

Specification of the EBS File Format for Bio-Signals

--

 /--- /---/ /---

 / / / /

 /--- /--< \--\

 / / / /

/--- /---/ ---/

Extensible Bio-Signal File Format

Institut fuer Physiologie und Experimentelle Pathophysiologie

Working Group Biocybernetics

Gunther Hellmann, Markus Kuhn

Universitaetsstrasse 17

D-91054 Erlangen

Germany

email: ftpebs@uni-erlangen.de

$Id: ebs.doc,v 2.5 1996/07/01 16:00:00 hellmann Rel $

�

0 Content

---------- page

1 Purpose 2

2 File Format 3

2.1 The fixed Header 4

2.2 The variable Header 5

2.3 The data part 8

Appendix A Standarized Attribute Tags 15

 A.1 Basic non channel related attributes 15

 A.2 Basic channel related attributes 17

 A.3 Additional attributes 22

Appendix B Tag Number Ranges for Your Own Tags 31

Appendix C EBS Coordinator 33

Appendix D Rationale of the Format Design 33

Appendix E Implementation Hints 37

Appendix F The CGM Format 39

Appendix G Huffman encoding 42

Appendix H Glossary 42

Appendix I References 44

Index

�

1 Purpose

In the analysis of multi-channel bio-signal recordings (e.g., electro

cardiogram, electro encephalogram, magneto cardiogram, magneto

encephalogram, audio data), scientists often spend a significant time

in the coding of simple functions and programs that write and read the

data into and out of files. Programs for trivial tasks like extracting

a single channel or a short time sequence out of a huge file, applying

different filters and standard signal processing algorithms to the

recordings and visualization of the data are rewritten and reinvented

again and again in many institutions all over the world each day. A

lot of existing formats offered by recording equipment vendors are

often designed only for very special applications, are unflexible and

unextensible. Some of these vendor formats are also optimized only for

a special hardware and are not or only badly documented. Scientific

applications require file formats that are not too complicated, easy

to understand and implement, highly flexible, fully documented and

that allow researchers to cooperate by making easy exchange of data

and tools among work groups possible.

The design goals of the EBS file format have been:

 - Implementation of software which supports the EBS format must not

 be very difficult and it must be possible for advanced programs to

 exchange data with very simple implementations that use only a few

 features of the format.

 - It must be possible to handle the data efficiently, because often

 very large data sets have to be processed. I.e. different machine

 architectures have to be considered. Modifications to header data

 must be possible without having to copy the entire file. Access to

 growing files while the recording is still in progress should be

 possible on multitasking systems.

 - The format must be as universal as possible. Only very few

 parameters (length of the file, number of channels, data format)

 should be mandatory. It must be possible to attach arbitrary

 further information, i.e. the format must be highly extensible in

 a way that won't prevent the use of existing tools for extended

 versions of this format. The data part of the format must be

 capable of containing different encodings of data (e.g. various

 precisions, fixed point or floating point types, compressed

 variable length encodings, etc.).

 - A number of common attributes that are required by many different

 applications stored together with data in the file (e.g. patient

 ID, description texts, common recording parameters) have to be

 predefined. In this way, extensions to the format are not

 necessary very often.

The EBS file format has been designed for storing single-channel or

multi-channel signals that have been recorded simultaneously at

constant intervals of time with the same sample rate in each channel.

Not all channels must store signals from the same source, e.g., EEG,

ECG and trigger signals may very well be mixed in one file, but the

same encoding (e.g. 16-bit signed integers, floating point reals,

compressed or uncompressed) and the same sample frequency must be used

for all channels in a single file.

It is our hope that the EBS file format will motivate scientists

working on the analysis of bio-signals to exchange their tools and

data sets as public domain software, because similar positive

influences of standard file formats have been observed in other

scientific communities (e.g. computer graphics, astronomy and

operating systems) where well-known scientists have developed a lot of

freely available high quality software.

2 File Format

An EBS file is a linear sequence of 8-bit bytes of defined length. If

a file system allows a file name extension, '.ebs' is recommended and

if a file type has to be specified, a transparent unstructured binary

type should be used. Each EBS file consists of 3 or 4 different

parts: (1) the fixed header containing information that is needed by

every program reading EBS files, (2+4) the variable headers which

might contain additional data that is only needed by some programs and

may be simply ignored by others and (3) the encoded bio-signal

data. The normal position of the variable header information is

between the fixed header and the encoded data (2), but it is also

possible to put some or all parts of the variable header information

behind the encoded data (4).

[Note: Having two possible positions of the variable header

information allows to change, insert or delete information in the

variable header without having to move the encoded signal data as well

as reading files while other programs are still adding data to the end

of part (3) (on-line processing).]

 | Fixed Header (32 bytes) | (1)

 +---------------------------------+

 | Variable Header | (2)

 +---------------------------------+

 | Encoded Signal Data (4*d bytes) | (3)

 +---------------------------------+

 | Optional Second Variable Header | (4)

Most integer values in the fixed and variable headers are coded as

32-bit words stored in 4 bytes beginning with the most significant

byte (Bigendian format). If the value is a signed integer type, then

the usual 2-complement representation of negative values will be

used. E.g., the value -3 is stored as 0xff,0xff,0xff,0xfd and 1024 is

stored as 0x00,0x00,0x04,0x00 (in this text, the prefix '0x' indicates

a hexadecimal number as in the C programming language and two hex

digits form an 8-bit byte value). All 32-bit integer values in the

fixed and variable headers are aligned to 32-bit boundaries,

i.e. their start byte position relative to the first byte of the file

is always a multiple of 4.

2.1 The Fixed Header

Each EBS file starts with a 32 bytes long data structure with the

following format:

 | Identification Code (8 bytes) |

 +---------------------------------+

 | Data Encoding ID (4 bytes) |

 +---------------------------------+

 | Number n of channels (4 bytes) |

 +---------------------------------+

 | Number m of samples (8 bytes) |

 +---------------------------------+

 | Length d of Data Part (8 bytes) |

	Byte | Value | Meaning

 -------+---------------+---------------------------------

 0 | 0x45 | ASCII character 'E'

 1 | 0x42 | ASCII character 'B'

 2 | 0x53 | ASCII character 'S'

 3 | 0x94 | another ID character

 4 | 0x0a | "

 5 | 0x13 | "

 6 | 0x1a | "

 7 | 0x0d | "

 8-11 | see 2.3 | Encoding ID

 12-15 | any | number n of channels (unsigned)

 16-23 | any | number m of samples per channel (unsigned)

 | | stored as a 64-bit value or all bytes are

 | | 0xff if unspecified.

 24-31 | any | length d of the data part (3) in 32-bit words

 | | (i.e. part (3) is 4*d bytes long) or all bytes

 | | are 0xff if part (4) is not present.

 |

 32- | here begins the first variable header part (2) of an EBS file

Identification code:

The 'magic code' in the first 8 bytes identifies the file as an EBS

file. Programs that read EBS files should complain about files that

don't start with these 8 bytes.

Encoding ID:

The number in the next 32-bit word indicates the format in which the

bio-signals are encoded in part (3) of the file. The possible

encodings and their ID values in this field are described later in

section 2.3.

Number of channels:

The 32-bit unsigned integer value n starting at byte 12 specifies, how

many channels have been recorded.

Number of samples:

The 64-bit Bigendian unsigned integer value m in the next 8 bytes

indicates, how many samples have been recorded in each channel.

[Note: Don't worry about the 64-bit values! Today, most

implementations just check, whether the bytes 16-19 have the value

0x00 and read the bytes 20-23 as the 32-bit number of samples, because

their operating system can't deal with 64-bit values and with files

longer than a few gigabytes. It is all right if your implementation

just gives a nice error message for EBS files with more then e.g.

4294967295 samples, but some applications might need files in which

the number of samples can't be described with 32-bit (e.g. long-time

recordings) and new operating systems support files of this length.]

If all bytes from position 16 to 23 have the value 0xff, then this

indicates that the length of the whole file is NOT determined by the

fixed header. Instead, the end of the data part (3) is determined by

the operating system. This is called an EBS file with 'unspecified

length' and may be used when recorded data has to be accessed while

the recording is still in progress and part (3) is still growing. In

this case, the program can read sequences of n sample values until the

first end-of-file condition is signaled by the operating system. The

undefined length value is only allowed in combination with TIME-BASED

ORDER data encodings (see section 2.3) and no second variable header

can be present in files with unspecified length.

Length of Data Part:

If a second variable header is present, then the 64-bit value starting

at byte 24 will be the length d of part (3) counted in 32-bit

words. I.e. part (3) is d*4 bytes long and 4*d bytes have to be

skipped after the final tag of part 2 in order to get to the first

byte of part (4). If no part (4) is present, all bytes from byte 24

to byte 31 have the value 0xff. The purpose of this value d is only

to define the position of the second variable header. It can not be

used to determine the number of samples stored in the data part (this

information is stored in m in the fixed header). The number of bytes

needed to store the n*m sample values in part (3) may be less than or

equal to 4*d, but not greater.

[Note: In some (often called 'compressed') variable length encoding

formats for the data part (3), the values n and m (number of channels

and number of samples) from the fixed header can not be used to

predict the exact size of the data part, because in compressed

formats, the number of bits per sample is not always fixed. This makes

it impossible to find the start of the second variable header part (4)

quickly (i.e., without going through the whole data part). In order to

avoid this problem, the length of the data part d is stored separately

if a second variable header is present.]

If the number of samples is not specified in the fixed header (m =

0xffffffffffffffff), then no second part of the variable header is

allowed and d also has the value 0xffffffffffffffff.

2.2 The Variable Header

Part (2) and (4) of EBS files contain a sequence of attributes

(e.g. patient name and age, sample rate, description texts, date and

time of recording, etc.) which a useful file format must be able to

carry, but which are only of interest to some application programs.

Other programs may simply ignore most or all attributes in this

header.

