
Multiband Pixel Colour Classification
from HDMI Emissions

Dimitrije Erdeljan, Markus G. Kuhn
Department of Computer Science and Technology, University of Cambridge, UK

{de298, mgk25}@cl.cam.ac.uk

Abstract — We demonstrate methods to enhance the recon-
struction of displayed information from the compromising ema-
nations of HDMI or DVI video cables. Using a software-defined
radio receiver, we acquire multiple recordings of such emissions
for the same displayed image, at adjacent, overlapping reception
bands. We first perform frequency alignment and coherent
periodic averaging on each of these recordings individually.
We then mutually align the resulting frames such that we
can extract colour-identifying features for each displayed pixel
across multiple reception bands. These features then go into a
clustering algorithm to classify the signals emitted by different
TMDS symbols. Finally, we build a graph data structure of the
most common transitions between such symbols, and identify
loops in this graph as candidates of pixel colours that cycle
through multiple symbols due to the DC-balancing algorithm
applied by the TMDS encoding. This can enhance the readability
of eavesdropped text with some colour combinations, as we
demonstrate for signals recorded at 12 metres distance.

Keywords — TEMPEST, compromising emanations, eaves-
dropping, displays, software radio, information leakage, side-
channel attacks.

Proc. of the 2025 International Symposium on Electromagnetic Compatibility (EMC Europe 2025), Paris, France, September 1–5, 2025

© 2025 IEEE 1

I. INTRODUCTION

The perhaps most well-known electromagnetic eavesdrop-
ping risk posed by unintentional radio-frequency emissions
of computers, often referred to as TEMPEST, is the recon-
struction of readable text shown on a raster display from the
signals emitted by its video cable. From the earliest published
demonstrations, by van Eck [1] in 1985, to later demonstrations
on digital video interfaces [2], including with software-defined
radio receivers [3], this usually involves simply passing the
signal received through an amplitude-demodulating receiver,
and then converting the resulting baseband signal into a raster
image. The signal can then be improved by frame-periodic
averaging. This works well for certain combinations of fore-
ground and background colour, but can provide poor contrast
for others [2]. Attempts to improve the eavesdropper’s ability
to obtain a good contrast for more colour combinations have
included clustering of amplitudes [4], frequency demodula-
tion [5] and quadrature-amplitude demodulation [6, Ch. 4], the
latter more recently also combined with principal-component
analysis [7]. Phase-coherent periodic averaging [7] can be used
to improve the signal-to-noise ratio of signals acquired with
software-defined radio receivers prior to demodulation into
a display brightness or colour. This preserves at least two
degrees of freedom of information per target pixel (the real
and imaginary part of the complex-valued IQ samples received

and averaged), and even more if we acquire several samples
per target pixel.

However, there is another way to obtain more information
about individual pixel colours, namely by changing the tuning
frequency of the receiver. If we think of the waveform on
the video cable as a sampled signal, with the pixel-clock
frequency fp as the sampling rate, then the spectral information
would repeat itself across the radio spectrum after every fp-
wide frequency interval. This is because any signal sampled
with frequency f in the time-domain repeats in the frequency
domain with a period length f (and vice versa). In eaves-
dropping demonstrations, the receiver bandwidth B is usually
chosen close to fp, or a small multiple thereof. A significantly
lower bandwidth would cause blurring of pixels (due to the
≈ B−1 impulse-response length of the band-selection filter),
and a significantly higher bandwidth would risk including more
interference signals.

If, however, we look at the video signal as a serial
transmission of individual bits, at a bitrate fb, which is ten
times the pixel rate fp on HDMI [8] and DVI [9] cables, then
we can see that the spectrum actually repeats only after every
fb = 10fp-wide frequency interval. And if fb is much larger
than available receiver bandwidths, there will be multiple
tuning frequencies that complement each other regarding the
information available from a digital serial transmission. Our
goal is, therefore, to combine into a single image information
obtained from eavesdropping on multiple receiver bands. This
requires techniques for carefully aligning images from multiple
bands. After that, we can use a clustering algorithm to map the
high-dimensional signal into an easy-to-distinguish set of false
colours, in the hope of obtaining a good contrast for a wider
set of combinations of foreground and background colours.

