Multiband Pixel Colour Classification from HDMI Emissions

Dimitrije Erdeljan, Markus G. Kuhn

Department of Computer Science and Technology University of Cambridge

EMC EUROPE 2025

HDMI test image: 640×480 pixels (800×525 total), $f_{\rm V} \approx 60.0$ Hz, $f_{\rm D} \approx 25.2$ MHz

HSV demodulated frame at 12 m, $f_c=350$ MHz, B=40 MHz bandwidth, $f_r=64$ MHz, $f_s=3\times f_p\approx75.6$ MHz resampled rate, 30 frames averaged (coherently)

The challenge: cycling of TMDS 10-bit symbols

Transition Minimized Differential Signalling (TMDS)

TMDS is the 8-bit→10-bit line encoding used on DVI and HDMI cables.

- ▶ Many 8-bit bytes can be represented by one of **two alternative** 10-bit symbols.
- ▶ **DC** balancing: transmitter chooses the one that minimizes the running disparity. running disparity = number of 1 bits (+1) minus number of 0 bits (-1) transmitted since start of line
- Sequences of constant byte values often result in short cycles of TMDS symbols.

Balanced example: (cycle length 1)

```
0x10 0x10 \dots \rightarrow 0111110000 \leftrightarrow
```

Unbalanced example: (cycle length 5)

How can we detect and remove these cycles, to restore uniformly coloured image areas?

Idea 1

- Use **clustering** to map received analog values (floats) for each pixel to a discrete pixel label (int) that could represent a TMDS symbol
- $oldsymbol{2}$ Build a directed graph of common transitions between these cluster labels (pprox TMDS symbols) and their right neighbour
- Identify cycles in this graph (using Tarjan's strongly connected components algorithm)
- Assign all pixels in the same strongly connected component the same (arbitrary) colour.

Clustering result

Graph of common transitions

Each vertex is a cluster label (\approx TMDS symbol).

Each edge represents a frequent transition of cluster label from one pixel to its right neighbour.

TMDS DC-balancing cycles appear as short cycles in this graph.

Strongly connected component: subset of vertices with a path between each member.

These clusters were formed based on feature data from six overlapping 40-MHz wide frequency bands: 325, 350, 375, 400, 425, and 450 MHz.

Cycle-merging result

Restored uniform background can improve readability of text

Restored uniform background can improve readability of text

Restored uniform background can improve readability of text

Clustering attempt within single 40 MHz band: not effective

Idea 2

To enable effective clustering, we want a **high-dimensional feature space**.

More dimensions \Rightarrow better separation of clusters

 \Rightarrow less accidental merging of different symbols and cycles.

How many floating-point numbers can we get per pixel?

- ▶ With AM demodulation at one sample per pixel: 1 dimension
- ▶ With QAM demodulation (samples in \mathbb{C}): 2 dimensions
- ▶ With $f_r > B > f_p$: may be another $\lfloor B/f_p \rfloor \times$ or $\lceil f_r/f_p \rceil \times$ (here 3×)
- lacktriangle With tuning into $n_{
 m b}$ different frequency bands: up to $n_{
 m b} imes$

In this demonstration we use QAM demodulation, 3 samples per pixel, and 6 overlapping frequency bands, resulting in a $2\times3\times6=18$ -dimensional feature space for clustering pixels (TMDS symbols).

But first we need to carefully align these 6 recordings in the time and frequency domain.

Band 1: $f_c = 325$ MHz, aligned

Band 2: $f_c = 350$ MHz, aligned

Band 3: $f_c = 375$ MHz, aligned

Band 4: $f_c = 400$ MHz, aligned

Band 5: $f_c = 425$ MHz, aligned

Band 6: $f_c = 450$ MHz, aligned

Band 1: $f_c = 325$ MHz, unaligned

Band 2: $f_c = 350$ MHz, unaligned

Band 3: $f_c = 375$ MHz, unaligned

In more detail . . .

- Software-defined radio receiver
- AM vs QAM demodulation
- frequency alignment and accurate resampling (individual band)
- frequency and temporal alignment (across overlapping bands)
- clustering

Software-defined radio receiver (SDR)

Antenna waveform (shown as Fourier spectrum) $s_a(t)$:

Downconvert: $s_d(t) = s_a(t) \cdot e^{-2\pi j f_c t}$

Lowpass filter: $s_{\rm f}(t) = \int s_{\rm d}(t-\tau)g(\tau){\rm d}\tau$

Finally, output sampled at frequency $f_r > B$ resulting in sequence $r[m] = s_f(m/f_r)$.