Each attribute in the variable header is stored as a TLV (tag, length,

value) sequence. A tag is a 32-bit unsigned Bigendian integer number

that identifies the type of information stored in the attribute

(e.g. patient name). Some tag numbers and the meaning and syntax of

the following attribute value are already defined in appendix A, but

other new ones may be easily defined for special applications

according to the rules in appendix B. The tag number is followed by an

unsigned 32-bit length indicator l that specifies the number of 32-bit

words (i.e. l*4 bytes) of the directly following value of the

attribute. The number of bytes in an attribute value is always a

multiple of four.

Both variable header parts end with the special tag 0x00000000. If

part (4) is present, these are normally the last bytes of the

file. The final special tag 0x00000000 in part (2) is directly

followed by the first byte of the data part (3). The tag 0xffffffff is

reserved and must not be used in any EBS file. The format of both

variable header parts is:

 | tag (4 bytes) |

 +------------------------+

 | length l (4 bytes) |

 +------------------------+

 | value (l*4 bytes) |

 +------------------------+

 ... tag, length, value ...

 +------------------------+

 | 0x00000000 |

The interpretation of the value bytes depends completely on the value

of the tag number. Most values are simple data types like integer

numbers or text-strings or are sequences of these simple types. If

not otherwise specified, the values of attributes defined in this text

in appendix A use the following encoding for various simple types and

it is recommended that attributes in new additional attributes use the

same encoding where this is appropriate. All simple types are encoded

so that their length in bytes is always a multiple of four. Simple

data types without fixed length (e.g. strings and floating point

numbers) are self delimiting (e.g. with final zero bytes).

a) 32-bit integer number

Integer numbers are stored starting with the most significant byte.

Signed integer numbers are stored with the usual 2-complement

encoding.

b) 64-bit integer numbers

They are also stored with the most significant byte first and use

2-complement encoding if the value is signed. In the variable header,

only a 32-bit, not a 64-bit alignment is guaranteed, i.e. it is NOT

guaranteed that 64-bit integer values start at an address relative to

the first byte of the file which is a multiple of 8.

c) floating point numbers

Floating point numbers are stored as ASCII strings in the usual

representation (e.g. as in the C programming language). These strings

may only contain the characters '+', '-', 'e', 'E', '.' and the digits

'0' to '9'. At the end of the string, between one and four 0x00 bytes

are appended, so that the length of the encoded floating point number

is always a multiple of 4. Examples of valid floating point numbers

are

 '3.14' 0x33,0x2e,0x31,0x34,0x00,0x00,0x00,0x00

 '-.1' 0x2d,0x2e,0x31,0x00

 '+0.910e+45' 0x2b,0x30,0x2e,0x39,0x31,0x30,0x65,0x2b,0x34,0x35,0x00,0x00

The Extended Backus-Naur Form (EBNF) grammar of all possible real

numbers (without the final 0x00 bytes) is

 ['-'|'+'] {digit} ['.' {digit}] [('e'|'E') ['-'|'+'] digit {digit}]

where digit is a character from '0' to '9', [] means optional,

| describes a choice and {} means zero, one or several times. At least

one digit must be present before the optional exponential part. The

special value "not-a-number" (NaN) is represented by the empty string

0x00,0x00,0x00,0x00.

d) single-line and multi-line text-strings

Text-strings are stored using the 16-bit character set UCS-2 (the

16-bit subset of ISO 10646, also known as 'Unicode') which covers all

other character sets on this planet. UCS-2 characters are stored as

sequences of 16-bit Bigendian values.

[Note: If you are unfamiliar with ISO 10646, it is sufficient to know

that ASCII and ISO 8859-1 (ISO Latin 1) characters have the same code

in this 16-bit character set, i.e. you get the correct 16-bit value by

prefixing each ASCII or Latin-1 byte with 0x00. Check a copy of the

ISO 10646 standard or of the compatible Unicode Standard (Version 1.1

or higher) if you want to support other characters (e.g., Cyrillic,

Greek, Chinese, Japanese, IBM PC, etc.) and need to know their 16-bit

codes.]

If text-strings are allowed to span several lines, the code 0x000a

(LF, line feed) should be used as the only line separator between

these lines. The last line is not followed by another 0x000a code.

Strings always end with one or two 0x0000 codes so that the number of

bytes in the string including the two or four 0x00-bytes at the end is

always a multiple of four. If not otherwise specified, single-line

text-strings should not have more than 64 characters (not including

the 1 or 2 0x0000 codes at the end), but application programs must be

able to cope with longer lines, e.g. by truncating them. Multi-line

strings may have any number of lines but should also have not more

than 64 characters per line (not including the 0x000a line separation

code and the 0x0000 end markers) if not otherwise specified. An

example text-string is:

 'hello' 0x00,0x68,0x00,0x65,0x00,0x6c,0x00,0x6c,0x00,0x6f,0x00,0x00

Appendix A defines a lot of commonly used attribute tags and the

semantic of their values and appendix B defines which tag values you

may use to define your own attribute types.

The least significant bit of each attribute tag specifies, whether the

attribute value contains information about specific channels (bit is

1) or not (bit is 0). In this way, programs that add, remove or

rearrange channel data in EBS files can leave unknown attributes with

even tag numbers in the file. They should remove unknown attributes

with odd tag numbers and modify odd numbered attributes that are known

to the programmer, because their content might assume a special

channel layout in the file that does not exist any more after the file

modification.

Each attribute tag shall appear not more than once in the variable

headers.

2.3 The Data Part

The recorded data may consist of different types (e.g., signed 16-bit

integers, unsigned 32-bit integers, signed 12-bit integers, floating

point numbers) and these different types may be encoded in different

ways (e.g., Bigendian, Littleendian, various compression methods). The

values may also be ordered differently. The TIME-BASED sample ordering

starts with the values of all channels at the first sample time

followed by the values of all channels at the second sample time and

so on. The CHANNEL-BASED ORDER of samples begins with all values of

the first channel over the full recording time followed by all values

of the second channel, etc. If the CHANNEL-BASED ORDER is used, the

number m of samples MUST be indicated in byte 16 to 23 of the fixed

header. Eight 0xff bytes in this field are only possible in

combination with TIME-BASED ORDER formats.

The Encoding ID number stored in byte 8 to byte 11 of the fixed header

may indicate one of the following data types and data encodings

(others might be added in future versions of this specification).

8-bit signed integer data types start at 0x00000100, 16-bit signed integer data types (nowadays most used data type) start at 0x00000000 and 32-bit signed integer start at 0x00010000.

TIB_16 (Encoding ID: 0x00000000):

 This format stores 16-bit signed integer values with the high byte

 first in TIME-BASED ORDER. This means that e.g. the recorded values

 time channel 1 channel 2 channel 3 n = 3

 0 20 13 1493

 1 5 7 307

 2 -11 9 421

 3 ...

 ...

 m-1

 will be stored as 0x00,0x14,0x00,0x0d,0x05,0xd5,0x00,0x05,0x00,0x07,

 0x01,0x33,0xff,0xf5,0x00,0x09,0x01,0xa5,... (length: 2*n*m bytes,

 i.e. d >= (n*m*2)/4).

CIB_16 (Encoding ID: 0x00000001):

 This format is very much like TIB_16 with the only difference that

 the values are stored in CHANNEL-BASED ORDER, i.e. the above example

 recording would be stored as 0x00,0x14,0x00,0x05,0xff,0xf5,...,

 0x00,0x0d,0x00,0x07,0x00,0x09,...,0x05,0xd5,0x01,0x33,0x01,0xa5,...

TIL_16 (Encoding ID: 0x00000002):

 This format is like TIB_16 a TIME-BASED ORDER, 16-bit signed integer

 encoding, with the difference that the integer values are stored in

 the Littleendian format (i.e. beginning with the low byte), which

 makes efficient programming possible on systems that use Littleendian

 as their native integer format (e.g., INTEL processors, Transputers,

 ...). The example recording is then stored as: 0x14,0x00,0x0d,0x00,

 0xd5,0x05,0x05,0x00,0x07,0x00,0x33,0x01,0xf5,0xff,0x09,0x00,0xa5,

 0x01,...

CIL_16 (Encoding ID: 0x00000003):

 This format is like CIB_16 a CHANNEL-BASED ORDER, 16-bit signed

 integer encoding, but in Littleendian format (i.e. beginning with the

 low byte). The example recording is stored as 0x14,0x00,0x05,0x00,

 0xf5,0xff,...,0x0d,0x00,0x07,0x00,0x09,0x00,...,0xd5,0x05,0x33,0x01,

 0xa5,0x01,...

TI_16D (Encoding ID: 0x00000010):

 In this compressed TIME-BASED ORDER encoding, 16-bit signed integer

 values are stored, but they are encoded in a way that will in many

 applications need only a little bit more than 50% of the storage

 space of TIB_16 or TIL_16. The trick is that only the difference

 between two consecutive samples in the same channel is stored as a

 signed 2-complement 8-bit value ranging from -127 (0x81) to +127

 (0x7f). A positive difference means that the next sample value in the

 same channel has a higher value. If the value is the first sample of

 a channel or if the difference is less than -127 or greater than

 +127, then the absolute value will be stored in a 3 byte sequence

 starting with -128 (0x80) followed by the full 16-bit signed integer

 value of the sample with the high byte first. I.e., our example

 recording from above would look like this:

 0x80,0x00,0x14,0x80,0x00,0x0d,0x80,0x05,

 0xd5,0xf1,0xfa,0x80,0x01,0x33,0xf0,0x02,0x72,... The length of the

 data part in bytes can't be predicted with the parameters in the

 fixed header if this compressed encoding is used (d >= n*(m+2)/4).

CI_16D (Encoding ID: 0x00000011):

 The encoding is the same as TI_16D with the only difference that the

 sample values (i.e. the differences between them) are stored in

 CHANNEL-BASED ORDER. The example recording would look like this:

 0x80,0x00,0x14,0xf1,0xf0,...,0x80,0x00,0x0d,0xfa,0x02,...,0x80,

 0x05,0xd5,0x80,0x01,0x33,0x72,...

TI_16H (Encoding ID: 0x00000012):

 In this compressed TIME-BASED ORDER encoding, 16-bit signed integer

 values are stored, but they are encoded according to the huffman

 algorithm using the coding table of the attribute CODING_TABLE. The

 length of the data part in bytes can't be predicted with the

 parameters in the fixed header if this compressed encoding is used

 (d >= n*(m+2)/4).