We also try to deal with another phenomenon that anyone
having tried to eavesdrop on DVI or HDMI cables may be
familiar with, namely the stateful behaviour of the transition-
minimized differential signalling (TMDS) encoding [8], [9]
used by both these interfaces. Many of the RGB byte values
on the cable are not represented by a single 10-bit word, but
chosen from two alternative 10-bit words, to maintain the DC
balance of the transmitted signal [6, Appendix A]. While some
8-bit bytes are represented by a single balanced 10-bit word,
which consists of five zero bits and five one bits, others have
two possible 10-bit words that can represent them, including
unbalanced ones with fewer or more zero bits than one bits.

The choice between the two is made by the encoder so as to
maintain a balanced running disparity along each line of the
video signal. This difference between the number of zero and
one bits transmitted so far is kept close to zero by the encoder,
and the count is reset to zero at the start of each line. As a
result, even if a line consists entirely of a single repeated byte
value, the encoder may go through a series of running-disparity
states, resulting in a cycle of different 10-bit words. This is why
uniformly coloured areas can show up to the eavesdropper as a
series of vertical stripes or similar repeating patterns. Having
already clustered the emissions from different 10-bit words,
we, therefore, demonstrate here how an eavesdropper also can
cluster cycles of 10-bit words, to reduce the visual impact of
the TMDS DC-balancing algorithm on the appearance of the
reconstructed false-colour raster image.

II. SIGNAL PREPARATION

The initial signal acquisition and preprocessing steps, con-
sisting of coherent demodulation and periodic averaging of
IQ signals acquired with a software-defined radio receiver, are
similar to those described in [7], therefore we will use similar
notation. Readers may want to consult [7] for a more detailed
explanation of some of those steps.

A. Software-defined Radio Reception

We use a software-defined radio (SDR) receiver to convert
an analog antenna signal sa(t) into a discrete sequence of
samples r[m] that can be recorded by a computer. We configure
the SDR to acquire all radio signals within a frequency
band

[
fc − B

2 , fc +
B
2

]
around a centre frequency fc, with a

sampling rate fr that is somewhat greater than the desired
bandwidth B.

The SDR then first downconverts the antenna signal, i.e.
shifts its frequency by −fc, by multiplying with a phasor:

sd(t) = sa(t) · e−2πjfct. (1)

It then lowpass filters that signal with a cut-off frequency of
±B

2 , resulting in a band-limited complex-valued signal sf(t),
which it then samples into the discrete sequence

r[m] = sf(m/fr). (2)

For multi-band experiments, we make multiple such
recordings, at centre frequencies fc,1 < fc,2 < · · · < fc,nb

.
Where needed, we indicate the use of centre frequency fc,i by
adding the corresponding band index i as a subscript, as in
ri[m].

B. Resampling and Frequency Alignment

Having received the complex-valued IQ samples r[m] from
the SDR, we then need to perform two additional transforms
before these can be turned into raster images or subjected to
periodic averaging for noise reduction.

Firstly, we need to interpolate r[m] back into s̃f(t) ≈ sf(t)
such that we can resample it, to change the sampling frequency
from fr to the pixel-clock frequency fp or some integer
multiple kfp of it. Reasonable choices for k are in the range

⌊B/fp⌋ to ⌈fr/fp⌉. This resampling ensures that each pixel,
each line and each frame become represented by an integer
number of IQ samples, which enables their conversion into
a raster image without geometric distortions. This is also a
prerequisite for later periodic averaging at the frame rate.
(Linear or Lanczos interpolation work well for this.)

Secondly we need to shift the frequency spectrum of s̃f(t)
such that one of the harmonics of fp, which we will refer
to as hfp, is shifted to 0 Hz. This compensates for the fact
that when r[m] was recorded, the SDR changed the phase of
the samples representing each pixel, by multiplying with the
complex phasor e−2πjfct. We now need to do this additional
frequency shift in order to ensure that the samples associated
with each pixel undergo the same phase change, such that we
can perform coherent periodic averaging of complex values.
Otherwise, they would cancel each other out due to the random
phase imparted upon them by the local oscillator in the SDR
and the pixel clock in the target device.