Estimate pixel rate f_p , e.g. from the autocorrelation $R_{r,r}[d] = \sum_m r[m] \cdot r[m+d]^*$:

$$\hat{d} = \operatorname*{argmax}_{d pprox f_r/f_v} \left| R_{r,r}[d] \right|^2$$
 $f_{\mathsf{p}} pprox f_{\mathsf{r}} \cdot rac{w_{\mathsf{t}} h_{\mathsf{t}}}{\hat{d}}$

Estimate pixel rate f_p , e.g. from the autocorrelation $R_{r,r}[d] = \sum_m r[m] \cdot r[m+d]^*$:

$$egin{aligned} \hat{d} &= rgmax_{d pprox f_r/f_{
m v}} \left| R_{r,r}[d]
ight|^2 \ f_{
m p} &pprox f_{
m r} \cdot rac{w_{
m t} h_{
m t}}{\hat{d}} \end{aligned}$$

Resample to s[n] at $f_s = k \cdot f_p$ for $k \in \mathbb{N}$

Estimate pixel rate f_p , e.g. from the autocorrelation $R_{r,r}[d] = \sum_m r[m] \cdot r[m+d]^*$:

$$egin{aligned} \hat{d} &= \operatorname*{argmax}_{d pprox f_r/f_{
m v}} |R_{r,r}[d]|^2 \ f_{
m p} &pprox f_{
m r} \cdot rac{w_{
m t} h_{
m t}}{\hat{ au}} \end{aligned}$$

- Resample to s[n] at $f_s = k \cdot f_p$ for $k \in \mathbb{N}$
- ightharpoonup Average several frames to a[n]

Estimate pixel rate f_p , e.g. from the autocorrelation $R_{r,r}[d] = \sum_m r[m] \cdot r[m+d]^*$:

$$egin{aligned} \hat{d} &= rgmax_{dpprox f_r/f_v} |R_{r,r}[d]|^2 \ f_{\mathsf{p}} &pprox f_{\mathsf{r}} \cdot rac{w_{\mathsf{t}} h_{\mathsf{t}}}{\hat{d}} \end{aligned}$$

- Resample to s[n] at $f_s = k \cdot f_p$ for $k \in \mathbb{N}$
- ightharpoonup Average several frames to a[n]
- ▶ Align a[n] as $k \times w_t \times h_t$ pixel raster $M_{i,j}$

Rasterizing complex-valued signals: amplitude demodulation

Most eavesdropping demonstrations amplitude demodulate samples $M_{i,j} \in \mathbb{C}$ and visualise them as grayscale pixels.

For example, mapping 1% and 99% quantiles to black and white:

$$\operatorname{Gray}\left(\frac{|M_{i,j}|-q_{1\%}}{q_{99\%}-q_{1\%}}\right)$$

This discards phase information $\angle M_{i,j}$.

The quick brown fox

Rasterizing complex-valued signals: HSV visualisation

Using the HSV (hue, saturation, value) colour space allows us to also show the phase:

$$\mathsf{HSV}\left(\angle M_{i,j}, \; S, \; \frac{|M_{i,j}| - q_{1\%}}{q_{99\%} - q_{1\%}} \right)$$

(We leave the saturation coordinate S as a user preference.)

First rasterization attempt

Directly rasterizing an SDR-received signal produces a "rainbow-banding" image:

This is due to SDR downconversion from the antenna waveform $s_{\mathsf{a}}(t)$ to $\mathrm{e}^{-2\pi\mathrm{j}f_{\mathsf{c}}t}\cdot s_{\mathsf{a}}(t)$.

Obtaining consistent phase angles

Shift the centre frequency to a harmonic $h \cdot f_{\mathsf{p}}$ of the pixel frequency:

We combine frequency shifting $f_c \to h \cdot f_p$ with resampling to $f_s = k \cdot f_p$:

$$s[n] pprox ilde{s}_{\mathsf{f}} \left(rac{n+\lambda}{f_{\mathsf{s}}}
ight) \cdot \mathrm{e}^{2\pi\mathrm{j}(f_{\mathsf{c}}-hf_{\mathsf{p}})n/f_{\mathsf{s}}}$$

Obtaining consistent phase angles

Some drift still remains over longer intervals.

Coherent averaging requires consistent phase across many frames, i.e. a more accurate f_p estimate.

Algorithm for accurate estimation of f_p

We improve the f_p estimate several times until convergence, by iterating over three steps:

f 1 Resampling and frequency-shifting $f_{
m c} o h \cdot f_{
m p}$:

$$s[n] := \tilde{s}_{\mathsf{f}}\left(rac{n+\lambda}{f_{\mathsf{s}}}
ight) \cdot \mathsf{e}^{2\pi\mathsf{j}(f_{\mathsf{c}}-hf_{\mathsf{p}})n/f_{\mathsf{s}}}$$

2 Computing the autocorrelation:

$$R_{s,s}[qa+d] := \sum_{n=0}^{w-1} s[n] \cdot s[n+qa+d]^*$$

3 Updating the f_p estimate, with a fine-tuning term which measures phase drift between frames:

$$f_{\mathsf{p}} := f_{\mathsf{p}} \cdot \left(\frac{qa}{qa + \hat{d}} + \frac{k \angle R_{s,s}[qa + \hat{d}]}{2\pi h(qa + \hat{d})} \right)$$

Iterations	f_{p}	
0	25.200000000	MHz
1	25.200096064	MHz
2	25.200096764	MHz
3	25.200096794	MHz
4	25.200096793	MHz
5	25.200096788	MHz
6	25 200096788	MHz

$$\begin{split} q &= k w_{\mathrm{t}} h_{\mathrm{t}}, \quad a = 1 \\ \hat{d} &= \operatorname*{argmax}_{|d| \leq d_{\mathrm{max}}} |R_{s,s}[qa+d]|^2 \end{split}$$

In later iterations, we can also search for the correlation peak \hat{d} at larger multiples a>1 of the frame period q.