CI_16H (Encoding ID: 0x00000013):

 The encoding is the same as TI_16H with the only difference that the

 sample values (i.e. the huffman codes) are stored in

 CHANNEL-BASED ORDER.

TI_16DH (Encoding ID: 0x00000014):

 In this compressed TIME-BASED ORDER encoding, 16-bit signed integer

 values are stored, but they are encoded first like the TI_16D and

 then according to the huffman algorithm using the coding table of

 the attribute CODING_TABLE. The length of the data part in bytes

 can't be predicted with the parameters in the fixed header if this

 compressed encoding is used (d >= n*(m+2)/4).

CI_16DH (Encoding ID: 0x00000015):

 The encoding is the same as TI_16DH with the only difference that the

 sample values (i.e. the differences between the values and then the

 huffman codes) are stored in CHANNEL-BASED ORDER.

TI_8 (Encoding ID: 0x00000100):

 This format stores 8-bit signed integer values in TIME-BASED ORDER.

 This means that e.g. the recorded values

 time channel 1 channel 2 channel 3 n = 3

 0 20 13 93

 1 5 7 -30

 2 -11 9 42

 3 ...

 ...

 m-1

 will be stored as 0x00,0x14,0x00,0x0d,0x05,0xd5,0x00,0x05,0x00,0x07,

 0x01,0x33,0xff,0xf5,0x00,0x09,0x01,0xa5,... (length: 2*n*m bytes,

 i.e. d >= (n*m*2)/4).

CI_8 (Encoding ID: 0x00000101):

 This format is very much like TIB_8 with the only difference that the

 values are stored in CHANNEL-BASED ORDER, i.e. the above example

 recording would be stored as 0x00,0x14,0x00,0x05,0xff,0xf5,...,

 0x00,0x0d,0x00,0x07,0x00,0x09,...,0x05,0xd5,0x01,0x33,0x01,0xa5,...

TI_8D (Encoding ID: 0x00000110):

 In this compressed TIME-BASED ORDER encoding, 8-bit signed integer

 values are stored, but they are encoded in a way that will in many

 applications need only a little bit more than 50% of the storage

 space of TI_8 or TI_8. The trick is that only the difference between

 two consecutive samples in the same channel is stored as a signed

 2-complement 4-bit value ranging from -15 (0x0f) to +15 (0x1f). A

 positive difference means that the next sample value in the same

 channel has a higher value. If the value is the first sample of a

 channel or if the difference is less than -15 or greater than +15,

 then the absolute value will be stored in a 3 nible sequence starting

 with -16 (0x10) followed by the full 8-bit signed integer value of

 the sample with the high byte first. I.e., our example recording from

 above would look like this: 0x80,0x00,0x14,0x80,0x00,0x0d,0x80,0x05,

 0xd5,0xf1,0xfa,0x80,0x01,0x33,0xf0,0x02,0x72,... The length of the

 data part in bytes can't be predicted with the parameters in the

 fixed header if this compressed encoding is used (d >= n*(m+2)/4).

CI_8D (Encoding ID: 0x00000111):

 The encoding is the same as TI_8D with the only difference that the

 sample values (i.e. the differences between them) are stored in

 CHANNEL-BASED ORDER. The example recording would look like this:

 0x80,0x00,0x14,0xf1,0xf0,...,0x80,0x00,0x0d,0xfa,0x02,...,0x80,

 0x05,0xd5,0x80,0x01,0x33,0x72,...

TI_8H (Encoding ID: 0x00000112):

 In this compressed TIME-BASED ORDER encoding, 8-bit signed integer

 values are stored, but they are encoded according to the huffman

 algorithm using the coding table of the attribute CODING_TABLE. The

 length of the data part in bytes can't be predicted with the

 parameters in the fixed header if this compressed encoding is used

 (d >= n*(m+2)/4).

CI_8H (Encoding ID: 0x00000113):

 The encoding is the same as TI_8H with the only difference that the

 sample values (i.e. the huffman codes) are stored in

 CHANNEL-BASED ORDER.

TI_8DH (Encoding ID: 0x00000114):

 In this compressed TIME-BASED ORDER encoding, 8-bit signed integer

 values are stored, but they are encoded first like the TI_8D and then

 according to the huffman algorithm using the coding table of the

 attribute CODING_TABLE. The length of the data part in bytes can't be

 predicted with the parameters in the fixed header if this compressed

 encoding is used (d >= n*(m+2)/4).

CI_8DH (Encoding ID: 0x00000115):

 The encoding is the same as TI_8DH with the only difference that the

 sample values (i.e. the differences between the values and then the

 huffman codes) are stored in CHANNEL-BASED ORDER.

TIB_32 (Encoding ID: 0x00010000):

 This format stores 32-bit signed integer values with the high byte

 first in TIME-BASED ORDER. This means that e.g. the recorded values

 time channel 1 channel 2 channel 3 n = 3

 0 20 13 1493

 1 5 7 307

 2 -11 9 421

 3 ...

 ...

 m-1

 will be stored as 0x00,0x14,0x00,0x0d,0x05,0xd5,0x00,0x05,0x00,0x07,

 0x01,0x33,0xff,0xf5,0x00,0x09,0x01,0xa5,... (length: 2*n*m bytes,

 i.e. d >= (n*m*2)/4).

CIB_32 (Encoding ID: 0x00010001):

 This format is very much like TIB_32 with the only difference that

 the values are stored in CHANNEL-BASED ORDER, i.e. the above example

 recording would be stored as 0x00,0x14,0x00,0x05,0xff,0xf5,...,

 0x00,0x0d,0x00,0x07,0x00,0x09,...,0x05,0xd5,0x01,0x33,0x01,0xa5,...

TIL_32 (Encoding ID: 0x00010002):

 This format is like TIB_32 a TIME-BASED ORDER, 32-bit signed integer

 encoding, with the difference that the integer values are stored in

 the Littleendian format (i.e. beginning with the low byte), which

 makes efficient programming possible on systems that use Littleendian

 as their native integer format (e.g., INTEL processors, Transputers,

 ...). The example recording is then stored as: 0x14,0x00,0x0d,0x00,

 0xd5,0x05,0x05,0x00,0x07,0x00,0x33,0x01,0xf5,0xff,0x09,0x00,0xa5,

 0x01,...

CIL_32 (Encoding ID: 0x00010003):

 This format is like CIB_32 a CHANNEL-BASED ORDER, 32-bit signed

 integer encoding, but in Littleendian format (i.e. beginning with the

 low byte). The example recording is stored as 0x14,0x00,0x05,0x00,

 0xf5,0xff,...,0x0d,0x00,0x07,0x00,0x09,0x00,...,0xd5,0x05,0x33,0x01,

 0xa5,0x01,...

TI_32D (Encoding ID: 0x00010010):

 In this compressed TIME-BASED ORDER encoding, 32-bit signed integer

 values are stored, but they are encoded in a way that will in many

 applications need only a little bit more than 50% of the storage

 space of TIB_32 or TIL_32. The trick is that only the difference

 between two consecutive samples in the same channel is stored as a

 signed 2-complement 8-bit value ranging from -127 (0x81) to +127

 (0x7f). A positive difference means that the next sample value in the

 same channel has a higher value. If the value is the first sample of

 a channel or if the difference is less than -127 or greater than

 +127, then the absolute value will be stored in a 6 byte sequence

 starting with -128 (0x80) followed by the full 32-bit signed integer

 value of the sample with the high byte first. I.e., our example

 recording from above would look like this:

 0x80,0x00,0x14,0x80,0x00,0x0d,0x80,0x05,

 0xd5,0xf1,0xfa,0x80,0x01,0x33,0xf0,0x02,0x72,... The length of the

 data part in bytes can't be predicted with the parameters in the

 fixed header if this compressed encoding is used (d >= n*(m+2)/4).

CI_32D (Encoding ID: 0x00010011):

 The encoding is the same as TI_32D with the only difference that the

 sample values (i.e. the differences between them) are stored in

 CHANNEL-BASED ORDER. The example recording would look like this:

 0x80,0x00,0x14,0xf1,0xf0,...,0x80,0x00,0x0d,0xfa,0x02,...,0x80,

 0x05,0xd5,0x80,0x01,0x33,0x72,...

TI_32H (Encoding ID: 0x00010012):

 In this compressed TIME-BASED ORDER encoding, 32-bit signed integer

 values are stored, but they are encoded according to the huffman

 algorithm using the coding table of the attribute CODING_TABLE. The

 length of the data part in bytes can't be predicted with the

 parameters in the fixed header if this compressed encoding is used

 (d >= n*(m+2)/4).

CI_32H (Encoding ID: 0x00010013):

 The encoding is the same as TI_32H with the only difference that the

 sample values (i.e. the huffman codes) are stored in

 CHANNEL-BASED ORDER.

TI_32DH (Encoding ID: 0x00010014):

 In this compressed TIME-BASED ORDER encoding, 32-bit signed integer

 values are stored, but they are encoded first like the TI_32D and

 then according to the huffman algorithm using the coding table of

 the attribute CODING_TABLE. The length of the data part in bytes

 can't be predicted with the parameters in the fixed header if this

 compressed encoding is used (d >= n*(m+2)/4).

CI_32DH (Encoding ID: 0x00010015):

 The encoding is the same as TI_32DH with the only difference that the

 sample values (i.e. the differences between the values and then the

 huffman codes) are stored in CHANNEL-BASED ORDER.

[Note: It is expected that CIB_16 will be the most popular format. If

you are confused by the many different encodings, just support CIB_16

and reject other EBS encodings with other encoding IDs with a nice

error message. There are tools available that allow easy conversion

between the different encodings. On some popular processors, you might

perhaps prefer CIL_16 if you operate on very huge data sets with

efficient methods (e.g. memory mapped files). Time will show, whether

the uncompressed TIME-BASED ORDER formats will be of use, and among

the compressed formats, TI_16D will perhaps be the most popular

version for archive and transfer purposes until more efficient

compression techniques are available. If you have only one single

channel, then there will be no difference between the TIME-BASED ORDER

format and the corresponding CHANNEL-BASED ORDER format. Before you

use a coin to decide whether you should indicate a TIME-BASED ORDER or

a CHANNEL-BASED ORDER format, it is recommend to use the ID of the

CHANNEL-BASED ORDER encoding.]