The result of both these transforms is a new discrete
sequence of complex-valued IQ samples

s[n] ≈ s̃f

(
n+ λ

fs

)
· e2πj(fc−hfp)n/fs (3)

with new sampling rate fs = kfp. The offset λ can be adjusted
to align s[0] with the start of the next frame. The harmonic h
of fp can be chosen as h = ⌊fc/fp + 0.5⌋, the one nearest to
fc.

However, for this to work, we need to know fp with
very high precision, with a relative error that is below around
0.1/(Nhkwtht), where N is the number of frames we want
to average later and wt × ht is the total number of pixels of a
frame in the video mode used, including blanking regions. This
keeps the remaining phase rotation across N frames below a
tenth of a full rotation.

We exploit the periodicity of the video signal, which
repeats with a frame rate of fv = fp/(wtht) and look for
a peak at lags of f−1

v in the auto-correlation sequence of s[n].
We iteratively refine our estimate for fp, starting from a

nominal pixel frequency, as defined by a video-mode specifi-
cation, such as [10], [11], or otherwise known for the target
device (e.g., read from video-controller settings or measured
with a spectrum analyzer). We start by generating an s[n]
sequence using equation (3) with this crude nominal fp value.
The length L of the generated sequence s[n] must cover
multiple frames, but should not be so long that fp can be
expected to drift by more than the aforementioned relative
error. Otherwise subsequent frame averaging, in (7), of non-
coherent complex values would reduce signal amplitude and
increase blurring. In practice we use a couple of dozen frames.

We then estimate the auto-correlation sequence Rss[d] =
E
[
s[n] s[n+ d]∗

]
, for example using

Rss[qa+ d] ≈ w−1
w−1∑
n=0

s[n] s[n+ qa+ d]∗ (4)

for d ∈ {−dmax, . . . , dmax}, where s[0], . . . , s[L − 1] are the
available samples, q = kwtht is the number of samples per

2

Fig. 1. Displayed 640×480@60Hz test image (left), and eavesdropped 800×525-pixel frame a[n] (right), recorded at fc = 350 MHz, after resampling,
frequency alignment, periodic averaging of N = 30 frames, and HSV demodulation, but prior to frame alignment.

frame (that we want to converge to), a is the number of frame
intervals over which we measure the autocorrelation, and w ≤
L− qa− dmax is the length of the correlation window used.

We then look for the peak

d̂ = argmax
−dmax≤d≤dmax

|Rss[qa+ d]|2 . (5)

A peak location d̂ means that a better frame-length estimate
than q would have been q + d̂/a. But rather than updating q

by a factor qa+d̂
qa , we instead divide fp by that factor, to get

the number of samples per frame closer to q at the next round
of resampling.

In addition, if our estimate q of the number of samples
per frame was, say, 1

10 of a pixel wrong, then the phase angle
∠Rss[qa+ d̂] would show ah

10 of a rotation, or ∠Rss[aq+ d̂] =
2πah
10 , per time interval (qa+d̂)/(kfp). This is because in steps

(1) and (3) we had frequency-shifted s[n] such that the phasor
applied to the antenna signal performs h rotations per pixel.

Combining both corrections, we update our estimate of the
pixel-clock frequency based on the location and phase angle
of the cross-correlation peak as

fp := fp ·

(
qa

qa+ d̂
+

k∠Rss[qa+ d̂]

2πh(qa+ d̂)

)
. (6)

After this update, we go back to resampling, and iterate
steps (3), (4), (5), (6) a few times, until the process converges
to d̂ = 0 and |∠Rss[qa+ d̂]| < 10−5.

We now have in s[n] a sequence of frames, each q samples
long and with matching phase. Therefore, we can now perform
coherent periodic averaging of up to N = ⌊L/q⌋ frames,
resulting in a complex-valued vector

a[n] = N−1
N−1∑
l=0

s[n+ ql], for n ∈ {0, . . . , q − 1} (7)

We can rasterize a[n] by reshaping it line-by-line into a matrix
of size kwt × ht, and converting each complex number into

a colour pixel in HSV (hue, saturation, value) colour space,
where the value (brightness) encodes the normalized absolute
value |a[n]| and the hue the angle ∠a[n] of the complex
number [7]. This results in false-colour raster images such as
the one shown in Figure 1 (right).

