful to group classical first-order rea-
soners together to form a centre of expertise for classical first-order logic.
Ideally, such centres of expertise may use a mechanism analogous to the
overall system in order to organise the communication between its sys-
tems (sub-agents) and to further distribute the resources they obtain at
the upper level.

The systems in a centre of expertise can be evaluated using a fine-grained
evaluation criteria. Evaluation experiments of this kind have been carried out
in the past on, for instance, first-order theorem provers and other homogeneous
systems (cf. [16,27,13]). They proved to be successful and gave positive results.
Hence, we could realise a more homogeneous system communication within
the centre of expertise. Furthermore, the centres of expertise could have a
dynamic nature, that is, they might remodel themselves differently for different
problem domains or explicitly learn in which areas their particular strengths
and weaknesses are.

Related to our proposal is the work on Tecus in [13] where no restriction
is imposed on the type of the provers that can be integrated into a system. A
comparison of both architectures might provide some useful insights into the
potential problems as well as the advantages of the approach proposed in this
paper. One difference between the proposed approach and Tecwus is that the
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latter does not provide techniques to translate selected results of the reasoning
agents (e.g., clauses derived by a first-order theorem prover) into derivations
in a uniform proof data structure, whereas for most systems in our approach
this will be possible. Hence, our evaluation criteria may exploit knowledge on
a more abstract level and may relate the contributions of the agents to the
current partial proof in the global proof attempt.

In conclusion, we propose that a reasoning system with an agent based
architecture incorporated into a proof planning framework, as we described in
this paper, will result in improved mechanised reasoning capabilities. Unlike a
conventional distributed parallel model of theorem proving, an agent architec-
ture provides a paradigm where the communication between agents and the
management of resources for agents can be realised. The hope is that such a
system will be able to prove theorems that have previously not been proved
automatically.
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