If a second variable header is present, between 0 and 3 zero padding

bytes have to be appended after the above described encodings of the

recording in order to give the whole data part a length in bytes that

is a multiple of four. This will guarantee a 32-bit alignment for the

second variable header part.

As a convention, program user interfaces should give the channels

numbers beginning with 1 and samples should be numbered beginning with

0.

[Note: It seems to be most natural for most people to start with 0 for

points of time, e.g. digital clocks count from 0 to 59, but only

computer scientists find it as obvious that the first channel might

also have the number 0). This convention makes user interfaces of

programs operating on EBS files more consistent. The numbering

convention is only defined for numbers visible to the user of a

program and is not intended for variables used internally within a

program or for attributes in the variable header.]

The Encoding IDs in the range from 0x80000000 to 0xfffffffe are

reserved for private additional encodings and the encoding ID

0xffffffff is reserved and must not be used in EBS files.

[Note: Please use random numbers for your private encoding IDs in the

range 0x80000000 to 0xfffffffe and don't simply start at 0x80000000 in

order to keep the odds of collisions with other peoples' private IDs

small.]

If the need for a new standardized encoding arises, please contact the

EBS coordinator (see appendix C) and it is likely that other standard

encodings will be added.

�

Appendix A -- Standardized Attribute Tags

This appendix defines a number of useful attribute tags and the

meaning of the corresponding attribute values. The attribute values

defined here are simple types with the encoding recommended in section

2.2, sequences of these simple types or other special types (e.g.

graphical diagrams or dates).

All defined attributes are classified either they are basic channel related, non channel related or additional (non basic and of less global relevance) attributes. Attributes that do not refer to individual channels and thus have an even tag number. Attributes that refer to individual channels and thus have an odd tag number. Attributes that refer to a coordinate defining system start at tag number 0x00001000.

List of standarized attributes:

tag attribute name part page

0x00000001 PREFERRED_INTEGER_RANGE A.2 17

0x00000002 IGNORE A.1 15

0x00000003 UNITS A.2 17

0x00000004 PATIENT_NAME A.1 16

0x00000005 CHANNEL_DESCRIPTION A.2 17

0x00000006 PATIENT_ID A.1 16

0x00000007 CHANNEL_GROUPS A.2 18

0x00000008 PATIENT_BIRTHDAY A.1 16

0x00000009 EVENTS A.2 18

0x0000000a PATIENT_SEX A.1 16

0x0000000b RECORDING_TIME A.2 19

0x0000000c SHORT_DESCRIPTION A.1 16

0x0000000d CHANNEL_LOCATIONS A.2 19

0x0000000e DESCRIPTION A.1 16

0x0000000f FILTERS A.2 20

0x00000010 SAMPLE_RATE A.1 16

0x00000012 INSTITUTION A.1 16

0x00000014 PROCESSING_HISTORY A.1 16

0x00000016 LOCATION_DIAGRAM A.3 22

0x00000018 STIMULATION_SETUP A.3 28

0x0000001a CODING_TABLE A.3 29

0x00000019 NUMERICAL/TEXTUAL_EVENTS A.2 21

0x00001000 COORDINATE_DEFINING_SYSTEM A.3 23

0x00001001 SENSOR_COORDINATES A.3 26

0x00001002 CONTOUR_POINTS_LINES A.3 26

0x00001004 COORDINATION_TRANSFORMATION_MATRIX A.3 27

0x00001006 RELATED_IMAGES A.3 28

0x00001009 3D-SPACE_REFERRING_EVENTS A.3 29

0x00001019 IMAGING_EVENTS A.3 30

A.1 -- Basic non channel related attributes

Attributes that do not refer to individual channels and thus have an

even tag number:

0x00000002 IGNORE (length: any)

 This attribute should just be ignored by any application.

 It allows to remove an attribute without having to copy the

 whole file by just overwriting the tag field of this

 attribute with the tag number of IGNORE. This attribute may

 have any arbitrary value, but applications which delete

 attributes should fill the value with 0x00 bytes so that

 critical information (e.g. patient names in published

 files) will surely be destroyed and not only be made

 invisible.

 This is the only attribute that may appear several times

 in a variable header.

0x00000004 PATIENT_NAME (length: > 0 words, <= 33 words)

 This single-line text-string may contain the full name of

 the person of whom the signals have been recorded.

0x00000006 PATIENT_ID (length: > 0 words, <= 33 words)

	 This single-line text-string may contain additional

 information that is used to identify the patient, e.g. a

 patient number in a hospital, etc.

0x00000008 PATIENT_BIRTHDAY (length: 2 words)

 This numeric string contains the birthday of the patient in

 the 'yyyymmdd' format stored as ASCII digits (not as 16-bit

 UCS-2 characters!). E.g., '19930210' (0x31,0x39,0x39,0x33,

 0x30,0x32,0x31,0x30) means February 10, 1993. (This format

 is one of the date/time formats defined in ISO 8601.)

0x0000000a PATIENT_SEX (length: 1 word)

 This 32-bit integer value is 1 for male and 2 for female

 patients. (The numbers are those specified by ISO 5218.)

0x0000000c SHORT_DESCRIPTION (length: > 0 words, <= 33 words)

 A single-line text-string that summarizes with a few words

 the contents of the file. This attribute is intended for

 listings of many EBS files where each EBS file is listed in

 a single line.

0x0000000e DESCRIPTION (length: > 0 words)

 A multi-line text-string that may tell the user of a file

 everything he/she might need to know in addition to the

 standardized attributes, e.g. the conditions under which

 the recording has been made, etc.

0x00000010 SAMPLE_RATE (length: > 0 words)

 The value is the sample rate in Hz stored as a

 floating point number. E.g., a sample rate of 1024 per

 second (1024 Hz) might be stored as 0x31,0x30,0x32,

 0x34,0x00,0x00,0x00,0x00 ('1024').

0x00000012 INSTITUTION (length: > 0 words, <= 33 words)

 This single-line string may contain the name of the

 institution, where the file has been recorded, processed,

 etc.

0x00000014 PROCESSING_HISTORY (length: > 0 words)

 This attribute is a sequence of multi-line strings. Each

 string may describe a processing step that has been

 performed in order to produce this file. This might e.g. be

 the command line that has been used to start a program or a

 list of parameters that have been applied. A program may

 add its own processing description as another string to the

 end of the already existing sequence. Also text information

 about the equipment used to record the data and who did the

 recording or processing can be stored here. The number of

 multi-line text-strings in this attribute is determined by

 the length of the attribute.

A.2 -- Basic channel related attributes

Attributes that refer to a special channel layout and that have to be

changed by programs which change, add, move or delete channels:

0x00000001 PREFERRED_INTEGER_RANGE (length: (1+1)*n words)

	 For integer data, this attribute gives display software a

 hint, which value range might be most interesting in the

 data. The value consists of a recommended display minimum

 (32-bit signed integer) followed by a recommended display

 maximum (32-bit signed integer) for each channel beginning

 with channel 1. E.g., if in 16-bit signed integer data most

 good values are in the range -2048 to +2047 in all

 channels, then, if the value of this attribute is 0xff,

 0xff,0xf8,0x00,0x00,0x00,0x07,0xff (repeated for each

 channel), it will be easy for a visualization program to

 find a nice default scaling factor. If both the minimum and

 the maximum value for a channel are equal (e.g. both are

 zero), then no preferred integer range is specified for

 this channel as it would be the case for all channels if

 this attribute were not present.

0x00000003 UNITS (length: >= (1+1)*n words)

 This attribute contains a sequence of physical unit

 specifications, one for each channel. It assigns each

 channel an SI unit (e.g. mA, mV, nT) and a quotient of a

 physical quantity and the encoded sample value that

 represents it. Each unit specification is a sequence of a

 floating point value and a single-line text-string. The

 floating point number is the number with which the sample

 value must be multiplied in order to get the physical value

 (e.g. '0.0025' if a sample value of 400 represents 1.0 mV

 and the specified unit in the text-string is 'mV'). The

 quotient is followed by a single-line text-string with the

 usual abbreviation for the SI unit (not more than 8

 characters (= 20 bytes) long). E.g., the text-string for

 Microvolts is 0x00,0xb5,0x00,0x56,0x00,0x00,0x00,0x00. Only

 linear relations between the physical quantity and the

 sample value in the encoded data can be described with this

 attribute. If the float number is 'not a number'

 (0x00,0x00,0x00,0x00), the physical unit and quantity is

 unspecified for this single channel as it would be for all

 channels if the whole attribute were absent. In this case,

 the unit text-string should also be empty.

0x00000005 CHANNEL_DESCRIPTION (length: >= (1+1)*n words, <= (5+33)*n words)

 The attribute consists of a sequence of 2*n single-line

 text-strings, one pair for each channel. The first string

 in a pair must not contain more than 8 characters (not

 including the 1 or 2 0x0000-words at the end of each

 string). This string contains a very short name for the

 channel that might e.g. be used to label it in diagrams,

 etc. E.g., in EEG recordings, this will often be the name

 of the electrode position in the usual 10-20-system, like

 "F4-A1", "C4-Cz", etc. The second single-line text-string

 in the pair that follows directly behind each short label

 string may contain additional descriptive text for each

 channel that does not fit in the short 8 character label

 (e.g., in EEG recordings information about electrodes with

 bad contact, etc.).

0x00000007 CHANNEL_GROUPS (length: >= 3 words)

 Each channel may belong to zero, one or several groups. A

 channel group might e.g. be used to group channels from the

 same biological source (e.g., one group for EEG and one

 group for ECG channels) so that they can be more

 conveniently selected together or shown in different colors

 in interactive programs. The CHANNEL_GROUPS attribute

 contains a sequence of group descriptions. A single group

 description consists of

 - a single-line text-string with a short name for the

 group (e.g. "EEG") with not more than 8 characters,

 followed by

 - a single-line text-string with a description of the

 group (this may of course be the empty string

 0x00000000 if no description is available), followed by

 - an unsigned 32-bit integer number g with the number of

 channels in this group which is followed by

 - g unsigned 32-bit integer numbers with the numbers of

 the channels (with 0 being the first channel) that

 belong to this group.