While the above process for estimating fp usually con-
verges well to a frame length of q, it can occasionally result
in frames being some 1/h of a pixel too long or short, which
is recognizable in an HSV-demodulated averaged frame as
one rotation of the hue along the height of the image. In
such a case, we can manually fix the pixel-clock estimate as
fp := fp · (1± (hwtht)

−1).
The accuracy of the fp estimate can be somewhat improved

by choosing the number a of frame lengths in the auto-
correlation lag as more than 1, as this way the peak location
d̂ indicates the error in the frame length with a resolution of
1/a samples.

C. Inter-band Frame Alignment

To gain more information about the targeted signal, we
acquire a sequence of SDR recordings ri[m], each taken at a
different centre frequency fc,i. We choose these SDR tuning
frequencies such that the reception bands [fc,i − B

2 , fc,i +
B
2]

and [fc,i+1− B
2 , fc,i+1+

B
2] overlap by several megahertz, i.e.,

such that fc,i+1 − fc,i < B.
We first perform the signal preparation steps described in

Section II-B independently for each of the recordings ri[m],
resulting in averaged frame vectors ai[n]. We treat ai[n]
implicitly as periodic, that is ai[n] = ai[n mod q].

Before attempting to classify pixel colours, we first need
to align the averaged frames ai[n], such that a sample position
n corresponds to the same displayed pixel in each of them.
In some cases, the SDR may be able to measure the elapsed
time between ri[0] and ri+1[0] with enough accuracy to allow
some alignment, but the retuning step needed to change from
fc,i to fc,i+1 may disturb this timing information, and certainly

3

Fig. 2. The result of resampling, frequency aligning, periodically averaging (30 frames each), frame aligning and HSV demodulating six recordings acquired at
a distance of 12 metres, at six centre frequencies, 25 MHz apart, from 325 MHz (top left) to 450 MHz (bottom right), with sampling frequency fr = 64 MHz.

the local-oscillator phase. Therefore, we assume here that such
relative time information is not available from the SDR.

Instead, we exploit the overlap in our recordings ri[m] and
ri+1[m] of adjacent frequency bands. After downconverting,
resampling and averaging, frames ai[n] and ai+1[n] still con-
tain some of the same information from the target’s emissions,
up to a frequency shift due to different centre frequencies,
and so we can align them by correcting that frequency shift,
filtering out only the frequencies contained in both reception
bands, and then looking for a peak in the cross-correlation
between these frames.

We recall that ai[n] had previously been frequency shifted
such that the antenna frequency hifp ended up at 0 Hz, while
in ai+1[n] instead hi+1fp ended up at 0 Hz. Therefore, before
we can compare both signals, we need to once more frequency-
shift ai+1[n] by (hi+1 − hi)fp, such that in both the same
antenna frequency hifp ends up at 0 Hz:

ãi+1[n] = ai+1[n] · e2πjn(hi+1fp−hifp)/(kfp)

= ai+1[n] · e2πjn(hi+1−hi)/k.
(8)

We still cannot yet correlate ai[n] and ãi+1[n], since this
frequency shift may cause the frequency spectrum of ai+1[n]
to wrap around its kfp-wide period (since it is a sampled
signal with sampling rate kfp). We avoid this by applying to
both ai[n] and ãi+1[n] a bandpass filter that lets through only
frequencies in the shared interval Fi = [(hi+1−hi)fp− B

2 ,
B
2].

Since both averaged signals ai[n] and ãi+1[n] are periodic
with period length q, this filtering can conveniently be done
in the frequency domain after applying to both the Discrete
Fourier Transform (DFT)

Ai[v] =

q−1∑
n=0

ai[n] · e−2πjnv
q (9)

Ãi+1[v] =

q−1∑
n=0

ãi+1[n] · e−2πjnv
q (10)

This can be calculated efficiently via the Fast Fourier Trans-
form, since q usually factors into many small prime numbers.
The DFT of the (circular) cross-correlation of ai[n] and
ãi+1[n] is the product of Ai[v] and Ãi+1[v]

∗. Therefore we
apply the inverse DFT to obtain the cross-correlation sequence

Raiãi+1
[d] =

q−1∑
v=0

Ai[v] · Ãi+1[v]
∗ ·Wi[v] · e2πj

dv
q . (11)

The additional factor

Wi[v] =

{
1, if FFTfreq(v, kfp) ∈ Fi

0, otherwise (12)

is the aforementioned frequency-domain bandpass filter with
passband Fi. (In practice, the transition between 0 and 1 in
Wi[v] can be smoothed, e.g. using a raised-cosine roll-off.)

