
Multiband Pixel Colour Classification
from HDMI Emissions

Dimitrije Erdeljan, Markus G. Kuhn

Department of Computer Science and Technology
University of Cambridge

1 / 30

2 / 30

HDMI test image: 640× 480 pixels (800× 525 total), fv ≈ 60.0 Hz, fp ≈ 25.2 MHz

3 / 30

HSV demodulated frame at 12 m, fc = 350 MHz, B = 40 MHz bandwidth,
fr = 64 MHz, fs = 3× fp ≈ 75.6 MHz resampled rate, 30 frames averaged (coherently)

4 / 30

The challenge: cycling of TMDS 10-bit symbols

5 / 30

Transition Minimized Differential Signalling (TMDS)

TMDS is the 8-bit→10-bit line encoding used on DVI and HDMI cables.

▶ Many 8-bit bytes can be represented by one of two alternative 10-bit symbols.

▶ DC balancing: transmitter chooses the one that minimizes the running disparity.

running disparity = number of 1 bits (+1) minus number of 0 bits (−1) transmitted since start of line

▶ Sequences of constant byte values often result in short cycles of TMDS symbols.

Balanced example: (cycle length 1)

0x10 0x10 ... →
0

0111110000 ←↩

Unbalanced example: (cycle length 5)

0x0f 0x0f ... →
−4

0100000101
+6

1111111010
−4

0100000101
+6

1111111010
−4

0100000101 ←↩

How can we detect and remove these cycles, to restore uniformly coloured image areas?

6 / 30

Idea 1

1 Use clustering to map received analog values (floats) for each pixel
to a discrete pixel label (int) that could represent a TMDS symbol

2 Build a directed graph of common transitions
between these cluster labels (≈ TMDS symbols) and their right neighbour

3 Identify cycles in this graph
(using Tarjan’s strongly connected components algorithm)

4 Assign all pixels in the same strongly connected component
the same (arbitrary) colour.

7 / 30

Clustering result

8 / 30

Graph of common transitions

Each vertex is a cluster label
(≈ TMDS symbol).

Each edge represents a frequent
transition of cluster label from
one pixel to its right neighbour.

TMDS DC-balancing cycles
appear as short cycles in this
graph.

Strongly connected component:
subset of vertices with a path
between each member.

These clusters were formed based on feature
data from six overlapping 40-MHz wide
frequency bands: 325, 350, 375, 400, 425,
and 450 MHz.

9 / 30

Cycle-merging result

10 / 30

Restored uniform background can improve readability of text

11 / 30

Restored uniform background can improve readability of text

11 / 30

Restored uniform background can improve readability of text

11 / 30

Clustering attempt within single 40 MHz band: not effective

fc = 400 MHz fc = 425 MHz

12 / 30

Idea 2

To enable effective clustering, we want a high-dimensional feature space.

More dimensions ⇒ better separation of clusters
⇒ less accidental merging of different symbols and cycles.

How many floating-point numbers can we get per pixel?

▶ With AM demodulation at one sample per pixel: 1 dimension

▶ With QAM demodulation (samples in C): 2 dimensions

▶ With fr > B > fp: may be another ⌊B/fp⌋× or ⌈fr/fp⌉× (here 3×)

▶ With tuning into nb different frequency bands: up to nb×

In this demonstration we use QAM demodulation, 3 samples per pixel, and 6 overlapping
frequency bands, resulting in a 2× 3× 6 = 18-dimensional feature space for clustering pixels
(TMDS symbols).

But first we need to carefully align these 6 recordings in the time and frequency domain.

13 / 30

Band 1: fc = 325 MHz, aligned
14 / 30

Band 2: fc = 350 MHz, aligned
14 / 30

Band 3: fc = 375 MHz, aligned
14 / 30

Band 4: fc = 400 MHz, aligned
14 / 30

Band 5: fc = 425 MHz, aligned
14 / 30

Band 6: fc = 450 MHz, aligned
14 / 30

Band 1: fc = 325 MHz, unaligned
15 / 30

Band 2: fc = 350 MHz, unaligned
15 / 30

Band 3: fc = 375 MHz, unaligned
15 / 30

In more detail . . .

▶ Software-defined radio receiver

▶ AM vs QAM demodulation

▶ frequency alignment and accurate resampling
(individual band)

▶ frequency and temporal alignment
(across overlapping bands)

▶ clustering

16 / 30

Software-defined radio receiver (SDR)

Antenna waveform (shown as Fourier spectrum) sa(t):

0 Hz fc

B

Downconvert: sd(t) = sa(t) · e−2πjfct

0 Hz

−fc

Lowpass filter: sf(t) =
∫
sd(t− τ)g(τ)dτ

0 Hz

B

Finally, output sampled at frequency fr > B resulting in sequence r[m] = sf(m/fr).
17 / 30

A typical TEMPEST attack

AM demod RasterizeSDR
r[m] |r[m]|

Pixel rate fp

Sample rate fr

(@ fp)