 If groups are associated with numbers in a user interface,

 then the first group in this attribute should be assigned

 number 1.

0x00000009 EVENTS (length: any)

 This attribute allows to mark events or time intervals in

 the recording for all channels together or for individual

 channels. Each event or interval belongs to one event list

 and each event list has a short name and a description

 text. In addition, each single event or interval may have a

 description string. The attribute contains a sequence of

 event lists. The number of event lists is determined by

 the length of the attribute. Each event list consists of

 - a single-line text-string with the short name (not more

 than 8 characters), followed by

 - a multi-line description string, followed by

 - the number e (unsigned 32-bit integer) of

 events/intervals in this event group, followed by

 - a sequence of e events or intervals.

 Each single event or interval in an event list is described

 by the following sequence

 - An unsigned 32-bit integer channel number. The first

 channel is represented by number 0 and 0xffffffff

 indicates that this event or interval is not associated

 with a single channel.

 - An unsigned 64-bit integer number that represents the

 position (the first sample has position 0) of the event

 or the start position of an interval.

 - An unsigned 64-bit integer number that has the value

 0x0000000000000000 for events or represents the length

 of an interval if it has any other value.

 - A single-line text-string (as usual not more than 64

 characters long) may contain a textual description of

 the type of event or interval that has been marked or

 just an empty string.

 The whole event/interval sequence in each event list

 consists of these event/interval descriptions sorted

 ascending by their start sample number (second integer

 value).

0x0000000b RECORDING_TIME (length: 2 or 4 words)

 This is the time when the recording of the physical signals

 started. Two different formats are allowed, either only the

 date (as in PATIENT_BIRTHDAY) or date and time.

 The date and time format is 'yyyymmddThhmmss' stored as

 ASCII digits (not 16-bit UCS-2 characters!), the ASCII

 character 'T' and one final 0-byte. E.g. '19930211T153159'

 stored as 0x31,0x39,0x39,0x33,0x30,0x32,0x31,0x31,0x54,

 0x31,0x35,0x33,0x31,0x35,0x39,0x00 means that the

 recording started on February 11, 1993, 3:31:59 pm local

 time.

 If no time is available, the date alone may be stored as

 '19930211' or in bytes 0x31,0x39,0x39,0x33,0x30, 0x32,

 0x31,0x31.

 [Note: These attribute formats are two of the date/time

 formats specified in ISO 8601. The ASCII 'T' has been

 inserted for compatibility with the ISO standard. This

 attribute has an odd tag number, because it has to be

 modified or removed if a beginning part of a recording is

 removed from an EBS file as then the recording time of the

 first sample number changes.]

 If this attribute is either not exactly 4 words long and

 has not a 'T', a 0x00 and ASCII digits at the specified

 positions, and is not 2 words long and contains only ASCII

 digits, then it should be ignored, because it could be

 another ISO 8601 time format that might be specified as an

 alternative in a future version of this standard if

 necessary (e.g. with time zone, milliseconds, several

 concatenated intervals of time).

0x0000000d CHANNEL_LOCATIONS (length: any)

 This attribute may only be present together with a

 LOCATION_DIAGRAM attribute. It defines the locations of

 sensors/electrodes in the coordinate space (VDC) of the

 graphical diagrams in LOCATION_DIAGRAM. Each channel may

 have zero, one or several positions, i.e. a channel may

 appear on several places in a diagram and in different

 diagrams. A channel may be associated with several single

 points or with pairs of points, which might be represented

 graphically as arrows from the first point to the second

 one. The value of this attribute is a sequence of

 positions (each is a point or an arrow representing a

 channel) and each position is a sequence of the following

 six 32-bit integer values:

 - channel number (the first channel has number 0,

 unsigned value).

 - picture number (the first picture in the CGM file

 of LOCATION_DIAGRAM has number 0, unsigned value).

 - X1 coordinate (signed value)

 - Y1 coordinate (signed value)

 - X2 coordinate (signed value)

 - Y2 coordinate (signed value)

 Several positions can have the same channel number. For

 point positions, X1 and Y1 are the coordinates of the

 points and X2 and Y2 have the special value 0x80000000. For

 arrow positions, X1 and Y1 are the coordinates of the tail

 and X2 and Y2 are those of the head. Arrows may e.g. be

 used to indicate that a channel represents the difference

 potential between two electrode positions. The coordinates

 are all inside the CGM VDC extent.

0x0000000f FILTERS (length: >= n words)

 Information about the filters that have been applied to

 each channel may be stored here. The attribute contains a

 sequence of filter lists, one for each channel. It may only

 be present if also a SAMPLE_RATE attribute is present. For

 each channel, the filter list consists of a sequence of

 filter specifications followed by 0xffffffff (i.e. the

 attribute value contains at least one final 0xffffffff for

 each channel). The following filter specifications may

 appear in a filter list:

 - lowpass filter: it is specified by a sequence of

 the following three values.

 o The first 32-bit integer number 0x00000001

 identifies the filter as a lowpass filter.

 o The second parameter is the cutoff frequency of the

 filter [the usual -3 dB limit, i.e. the frequency

 where the output voltage has been decreased to

 1/sqrt(2) (71%) of the input voltage] which is

 stored as a positive floating point value in Hz.

 o The third value describes the falloff after the

 cutoff frequency. It stores the attenuation in dB

 per decade as a negative floating point value. If

 this value is not known, a not-a-number value

 (0x00000000) may be used here.

 [Note: A -20 falloff value represents a filter

 where the output voltage has decreased to -20 dB

 (that is 10% of its input voltage) at a frequency

 which is 10 times the cutoff frequency (decade).

 This is identical to the alternative description

 that the filter has a -6 dB/octave falloff,

 i.e. the output voltage has dropped to 50% (-6 dB)

 at double cutoff frequency. In general, a p-pole

 filter (also known as a filter of order p) is

 stored as the value -20*p.]

 - highpass filter: it is specified by a sequence of

 the following three values.

 o The first 32-bit integer number 0x00000002

 identifies the filter as a highpass filter.

 o The second parameter is the cutoff frequency of the

 filter [the usual -3 dB limit, i.e. the frequency

 where the output voltage has been decreased to

 1/sqrt(2) (71%) of the input voltage] which is

 stored as a positive floating point value in Hz.

 [Note: If you are interested in the time constant t

 in seconds of a highpass or lowpass filter and you

 know only the cutoff frequency f in Hz: t = 1 /

 (2*pi*f).]

 o The third value describes the falloff before the

 cutoff frequency. It stores the attenuation in dB

 per decade as a negative floating point value. If

 this value is not known, a not-a-number value

 (0x00000000) may be used here.

 - notch filter: it is specified by a sequence of

 the following three values.

 o The first 32-bit integer number 0x00000003

 identifies the filter as a notch filter which

 attenuates only the frequencies around a single

 peak frequency.

 o The second parameter is the peak frequency of the

 filter (the most attenuated frequency) which is

 stored as a positive floating point value in Hz.

 o The third value describes the falloff around the

 peak frequency. It stores the attenuation in dB per

 decade as a negative floating point value. If this

 value is not known, a not-a-number value

 (0x00000000) may be used here.

0x00000019 NUMERICAL/TEXTUAL_EVENTS (length: any)

 This attribute allows to mark events or time intervals in the

 recording for all channels together or for individual

 channels. Each event or interval belongs to one event list

 and each event list has a short name and a description text.

 In addition, each single event or interval may have a

 sequence of numerical values. In contrast to the attribute of

 EVENTS this attribute handles time-related numerical values.

 The attribute contains a sequence of event lists. The number

 of event lists is determinated by the length of the

 attribute. Each event list consists of

 - a single-line text-string with the short name (not more � than 8 characters), followed by

 - multi-line description string, followed by

 - the number e (unsigned 32-bit integer) of

 events/intervals in this event group, followed by

 - the number v (unsigned 32-bit integer) of data values

 for each event, followed by

 - a sequence of v data types (unsigned 32-bit integer)

 and the following data types

 - 0x00000000 signed 8-bit integer;

 - 0x00000002 signed 16-bit integer;

 - 0x00000004 signed 32-bit integer;

 - 0x00000006 signed 64-bit integer;

 - 0x00000008 floating point number, followed by

 - a sequence of v single-line text-strings with a name for � each value (not more than 64 characters each)

 Each single event or interval in an event list is described

 by the following sequence

 - An unsigned 32-bit integer channel number. The first � channel is represented by number 0 and 0xffffffff � indicates that this event or interval is not associated � with a single channel.

 - An unsigned 64-bit integer number that represents the � position (the first sample has position 0) of the event

 or the start position of an interval.

 - An unsigned 64-bit integer number the has the value � 0x0000000000000000 for events or represents the length

 of an interval if it has any other value.

 - A single-line text-string (as usual not more than 64 � characters long) may contain a textual description of

 the type of event or interval that has been marked or

 just an empty string.

 - A sequence of v data values.

 The whole event/interval sequence in each event list consists

 of these event/interval descriptions sorted ascending by

 their start sample number (second integer value).

A.3 -- Additional attributes

0x00000016 LOCATION_DIAGRAM (length: > 0 words)

 This attribute contains a graphical diagram of the object

 (e.g. brain, head, whole body, ...) from which the recorded

 data has originated or any other diagram that may be used

 to describe the positions of sensors/electrodes. The

 attribute CHANNEL_LOCATIONS may assign to channels

 coordinates in this diagram. In this way, software can

 generate pictures that indicate the position of

 electrodes/sensors on or in the body. This attribute

 contains the background graphic for these pictures and

 attribute CHANNEL_LOCATIONS contains the coordinates for

 channel markers.