We then identify the amplitude peak

∆n = argmax
d∈{0,...,q−1}

∣∣Raiãi+1
[d]
∣∣2 , (13)

and align the two recordings by circularly shifting ai+1[n] by
∆n.

For more than two recordings a1[n], a2[n], . . . , anb
[n], we

simply repeat this procedure for each adjacent pair. Fig. 2
shows nb = 6 frames aligned this way. For the first recording,
we circularly shifted a1[n] to move the blanking intervals to
near the edge of the frame. This can be done similarly, by
cross-correlation with a manually-aligned reference frame in
which the active pixels were replaced with zero. Alternatively
the blanking intervals can also be recognized as rectangular
regions of low variance.

III. TMDS SYMBOL CLASSIFICATION

After resampling to kfp, each displayed pixel corresponds
to k consecutive samples in each averaged frame ai[n].
We assume here that pixel boundaries line up with sample
boundaries, such that e.g. samples ai[0], ai[1], . . . , ai[k − 1]
comprise one pixel. In practice, dividing ai[n] into k-sample-
long segments will likely result in each segment partially
covering two pixels, resulting in misclassified pixels on the
boundary between two TMDS symbols. The eavesdropper
can work around this limitation by trying several images for
different cyclic shifts of a[n], for example using a fractional
delay filter, or by varying λ in (3) over a range 0 ≤ λ < k.

Since we have frequency-shifted in each recording a multi-
ple hfp of the pixel clock to 0 Hz, each ten-bit TMDS symbol
will show up in ai[n] as the same sequence of k complex
samples (plus noise) regardless of its position in the image.
This is because we multiplied the received signal sa(t) by a
phasor e−2πjhfpt, which during a k-samples long pixel period
rotates by −2πhfp·f−1

p = −2πh radians. Since h is an integer,
this means that there is no phase change between pixels due
to downconversion.

Additionally, if we have several aligned frames
a1[n], a2[n], . . . , anb

[n] created by processing recordings
made at different SDR centre frequencies, we expect that
a TMDS symbol will result in matching k sample long

4

10−9 10−8 10−7
0.0

0.2

0.4

0.6

0.8

1.0

Distance d2(c[p], c[p+ 1])

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

6 bands

Fig. 3. Distribution of distance d2(c[p], c[p+1]) between pairs of horizontally
adjacent pixels, for pixel vectors obtained in our demonstration.

sequences within each of these frames. The p-th pixel then
corresponds to a feature vector c[p] ∈ Cknb :

c[p] = (a1[kp+ 0], a1[kp+ 1], . . . , a1[kp+ (k − 1)],

a2[kp+ 0], a2[kp+ 1], . . . , anb
[kp+ (k − 1)]).

(14)

We use the squared L2 norm

d2(c[p1], c[p2]) = (c[p1]− c[p2])
∗(c[p1]− c[p2]) (15)

as the distance between the feature vectors for pixels p1 and
p2, where ∗ denotes the conjugate transpose.

Figure 3 shows, for our example recordings, the cumulative
distribution of distances d2(c[p], c[p + 1]) between pairs of
horizontally adjacent pixels. If we use all nb = 6 recordings,
resulting in knb = 3 × 6 = 18-dimensional feature vectors,
this results in the thick blue line, which shows a clear bimodal
distribution. From this plot, we choose a threshold ε = 0.6×
10−4, and assume that TMDS symbols at positions p1 and p2
are the same if

d2(c[p1], c[p2]) < ε2. (16)

In our example recordings, combining information from
multiple bands significantly improved the separation between
matching and differing TMDS symbol pairs. For comparison,
if we plot the same distribution for each individual frequency
band (the thin black lines), most lack this clear separation. On
the other hand, using only the information from three non-
overlapping frequency bands (green lines), works almost as
well as using all six, even if none of them individually showed
a bimodal distribution.