Next: inter-band alignment of averaged frames

$$f_{\rm c} = 350 \; {\rm MHz}$$
 $f_{\rm c} = 375 \; {\rm MHz}$

Antenna waveform (shown as Fourier spectrum) $s_a(t)$:

Downconverted, sampled and averaged waveforms $a_1[n]$ and $a_2[n]$:

 $\tilde{a}_2[n] = a_2[n] \cdot e^{2\pi j n(h_2 - h_1)/k}$ (circularly) frequency shifted by $(h_2 - h_1)f_p$, then

- **1** $A_1[v] = \mathsf{FFT}(a_1[n]), \ \tilde{A}_2[v] = \mathsf{FFT}(\tilde{a}_2[n])$
- 2 $R_{a_1\tilde{a}_2}[d] = \mathsf{FFT}^{-1}(A_1[v] \cdot \tilde{A}_2[v]^* \cdot W_1[v])$
- **4** $a_2[n] := a_2[(n + \Delta n) \mod q]$

Alignment of averaged frames

- ▶ Align first recording $a_1[n]$ to move the blanking intervals to near the edge of the frame, via either
 - cross-correlating with manually aligned reference frame (with active pixels set to zero), or
 - identifying blanking intervals as rectangular regions of low variance
- ▶ Then align $a_2[n]$ with $a_1[n]$, $a_3[n]$ with $a_2[n]$, etc.

$$f_{\rm c}=350~{
m MHz}$$

 $f_{\rm c}=375~{
m MHz}$

Features for clustering

We now have averaged and aligned frames $a_1[n], a_2[n], \ldots, a_{n_b}[n]$, each of length $k \times w_t \times h_t$.

Rearrange that data into a feature vector $\mathbf{c}[p] \in \mathbb{C}^{kn_b}$ for each pixel position $0 \le p < w_{\mathsf{t}} \times h_{\mathsf{t}}$:

$$\mathbf{c}[p] = (a_1[kp+0], a_1[kp+1], \dots, a_1[kp+(k-1)], a_2[kp+0], a_2[kp+1], \dots, a_{n_b}[kp+(k-1)]).$$

We compare pixels using the squared L^2 norm: $d^2(\mathbf{c}[p_1], \mathbf{c}[p_2]) = (\mathbf{c}[p_1] - \mathbf{c}[p_2])^*(\mathbf{c}[p_1] - \mathbf{c}[p_2])$

For $n_{\rm b}=6$ bands (or 3 non-overlapping bands) this resulted in a good bimodal distribution that can be split by a distance threshold ε^2 :

Assume that TMDS symbols at pixel positions p_1 and p_2 are the same if

$$d^2(\mathbf{c}[p_1],\mathbf{c}[p_2])<\varepsilon^2$$

Clustering

- **1** Initialize each pixel position with a unique cluster label $C[p] \in \mathbb{N}$.
- 2 Merge pixel labels such that $C[p_1] = C[p_2]$ if $d^2(\mathbf{c}[p_1], \mathbf{c}[p_2]) < \varepsilon^2$.
- 3 Repeat until transitive closure is reached.

Assign a different random false color to all pixels p with the same label C[p].

Our label images show rare labels (< 20) as black.

Detect cycles and merge their labels

Build a graph of all remaining label values, with this set of edges:

$$E = \{(C_1, C_2) : K(C_1, C_2) \ge \eta \max_{C'} K(C_1, C')\}.$$

 $K(C_1,C_2)$ counts how often label C_2 follows (immediately to the right of) label C_1 . $\eta=0.3$

Represent labels C_1 and C_2 with the same colour iff there is a path from C_1 to C_2 and one from C_2 to C_1 . Can be computed efficiently with Tarjan's strongly connected components algorithm.

Conclusions

- 1 Coherent averaging enables high image quality and sophisticated post-processing steps
- 2 Automatic alignment of multiband recordings demonstrated
- $oldsymbol{3}$ Pixel-accurate alignment possible if the frequency overlap is at least about $f_{
 m p}$
- Occupancy Clustering into discrete pixel values is helped by availability of high-dimensional features
- TMDS cycling can partially be countered from such cluster data (without having to fully decode TMDS symbols)

Limitations and potential future work:

- $lue{1}$ We used a static target image (unchanged for 6 imes 0.5 s recordings)
- 2 Currently random assignment of display colours to merged cluster labels, but a time series of output images would benefit from consistent colour assignment