 The value of LOCATION_DIAGRAM is a complete Computer

 Graphics Metafile (CGM) as defined in ISO 8632. Only the

 binary encoding of a CGM file as defined in ISO 8632-3 is

 used. The end of the CGM file is filled with 0x00 to a

 length in bytes divisible by 4. All coordinates are

 specified as 16-bit integer values (i.e. VDC TYPE is

 integer and INTEGER PRECISION is 16, which is the default

 for the binary CGM encoding). The VDC EXTEND should be

 specified for each picture. The attribute may contain

 several pictures in the metafile. As most applications

 won't need the full power of the CGM format, the following

 subset of CGM elements is suggested as a minimum

 requirement for software that uses this attribute:

 BEGIN METAFILE, END METAFILE, BEGIN PICTURE, BEGIN

 PICTURE BODY, END PICTURE, METAFILE VERSION, METAFILE

 ELEMENT LIST, VDC EXTENT, POLYLINE

 Programmers may of course support more CGM functionality

 (e.g. colors, text, arcs, fill patterns, etc.) as defined

 in ISO 8632 and it is possible that later versions of this

 standard will add additional elements to this minimal

 subset if necessary. Programs may ignore additional

 elements and warn the user that the displayed diagram might

 be incomplete or may ignore the whole attribute if

 additional elements are present. Appendix F gives a short

 introduction into the minimal CGM subset specified here.

0x00001000 COORDINATE_DEFINING_SYSTEM (length:any)

 This attribute specifies zero, one or several coordinate

 defining or position measuring systems used to define

 sensor/electrode/positions reference points or lines as well

 as position of any object of interest (e.g. anatomical

 structure).

 Mainly, in source-imaging-analysis several coordinate systems

 (e.g. sensor coordinates, reference coordinates of a subject,

 image coordinates) are used to map processed information of

 biosignals onto images.

 The origin of each coordinate system is assumed to be the

 point (0; 0; 0) and can be e.g. one single sensor within a

 sensor array or any no further specified point.

 Several other EBS-attributes require at least one defined

 coordinate system.

 The value of this attribute is a sequence of zero, one or

 several coordinate systems and each is a sequence of the

 following 21 values:

 - index of the coordinate system to be referenced (unsigned � 32-bit integer), followed by

 - a single-line text-string with the short name (not more � than 8 characters), followed by

 - a multi-line description string, defining the name of the � coordinate system, serial number, manufacturer, etc., � followed by

 - convexity of the coordinate system (unsigned 32-bit � integer), where 0x00000000 is undefined, 0x00000002 a

 linear coordinate system, followed by

 - a technique used to measure the distance or defining the

 objects within the coordinate system (unsigned 32-bit

 integer), where the following codes are defined:

 - 0x00000000: undefined;

 - 0x00000002: light;

 - 0x00000004: magnetic;

 - 0x00000006: radar;

 - 0x00000008: electrical;

 - 0x0000000a: fluid;

 - 0x0000000c: imaging;

 - 0x0000000e: manual and

 - 0x00000010: structured objects; followed by

 - a unit of the coordinate system (unsigned 32-bit integer), � where

 - 0x00000000 is an undefined unit;

 - 0x00000002 is the SI unit meter;

 - 0x00000004 is a voxel and

 - 0x00000006 is a structured object; followed by

 - a single-line text-string with the short name (not more � than 8 characters) to name the unit, followed by

 - a workspace covered by the coordinate system to give a

 hint about the maximum distance from the origin,

 accessability (e.g. roboter), measuring accuracy (3D

 digitizer) or to define the size of images. The workspace

 is a sequence of four values:

 - x-coordinate (floating point number);

 - y-coordinate (floating point number);

 - z-coordinate (floating point number);

 - handiness of the coordinate system

 (unsigned 32-bit integer):

 - 0x00000000 right handed;

 - 0x00000002 left handed; followed by

 - three error values for each point within the workspace of � the coordinate system (in the given unit):

 - x-error (floating point number);

 - y-error (floating point number);

 - z-error (floating point number);

 - resolution values of the predefined unit for the used � measuring technique (e.g. to define the dimensions of a � voxel or unique object like a electrode):

 - x-resolution of the unit (floating point number);

 - y-resolution of the unit (floating point number);

 - z-resolution of the unit (floating point number);

 - x-gap between two units (floating point number);

 - y-gap between two units (floating point number);

 - z-gap between two units (floating point number);

 - code of the object form, where

 0x00000000 is undefined, this is when the unit is

 meter;

 0x00000002 cubic;

 0x00000004 cylindric;

 0x00000006 spherical;

 In case of different objects within a coordinate system

 (e.g. different types of electrodes in an electrode array)

 for each unique object a single coordinate system can be

 defined.

 An example (no. 1: depth electrodes) will demonstrate the

 functionality of this attribute:

 0000x index

 DTL\0 short name

 depth electrodes temporal left\0 long name

 PMT-Germany\0

 0002x convexity

 0011x type of � measurement/object

 0002x unit: meter

 meter\0 unit name

 0.05 x-workspace

 0.002 y-workspace

 0.002 z-workspace

 1 handiness of workspace

 0.0 x-error

 0.0 y-error

 0.0 z-error

 0.005 x-dimension

 0.002 y-dimension

 0.002 z-dimension

 0.0 x-gap

 0.0 y-gap

 0.0 z-gap

 0004x object form: cylindric

 Another example (no. 2: 3D-digitizer) will demonstrate the

 functionality of this attribute:

 0001x index

 Polhemus\0 short name

 3D-digitizer-pen for points/0 long name

 Polhemus Inc. US\0

 0002x convexity

 0004x type of � measurement/object

 0002x unit: meter

 meter\0 unit name

 0.5 x-workspace

 0.5 y-workspace

 0.5 z-workspace

 1 handiness of workspace

 0.001 x-error

 0.001 y-error

 0.001 z-error

 0.0 x-dimension

 0.0 y-dimension

 0.0 z-dimension

 0.001 x-gap

 0.001 y-gap

 0.001 z-gap

 0002x object form: cylindric

 A last example (no. 3: magnet-resonance images) will

 demonstrate the functionality of this attribute:

 0002x index

´ MRI\0 short name

 Magnes resonance imaging system\0 long name

 Company\0

 0000x convexity

 0004x type of � measurement/object

 0004x unit: meter

 voxel\0 unit name

 25.0 x-workspace

 25.0 y-workspace

 25.0 z-workspace

 1.0 orientation of workspace

 0.001 x-error

 0.001 y-error

 0.002 z-error

 0.0025 x-dimension

 0.0025 y-dimension

 0.002 z-dimension

 0.0 x-gap

 0.0 y-gap

 0.0012 z-gap

 0002x object form: cylindric

0x00001001 SENSOR_COORDINATES (length: any)

 This attribute defines the spatial locations of

 sensor/electrodes in the coordinate space of a given

 coordinate system and may only be present together with a

 COORDINATE_DEFINING_SYSTEM attribute. Each channel may relate

 to only one location within a single coordinate system. The

 value of this attribute is a sequence of channel locations

 and each channel location is a sequence of 5 values:

 - channel number (first channel has the number 0); � unsigned 32-bit integer), followed by

 - the number of the coordinate system (unsigned 32-bit � integer), followed by

 - x-coordinate of the location (floating point number);

 - y-coordinate of the location (floating point number);

 - z-coordinate of the location (floating point number).

0x00001002 CONTOUR_POINTS_LINES (lenght: any)

 This attribute allows to store sequences of 3D points or

 lines measured and recorded by one of the defined

 coordinate/measuring systems and may only be present together

 with a COORDINATE_DEFINING_SYSTEM attribute. Each coordinate

 system may have zero, one or several measured points or

 lines.

 The value of this attribute is a sequence of measurements and

 each measurement is a sequence of

 - an initial index identifying the

 COORDINATE_DEFINING_SYSTEM (unsigned 32-bit integer),

 followed by

 - number of points or lines (unsigned 32-bit integer),

 followed by

 - sequence of points or lines and each point or line is a � sequence of

 - index of the points or line (unsigned 32-bit

 integer), followed by

 - a single-line text-string with the short name (not

 more than 8 characters), follwed by

 - a multi-line description string, defining the name

 of the points or line, followed by

 - number of points (unsigend 32-bit integer),

 followed by

 - sequence of points and each point is a sequence of

 - x-coordinate (floating point number);

 - y-coordinate (floating point number);

 - z-coordinate (floating point number)

 - x-error (floating point number);

 - y-error (floating point number);

 - z-error (floating point number).

 Example (referring to example 2 from the attribute

 COORDINATE_DEFINING_SYSTEM):

 2 index of coordinate system

 2 number of points or lines

 0 index of the first point/line

 top of the nose\0 name of the first point/line

 1 number of points

 0.1 x-coordinate

 0.2 y-coordinate

 0.5 z-coordinate

 0.001 x-error

 0.001 y-error

 0.001 z-error

 1 index of the second point/line

 contourline forehead\0 name of the second

 point/line

 3 number of the points

 3.5 x-coordinate

 4.6 y-coordinate

 0.6 z-coordinate

 0.001 x-error

 0.001 y-error

 0.001 z-error

 3.5 x-coordinate

 4.7 y-coordinate

 0.6 z-coordinate

 0.001 x-error

 0.001 y-error

 0.001 z-error

 3.5 x-coordinate

 4.8 y-coordinate

 0.6 z-coordinate

 0.001 x-error

 0.001 y-error

 0.001 z-error

0x00001004 COORDINATION_TRANSFORMATION_MATRIX (length: any)

 This attribute defines zero, one or several transformation

 matrixes to relate two different coordinate/measuring

 systems. The goal of transformation matrixes is to map

 information related to one of the coordinate systems into the

 other coordinate system, e.g. to map dipol information into

 MRT images. This attribute may only be present together with

 a COORDINATE_DEFINING_SYSTEM attribute. The value of this

 attribute is a sequence of transformation matrixes and each

 transformation matrix is a sequence of

 - single-line text-string (not more than 8 characters),

 followed by

 - multi-line description string, followed by

 - index of coordinate system no. I (unsigned 32-bit � integer), followed by

 - index of coordinate system no. II (unsigned 32-bit � integer), followed by

 - a11 (floating point number);

 - a12 (floating point number);

 - a13 (floating point number);

 - a14 (floating point number);

 - a21 (floating point number);

 - a22 (floating point number);

 - a23 (floating point number);

 - a24 (floating point number);

 - a31 (floating point number);

 - a32 (floating point number);

 - a33 (floating point number);

 - a34 (floating point number);

 - a41 (floating point number);

 - a42 (floating point number);

 - a43 (floating point number);

 - a44 (floating point number).