Next, our TMDS symbol classification algorithm outputs
a label C[p] for each pixel, where C[p1] = C[p2] for all pixel
positions p1 and p2 with d2(c[p1], c[p2]) < ε2. In other words,
it finds the set of equivalence classes of pixel positions for an
equivalence relation that is the transitive closure of (16). This
can simply be computed by initialising all C[p] to different
values, and then merging the labels of each pair p1, p2 for
which (16) holds. (For performance, we approximate this by
first only considering p2 that are in a 40-pixel square centered
at p1, and then merge the resulting clusters by comparing their
average pixel vectors.)

Finally, we visualize these labels as a false-colour image
by assigning a different random colour to all pixels with the

Fig. 4. The result of clustering the feature-vector space, where each colour
indicates a label assigned to a likely TMDS symbol. Areas emitting balanced
TMDS symbols appear uniform, but other areas show patterns of alternating
TMDS symbols used for DC balancing.

same TMDS symbol C[p], except those where C[p] appears in
fewer than 20 pixels, which we display as black. An example
result can be seen in Figure 4 and magnified in Figure 6 (top).

IV. TMDS CYCLE DETECTION

Since the TMDS encoding used in HDMI may have two
possible ten-bit encodings for each red, green or blue byte,
pixels with the same colour can appear as different TMDS
symbols in the output of our classifier. Although there are at
most two possible encodings for a byte, an RGB colour can
appear as up to 23 different feature vectors c[p], since we
receive a combination of the emissions of the red, green and
blue lane, each of which uses a separate encoder. A single-
colour region will appear as a periodic sequence of labels
C[p], C[p+1], . . . as the TMDS encoders cycle through states
(running disparities).

In order to identify TMDS symbols C[p] that correspond
to the same RGB colour, we search for sequences of symbols
that are likely to appear consecutively. More formally, let
K(C1, C2) be the count of how often TMDS symbol label
C2 follows (immediately to the right of) symbol label C1 in
the frame. We consider C2 to be a likely successor of C1 in
these encoder cycles if C2 appears at least a fraction η = 0.3
as often after C1 as the most frequent successor of C1. We
define a set E of such likely successor symbols as

E = {(C1, C2) : K(C1, C2) ≥ ηmax
C′

K(C1, C
′)}. (17)

We expect that commonly repeated sequences of TMDS
symbols show up as cycles in the graph G = (C,E), the
nodes of which are TMDS symbol labels, with directed edges
between likely successor symbols. We, therefore, merge the
labels C1 and C2 as different encodings of the same RGB
colour if there is in G both a path from C1 to C2 and a
path from C2 to C1, which can be computed efficiently using
Tarjan’s strongly connected components algorithm.

Merging strongly-connected labels this way for our demon-
stration resulted in Figure 5 (magnified in Figure 6 bottom).

5

Fig. 5. The result of cycle detection. Note how the words “vaneck.txt” and
“Wastebasket” become readable, which in Fig. 4 remained unrecognizable
within the surrounding TMDS-balancing cycles.

Fig. 6. Magnified versions of the output frames after TMDS symbol
classification (top) and cycle merging (bottom).

V. CONCLUSION

While the results remain far from perfect, we have demon-
strated that by combining spectral information from mul-
tiple bands, we can cluster the IQ values associated with
individual TMDS symbols. This move from a continuous
high-dimensional signal to a discrete set of symbols then
allows us to build a graph that very roughly models the state
transitions that occur in the TMDS encoder. Merging cyclic
symbol sequences then results in a new classification that better
represents uniform colour areas, such as text background,
which can help to make foreground text visible that previously
had remained hidden in the patterns caused by the TMDS DC
balancing algorithm.

APPENDIX

Demonstration Setup

The target system in our demonstration consisted of a
Raspberry Pi Model B+ computer connected via a 2.0 m long
HDMI-to-DVI cable to a Dell 1704FPT display, operating in
a 640×480@60 Hz mode, with a pixel-clock frequency of
25.2 MHz. The receiver consisted of a log-periodic antenna
(Schwarzbeck VUSLP 9111B, 200–3000 MHz) connected to
a Rohde & Schwarz FSV7 signal analyzer operating in IQ
mode, with a flat bandwidth of B = 40 MHz and a sampling
frequency of fr = 64 MHz. The recordings took place at 12 m
distance in the corridor of a normal, unshielded office building.