▶ Estimate pixel rate fp, e.g.
from the autocorrelation
Rr,r[d] =

∑
m r[m] · r[m+ d]∗:

d̂ = argmax
d≈fr/fv

|Rr,r[d]|2

fp ≈ fr ·
wtht

d̂

▶ Resample to s[n]
at fs = k · fp for k ∈ N

▶ Average several frames to a[n]

▶ Align a[n] as k × wt × ht pixel raster Mi,j

18 / 30

A typical TEMPEST attack

AM demod RasterizeSDR
r[m] |r[m]|

Pixel rate fp

Sample rate fr

(@ fp)

▶ Estimate pixel rate fp, e.g.
from the autocorrelation
Rr,r[d] =

∑
m r[m] · r[m+ d]∗:

d̂ = argmax
d≈fr/fv

|Rr,r[d]|2

fp ≈ fr ·
wtht

d̂

▶ Resample to s[n]
at fs = k · fp for k ∈ N

▶ Average several frames to a[n]

▶ Align a[n] as k × wt × ht pixel raster Mi,j

18 / 30

A typical TEMPEST attack

AM demod RasterizeSDR
r[m] |r[m]|

Pixel rate fp

Sample rate fr

(@ fp)

▶ Estimate pixel rate fp, e.g.
from the autocorrelation
Rr,r[d] =

∑
m r[m] · r[m+ d]∗:

d̂ = argmax
d≈fr/fv

|Rr,r[d]|2

fp ≈ fr ·
wtht

d̂

▶ Resample to s[n]
at fs = k · fp for k ∈ N

▶ Average several frames to a[n]

▶ Align a[n] as k × wt × ht pixel raster Mi,j

18 / 30

A typical TEMPEST attack

AM demod RasterizeSDR
r[m] |r[m]|

Pixel rate fp

Sample rate fr

(@ fp)

▶ Estimate pixel rate fp, e.g.
from the autocorrelation
Rr,r[d] =

∑
m r[m] · r[m+ d]∗:

d̂ = argmax
d≈fr/fv

|Rr,r[d]|2

fp ≈ fr ·
wtht

d̂

▶ Resample to s[n]
at fs = k · fp for k ∈ N

▶ Average several frames to a[n]

▶ Align a[n] as k × wt × ht pixel raster Mi,j

18 / 30

A typical TEMPEST attack

AM demod RasterizeSDR
r[m] |r[m]|

Pixel rate fp

Sample rate fr

(@ fp)

▶ Estimate pixel rate fp, e.g.
from the autocorrelation
Rr,r[d] =

∑
m r[m] · r[m+ d]∗:

d̂ = argmax
d≈fr/fv

|Rr,r[d]|2

fp ≈ fr ·
wtht

d̂

▶ Resample to s[n]
at fs = k · fp for k ∈ N

▶ Average several frames to a[n]

▶ Align a[n] as k × wt × ht pixel raster Mi,j
18 / 30

Rasterizing complex-valued signals: amplitude demodulation

Most eavesdropping demonstrations
amplitude demodulate samples Mi,j ∈ C
and visualise them as grayscale pixels.

For example, mapping 1% and 99%
quantiles to black and white:

Gray

(
|Mi,j | − q1%
q99% − q1%

)

This discards phase information ∠Mi,j .

19 / 30

Rasterizing complex-valued signals: HSV visualisation

Using the HSV (hue, saturation, value)
colour space allows us to also show the
phase:

HSV

(
∠Mi,j , S,

|Mi,j | − q1%
q99% − q1%

)

(We leave the saturation coordinate S
as a user preference.)

20 / 30

First rasterization attempt

Directly rasterizing an SDR-received signal produces a “rainbow-banding” image:

This is due to SDR downconversion from the antenna waveform sa(t) to e−2πjfct · sa(t).

Received samples:

Desired “baseband” samples:

−2πfc/fs −4πfc/fs

One pixel (fs/fp = 3)

(fc = 0)

(fc ̸= 0)

21 / 30

Obtaining consistent phase angles

Shift the centre frequency to a harmonic h · fp of the pixel frequency:

Received samples:

Desired “baseband” samples:

One pixel (fs/fp = 3)

(fc = 0)

(fc ̸= 0)

Phase-stabilised samples:
(fc = h · fp)

We combine frequency shifting fc → h · fp with resampling to fs = k · fp:

s[n] ≈ s̃f

(
n+ λ

fs

)
· e2πj(fc−hfp)n/fs

22 / 30

Obtaining consistent phase angles

Some drift still
remains over longer
intervals.

Coherent averaging
requires consistent
phase across many
frames, i.e. a more
accurate fp estimate.