 The transformation from a point of coordinate system I to

 coordinate system II is realized by the following formula:

 (xI) (a11 a12 a13 a14)

 (yI) = (xII yII zII 0) * (a21 a22 a23 a24)

 (zI) (a31 a32 a33 a34)

 (0) (a41 a42 a43 a44)

0x00001006 RELATED_IMAGES (length: any)

 This attribute defines zero, one or several 2D/3D grey scale

 images which are related to the patient and do not change or

 are not different of those during recording. E.G. MRT or X-

 ray-images of the patient taken before or after the recording

 would not change during recording session. Contrary,

 intraoperative ECoG-recordings require the trepanation of the

 sculp, thus that in this case MRT-images or X-ray images

 taken before or after the recording do not represent the

 patientes anatomy during recording.

 The goal of related images is to map biosignal information

 (dipol, analysis results) related to local anatomy into these

 images. This attribute may only be present together with a

 COORDINATION_DEFINING_SYSTEM attribute. All image data are

 uncompressed.

 The value of this attribute is a sequence of 2D/3D images and

 each 2D/3D images is a sequence of

 - single-line text-string (not more than 8 characters),

 followed by

 - multi-line description text, followed by

 - an index of a coordinate system (unsigned 32-bit

 integer), followed by

 - a data type for the values of the following image

 (unsigned 32-bit integer):

 - 0x00000000 ASCII undefined;

 - 0x00000002 unsigned 8-bit integer;

 - 0x00000004 unsigned 16-bit integer;

 - 0x00000006 unsigned 32-bit integer;

 - a sequence of x*y*z data values where x, y and z are

 defined by the coordinate system.

0x00000018 STIMULATION_SETUP (length: any)

 This attribute defines zero, one or several stimulation

 setups. The goal of defining stimulation setups is to

 identify the fixed parameter and configurations used for

 stimulation during recording whereas changing parameters like

 frequency or drug concentration should be noted when a

 stimulation event occurs. Typical stimulations are e.g.

 accustical, electrical or visual stimulations.

 The value of this attribute is a sequence of stimulation

 setups (several different stimuli can be present at one

 moment) and each stimulation setup is a sequence of

 - a single-line text-string (not more than 8 characters),

 followed by

 - a multi-line description text, followed by

 - a physical unit (SI unit, e.g. mA, mV, mmol) which is a

 sequence of

 - a multiplyer with which a value must be multiplied

 (floating point number) and

 - a single-line text-string (not more than 8

 characters long) containing the usual abbreviation

 for the SI unit, followed by

 - a pattern that is by itself an EBS-file defining a image

 or a signal, duration etc.

0x0000001a CODING_TABLE (length: any)

 This attribute defines a coding table for the data part when

 it is coded according to the Huffman coding algorithm (see

 appendix G). This attribute may only be present when the

 encoding ID in the fixed header (see 2.3) indicates that

 huffman coding is used.

 The attribute contains of

 - a single-line text-string with the short name (not more

 than 8 characters), followed by

 - a multi-line description string, followed by

 - an encoding ID of the uncompressed data part (unsigned

 32-bit integer), followed by

 - a number h of table elements (unsigned 32-bit integer)

 - a sequence of h quartuples of

 - an uncompressed signal value o(h) - the data type is

 the same as used in the uncompressed data part - ,

 followed by

 - a related code value c(h) - the data type is the same

 as used in the uncompressed data part - , followed by

 - a length identifier (unsigned byte) that defines how

 many bits of the coded value c(h) should be used,

 followed by

 - the related histogramm value (unsigned 64-bit

 integer) that is the amount of o(h) within the

 uncompressed data.

0x00001009 3D-SPACE_REFERRING_EVENTS (length: any)

 This attribute allows to mark events or time intervals in the

 recording for all channels together or for individual

 channels. Each event or interval belongs to one event list

 and each event list has a short name and a description text.

 In addition, each single event or interval may have a the

 coordinates of a vector. In contrast to the attribute of

 EVENTS this attribute handles time-related coordinates. This

 attribute may only be present together with a

 COORDINATE_SYSTEM attribute. The attribute contains a

 sequence of event lists. The number of event lists is

 determinated by the length of the attribute. Each event list

 consists of

 - a single-line text-string with the short name (not more � than 8 characters), followed by

 - multi-line description string, followed by

 - the number e (unsigned 32-bit integer) of

 events/intervals in this event group, followed by

 - index of coordinate-system (unsigned 32-bit integer)

 the events relate to.

 Each single event or interval in an event list is described

 by the following sequence

 - An unsigned 32-bit integer channel number. The first � channel is represented by number 0 and 0xffffffff � indicates that this event or interval is not associated � with a single channel.

 - An unsigned 64-bit integer number that represents the � position (the first sample has position 0) of the event

 or the start position of an interval.

 - An unsigned 64-bit integer number the has the value � 0x0000000000000000 for events or represents the length

 of an interval if it has any other value.

 - A single-line text-string (as usual not more than 64 � characters long) may contain a textual description of

 the type of event or interval that has been marked or

 just an empty string.

 - A sequence of coordinates that defines a vector in the

 3D-space (e.g. a dipol) where the point (x1, y1, z1) is

 the origin of the vector and the point (x2, y2, z2) is

 the top of the vector.

 - x1-coordinate (floating point number);

 - y1-coordinate (floating point number);

 - z1-coordinate (floating point number);

 - x2-coordinate (floating point number);

 - y2-coordinate (floating point number);

 - z2-coordinate (floating point number);

 - x1-error (floating point number);

 - y1-error (floating point number);

 - z1-error (floating point number);

 - x2-error (floating point number);

 - y2-error (floating point number);

 - z2-error (floating point number).

 Another representation of vectors with origin, length

 and angles of the vector which is widely used can be

 easily calculated.

 The whole event/interval sequence in each event list

 consists of these event/interval descriptions sorted

 ascending by their start sample number (second integer

 value).

0x00001019 IMAGING_EVENTS (length: any)

 This attribute allows to mark events or time intervals in the

 recording for all channels together or for individual

 channels. Each event or interval belongs to one event list

 and each event list has a short name and a description text.

 In addition, each single event or interval may have a 2D/3D

 uncompressed grey scale image as they are used in MRT or

 ultrasonic. In contrast to the attribute of EVENTS this

 attribute handles time-related images. This attribute may

 only be present together with a COORDINATE_DEFINING_SYSTEM

 attribute. The attribute contains a sequence of event lists.

 The number of event lists is determinated by the length of

 the attribute. Each event list consists of

 - a single-line text-string with the short name (not more � than 8 characters), followed by

 - multi-line description string, followed by

 - the number e (unsigned 32-bit integer) of

 events/intervals in this event group, followed by

 - the index of the coordinate system (unsigned 32-bit � integer), followed by

 - a data type for the values of the following image

 (unsigned 32-bit integer):

 - 0x00000000 ASCII undefined;

 - 0x00000002 unsigned 8-bit integer;

 - 0x00000004 unsigned 16-bit integer;

 - 0x00000006 unsigned 32-bit integer.

 Each single event or interval in an event list is described

 by the following sequence

 - An unsigned 32-bit integer channel number. The first � channel is represented by number 0 and 0xffffffff � indicates that this event or interval is not associated � with a single channel.

 - An unsigned 64-bit integer number that represents the � position (the first sample has position 0) of the event

 or the start position of an interval.

 - An unsigned 64-bit integer number the has the value � 0x0000000000000000 for events or represents the length

 of an interval if it has any other value.

 - A single-line text-string (as usual not more than 64 � characters long) may contain a textual description of

 the type of event or interval that has been marked or

 just an empty string.

 - a sequence of x*y*z data values where x, y and z are

 defined by the coordination system.

 The whole event/interval sequence in each event list consists

 of these event/interval descriptions sorted ascending by

 their start sample number (second integer value).

Feel free to use those of the attributes you need, to use none at all

or to define your own attribute tags as described in the next

appendix.

Appendix B -- Tag Number Ranges for Your Own Tags

The standardized attribute tags from appendix A cover already many

applications, but some people need their own special additional

attributes. This appendix describes, how they should select their

attribute numbers so that collisions are unlikely if they later

exchange their files and software with other institutions, where their

private attribute tag numbers might perhaps have already a different

meaning if they have been selected without care.

In order to avoid collisions, the range of tag numbers is separated

into 4 parts. In this way, the following methods for assigning new

tags are possible:

 - The EBS coordinator (see appendix C) may assign additional new

 attributes in this text that will have numbers in the STANDARD

 AREA when the need for new common and well-known standard

 attributes arises.

 - The EBS coordinator may reserve intervals in the RESERVATION AREA

 of the tag number range for people or institutions that request

 these intervals from the author. They can then assume that nobody

 else will use tag numbers in this range with different meanings

 and may again reserve subranges within their range to other

 people.

 - Everybody may define his/her own attribute tag without prior

 communication with the EBS coordinator or with someone possessing

 an interval in the RESERVATION AREA by using a tag number in the

 FREE AREA. In order to keep the odds of a collision still small,

 you should use a really random tag number in the FREE AREA [I.e.

 throw a coin for the remaining 29 bits. Calculating the

 probability of at least 2 people having selected the same random

 tag number if c people selected one is left as an exercise for the

 reader.]

 - As many private attribute types are expected to contain

 single-line or multi-line text-strings (e.g. like in DESCRIPTION),

 these private attributes should use numbers from the FREE STRING

 AREA instead of the FREE AREA, so programs that allow to display

 even unknown attributes know that they can display them correctly

 as strings and not only as e.g. hexadecimal numbers.

The ranges of the tag number space are:

 0x0000000 FINAL TAG

 must not be used as an attribute tag

 number.