We used nb = 6 recordings centered at fc = 325, . . . , 450
MHz, in steps of 25 MHz, resampled to fs = kfp with k = 3,
before averaging N = 30 frames of q = kwtht = 3×800×525
samples each (including blanking regions).

The recordings and Julia code for the demonstration shown
in the figures are available at

https://www.cl.cam.ac.uk/research/security/datasets/hdmi/

REFERENCES

[1] W. van Eck, “Electromagnetic radiation from video display units: An
eavesdropping risk?” Computers & Security, vol. 4, no. 4, pp. 269–286,
1985, ISSN: 0167-4048. DOI: 10.1016/0167-4048(85)90046-X.

[2] M. G. Kuhn, “Electromagnetic eavesdropping risks of flat-panel dis-
plays,” in Privacy Enhancing Technologies, D. Martin and A. Serjantov,
Eds., ser. Lecture Notes in Computer Science, Berlin, Heidelberg:
Springer, 2005, pp. 88–107. DOI: 10.1007/11423409_7.

[3] M. Marinov, “Remote video eavesdropping using a software-defined
radio platform,” Master’s thesis, University of Cambridge, Computer
Laboratory, Jun. 2014. [Online]. Available: https://github.com/martin
marinov/TempestSDR/.

[4] P. De Meulemeester, B. Scheers, and G. A. Vandenbosch, “Reconstruct-
ing video images in color exploiting compromising video emanations,”
in 2020 International Symposium on Electromagnetic Compatibility –
EMC EUROPE, ISSN: 2325-0364, Sep. 2020, pp. 1–6. DOI: 10.1109/
EMCEUROPE48519.2020.9245775.

[5] ——, “Differential signaling compromises video information security
through AM and FM leakage emissions,” IEEE Transactions on Elec-
tromagnetic Compatibility, vol. 62, no. 6, pp. 2376–2385, Dec. 2020,
ISSN: 1558-187X. DOI: 10.1109/TEMC.2020.3000830.

[6] C. D. O’Connell, “Exploiting quasiperiodic electromagnetic radiation
using software-defined radio,” PhD thesis, University of Cambridge,
Computer Laboratory, 2019. [Online]. Available: https://www.reposito
ry.cam.ac.uk/handle/1810/290902.

[7] D. Erdeljan and M. G. Kuhn, “Benfits of coherent demodulation for
eavesdropping on HDMI emissions,” in International Symposium on
Electromagnetic Compatibility – EMC Europe, IEEE, 2024, pp. 263–
268. DOI: 10.1109/EMCEurope59828.2024.10722379.

[8] High-Definition Multimedia Interface – Specification 1.3a, 2006.
[9] Digital Visual Interface – DVI, Revision 1.0, Digital Display Working

Group, 1999. [Online]. Available: https://glenwing.github.io/docs/.
[10] VESA and Industry Standards and Guidelines for Computer Display

Monitor Timing (DMT), Version 1.0, Revision 13, Video Electronics
Standards Association (VESA), 2013.

[11] Coordinated Video Timings (CVT) Standard, Version 2.1, Video Elec-
tronics Standards Association (VESA), 2023.

6

https://www.cl.cam.ac.uk/research/security/datasets/hdmi/
https://doi.org/10.1016/0167-4048(85)90046-X
https://doi.org/10.1007/11423409_7
https://github.com/martinmarinov/TempestSDR/
https://github.com/martinmarinov/TempestSDR/
https://doi.org/10.1109/EMCEUROPE48519.2020.9245775
https://doi.org/10.1109/EMCEUROPE48519.2020.9245775
https://doi.org/10.1109/TEMC.2020.3000830
https://www.repository.cam.ac.uk/handle/1810/290902
https://www.repository.cam.ac.uk/handle/1810/290902
https://doi.org/10.1109/EMCEurope59828.2024.10722379
https://glenwing.github.io/docs/

	Introduction
	Signal Preparation
	Software-defined Radio Reception
	Resampling and Frequency Alignment
	Inter-band Frame Alignment

	TMDS Symbol Classification
	TMDS Cycle Detection
	Conclusion
	Appendix