23 / 30

Algorithm for accurate estimation of fp
We improve the fp estimate several times until convergence, by
iterating over three steps:

1 Resampling and frequency-shifting fc → h · fp:

s[n] := s̃f

(
n+ λ

fs

)
· e2πj(fc−hfp)n/fs

2 Computing the autocorrelation:

Rs,s[qa+ d] :=
w−1∑
n=0

s[n] · s[n+ qa+ d]∗

3 Updating the fp estimate, with a fine-tuning term which
measures phase drift between frames:

fp := fp ·

(
qa

qa+ d̂
+

k∠Rs,s[qa+ d̂]

2πh(qa+ d̂)

)

q = kwtht, a = 1

d̂ = argmax
|d|≤dmax

|Rs,s[qa+ d]|2

In later iterations, we can also
search for the correlation peak d̂ at
larger multiples a > 1 of the frame
period q.

Iterations fp
0 25.200000000 MHz
1 25.200096064 MHz
2 25.200096764 MHz
3 25.200096794 MHz
4 25.200096793 MHz
5 25.200096788 MHz
6 25.200096788 MHz

24 / 30

Next: inter-band alignment of averaged frames

fc = 350 MHz fc = 375 MHz

25 / 30

Antenna waveform (shown as Fourier spectrum) sa(t):

0 Hz fc,1fc,2

B

B

Downconverted, sampled and averaged waveforms a1[n] and a2[n]:

0 Hz−B/2 +B/2 0 Hz−B/2 +B/2

ã2[n] = a2[n] · e2πjn(h2−h1)/k (circularly) frequency shifted by (h2 − h1)fp, then

0 Hz−B/2 +B/2

1 A1[v] = FFT(a1[n]), Ã2[v] = FFT(ã2[n])

2 Ra1ã2 [d] = FFT−1(A1[v] · Ã2[v]
∗ ·W1[v])

3 ∆n = argmaxd |Ra1ã2 [d]|
2

4 a2[n] := a2[(n+∆n) mod q]
26 / 30

Alignment of averaged frames

▶ Align first recording a1[n] to move the blanking intervals to near the edge of the frame,
via either

• cross-correlating with manually aligned reference frame (with active pixels set to zero), or

• identifying blanking intervals as rectangular regions of low variance

▶ Then align a2[n] with a1[n], a3[n] with a2[n], etc.

fc = 350 MHz fc = 375 MHz
27 / 30

Features for clustering

We now have averaged and aligned frames a1[n], a2[n], . . . , anb
[n], each of length k × wt × ht.

Rearrange that data into a feature vector c[p] ∈ Cknb for each pixel position 0 ≤ p < wt × ht:

c[p] = (a1[kp+ 0], a1[kp+ 1], . . . , a1[kp+ (k − 1)],

a2[kp+ 0], a2[kp+ 1], . . . , anb
[kp+ (k − 1)]).

We compare pixels using the squared L2 norm: d2(c[p1], c[p2]) = (c[p1]− c[p2])
∗(c[p1]− c[p2])

For nb = 6 bands (or 3 non-overlapping bands) this resulted in a good bimodal distribution
that can be split by a distance threshold ε2:

10−10 10−9 ε2 10−8
0.0

0.2

0.4

0.6

0.8

1.0

Distance d2(c[p], c[p+ 1])

C
u
m
u
la
ti
ve

p
ro
b
a
b
il
it
y

1 band

3 bands

6 bands
Assume that TMDS symbols at pixel
positions p1 and p2 are the same if

d2(c[p1], c[p2]) < ε2

28 / 30

Clustering

1 Initialize each pixel position with a unique cluster label C[p] ∈ N.

2 Merge pixel labels such that C[p1] = C[p2] if d
2(c[p1], c[p2]) < ε2.

3 Repeat until transitive closure is reached.

Assign a different random false color to all pixels p with the same label C[p].

Our label images show rare labels (< 20) as black.

Detect cycles and merge their labels

Build a graph of all remaining label values, with this set of edges:

E = {(C1, C2) : K(C1, C2) ≥ ηmax
C′

K(C1, C
′)}.

K(C1, C2) counts how often label C2 follows (immediately to the right of) label C1. η = 0.3

Represent labels C1 and C2 with the same colour iff there is a path from C1 to C2 and one from
C2 to C1. Can be computed efficiently with Tarjan’s strongly connected components algorithm.

29 / 30

Conclusions

1 Coherent averaging enables high image quality and sophisticated post-processing steps

2 Automatic alignment of multiband recordings demonstrated

3 Pixel-accurate alignment possible if the frequency overlap is at least about fp

4 Clustering into discrete pixel values is helped by availability of high-dimensional features

5 TMDS cycling can partially be countered from such cluster data
(without having to fully decode TMDS symbols)

Limitations and potential future work:

1 We used a static target image (unchanged for 6× 0.5 s recordings)

2 Currently random assignment of display colours to merged cluster labels,
but a time series of output images would benefit from consistent colour assignment

3 Processing time: tens of seconds ⇒ faster algorithms, GPU acceleration

30 / 30