 0x00000001 - 0x0000ffff STANDARD AREA

 attribute tags defined in appendix A

 of this text

 0x00010000 - 0x7fffffff RESERVATION AREA

 attribute tags defined in intervals

 that have been individually reserved

 by the EBS coordinator for people or

 institutions uniquely. These people

 may again reserve subintervals of

 their tag area for other people,

 etc. So no one has to fear that his

 attribute tag will be used by someone

 else with a different meaning by

 accident which might cause confusion

 later. Contact the EBS coordinator if

 you need your own interval.

 0x80000000 - 0x87ffffff FREE AREA

 attribute tags that may be freely used

 by everyone with the risk that the same

 attribute is also used by someone else

 for a different purpose. Please use a

 random number within this interval and

 do not simply start at 0x80000000.

 0x88000000 - 0xfffffffe FREE STRING AREA

 These tag numbers may be used as

 freely as those in the FREE AREA, but

 universal programs that allow to

 display even unknown attributes may

 assume that the values of attributes

 with tags in the FREE STRING AREA may

 be interpreted as single displayable

 multi-line text-strings.

 0xffffffff ILLEGAL TAG

 may not be used as an attribute tag

 number.

Please remember that the least significant bit of the tag number

indicates whether it might be necassary to change the attribute

contents if the data part has been modified and thus can't be selected

at random.

Appendix C -- EBS coordinator

The EBS coordinator is a person or a committee that coordinates the

definition of new standard encoding IDs and attribute tags. The EBS

coordinator may assign new standard encoding IDs in the range

0x00000000 to 0x7fffffff, new attribute tags in the STANDARD AREA (see

appendix B) and may reserve attribute tag ranges in the RESERVATION

AREA for organizations or individuals. The latest version of this EBS

standard with all defined attributes in the STANDARD AREA and a list

of reserved intervals in the RESERVATION AREA are available from the

EBS coordinator.

The current EBS coordinator is the author of this text,

 Gunther Hellmann, Markus Kuhn

 Working Group Biocybernetics (Prof. Dr. Spreng)

 Institut fuer Physiologie und Experimentelle Pathophysiologie

 Universitaetsstr. 17

 D-91054 Erlangen

 Germany

 Internet Mail: ftpebs@rrze.uni-erlangen.de or

 hellmann@ipb.uni-erlangen.de or

 mskuhn@cip.informatik.uni-erlangen.de

 Anonymous FTP: ftp.uni-erlangen.de pub/ebs/

 <URL: ftp://ftp.uni-erlangen.de/pub/ebs>

Appendix D -- Rationale of the Format Design

--

The primary design goal of this file format has been to make it just

as complex as necessary, but not too complex. A classical design rule

is that systems which are suitable for 80% of all possible

applications cost only 20% of the price of systems that are suitable

for 99% of all possible applications. So we decided to make the

following limitations in order to keep the costs of implementation

small:

 - all channels have the same data type and encoding

 - all channels have to be recorded with the same sample rate

 - all channels have equal length in time (i.e. have equal number of

 samples.

These restrictions seem to be acceptable for most kinds of scientific

applications of a bio-signal format, because most recording devices

have similar limits. Where these fundamental limitations of the EBS

format are not appropriate, several EBS files can be used to store the

complete data set.

The overall structure of the file format is dominated by the

separation in 3 parts: fixed header, one or two variable headers and

the data part.

We decided not to use a pure ASCII format, because encoding and

decoding the data part as ASCII numbers separated by space, tab or new

line codes is extremely inefficient in both required storage space and

coding time. E.g. 16-bit signed integers need 48 bits in a fixed

length ASCII decimal encoding (like in '-03445') and e.g. about 28-35

bits for typical 12-bit EEG data if a format with separating spaces

and without leading zeros is used (which is a variable length format

unsuitable for direct addressing of sample values). Even a hexadecimal

format would have doubled the memory requirements and would have made

some very efficient implementation techniques impossible. The fact

that computer systems with word sizes that are not powers of two

(e.g. the old 12-bit PDPs) have nearly completely disappeared in the

scientific environment allows an efficient binary format to be used in

a portable way.

We could have decided to encode at least the headers as ASCII

text. This would have been seen by many people as very easy to

understand, but would have had the following disadvantages:

 - A 7-bit or 8-bit character set (e.g. ISO 8859-1 Latin 1) is only

 acceptable in English speaking countries and perhaps western

 Europe, but not (especially not in clinical environments) in the

 rest of the world. A binary format allows us to use UCS-2 which

 won't make implementation more difficult if the conversion to the

 local character set is performed in the string read/write

 procedures.

 - Some people try to modify and fix ASCII header formats with their

 editors and often destroy data in this way, either because they

 haven't read the specification and don't know exactly what they

 change or because the editor corrupts the binary data part. A

 binary header format discourages these efforts and changes can

 only easily be made with programs where the developers must in any

 case be familiar with the specification and where consistency

 checks are possible.

 - If length indicators instead of line feeds are used to separate

 attribute values, arbitrary attribute values (e.g. even digitized

 photos, voice annotations, etc.) can be stored as attributes

 without problems. In an ASCII notation, awkward encodings would be

 necessary for these attribute types.

 - ASCII attribute notations would have made it very difficult to add

 a second variable header ('footer') after the data part.

 - No portable standard exists for ASCII files. At least four line

 separation conventions are known (CR+LF, CR, LF, NL).

We did not use data format specification languages like ISO 8824

(ASN.1) and complex binary data format syntaxes like ISO 8825 (BER).

These standards have been designed for much more complicated

applications. They require a significant amount of time (the ASN.1

standard is over 100 pages long) and experience for implementation,

which would make an ASN.1 based format not appropriate in a scientific

environment (at least not until good ASN.1/BER tools are widely

available). Consequently, we designed a much simpler header format

that won't force a programmer to learn complex and difficult universal

format specifications that will never be fully exploited in this

special application field.

The fixed header contains only the information needed by all programs

in order to read in the data set and in order to determine whether the

data can be read in at all or if the file is encoded in an unsupported

way. The purpose of the first 8 bytes is to allow programs that can

read in other formats in addition to EBS to detect if the current

input file has been stored in EBS format or not. We obviously

selected the name of the format in ASCII characters as the first 3

bytes. The remaining 5 bytes have been selected so that they will most

likely be altered if something has been made wrong during a file

transmission. These bytes are:

 0x94: An arbitrary byte with the most significant bit set to 1.

 Not 8-bit clean channels or character set translation

 functions will likely change this byte. It should also be

 changed as a version indicator if incompatible changes are

 made to this specification.

 0x0a: ASCII control character line feed (LF). File transfer

 programs sometimes add a 0x0d (CR) after this byte.

 0x13: ASCII flow control character Ctrl-S stops transmission

 on some channels and is removed on others.

 0x1a: Ctrl-Z is the MS-DOS end-of-file marker and will cause

 problems if the file has not been opened in binary mode.

 0x0d: ASCII control character carriage return (CR) will be

 removed by some file transfer programs.

These additional test bytes have only been added, because they are

very easy to implement and might help to detect common file handling

errors more quickly. They do NOT guarantee data integrity. We felt

that mechanisms for data integrity like checksums, digital signatures

and forward error correction codes should be applied to complete EBS

files with more general packing/encryption tools where this is

necessary and should not be included in the EBS specification.

Some system tools like graphical file managers detect file types by

characteristic first bytes. In this way, EBS files can easily be

represented with a suitable icon.

In order to make it easier to read in the file headers as memory

mapped files with processors that can only read 32-bit integer values

starting on 32-bit boundaries in the memory, all 32-bit values in the

EBS file start on 32-bit boundaries. In addition, the two 64-bit

values in the fixed header start on 64-bit boundaries. The consequence

of this layout is that all strings, etc. in the headers have to be

padded with 0x00 bytes to the next 32-bit boundary, but this can

easily be done (together with the UCS-2 translation) in the string

read/write routine, etc. once and for all times.

The number of samples must be specified in the fixed header, because

it can not be determined for all encodings from the file length,

because it is in some applications necessary to know it in advance for

memory allocation and because it is necessary to find the first sample

value of each channel in CHANNEL-BASED ORDER encodings. All integer

values in the fixed and variable headers are stored with at least

32-bit, because today's computers can operate easily with these values

and because more integer formats (e.g. also 8-bit and 16-bit) would

need more read/write functions and would make 32-bit alignment more

difficult.

The variable header is one of the reasons for the flexibility of the

format. Arbitrary information can be stored in it, but programs only

have to pick out the attributes which they are interested in. It would

have been possible to specify the length of the first variable header

part or the start of the data part in the fixed header. But this would

have made it necessary to calculate the length of the variable header

in advance which is quite clumsy to implement or it would have been

necessary to jump back to the fixed header after the variable header

had been written which makes pipeline processing and sequential file

access impossible. Jumping over the variable header by looking at the

attribute length indicators is quite easy to implement on the other

hand.

It is better to have the variable header stored in front of the data

part if it should be readable while the data is still written or if

pipeline processing is used. A variable header at the end of the file

has the advantage that modifications to it are possible without having

to make a copy of the whole file in order to move the encoded data

(which might often comprise many hundred megabytes and would need a

lot of time and temporary storage to copy). Consequently both places

are available for variable header information.

In the variable header, one of the simple types must be able to

represent real numbers. Among the alternatives

 - a fraction of two 32-bit integer numbers

 - an 8-byte double precision floating point number according to

 IEEE 754 (the representation used by most floating point hardware

 today).

 - a string representation of the written floating point number

 (e.g. '3.14E-9')

we decided to use the string representation, because the value range

of the fraction is quite limited and some programmers might find it

difficult to implement a correct read/write procedure for IEEE 754

floating point numbers if the internal representation used by the

system is a different one. The string representation seemed to be the

easiest and most portable alternative and allows arbitrary

precision. Efficient coding is important in the data part but in most

attributes not in the relatively small variable header.

The currently defined signed 16-bit integer data type for the data

part seems to be suitable for nearly all applications, because it

allows efficient processing of data from 12-bit A/D converters and

because converters with more than 16-bit are used only by very few

people. A 12-bit data type would have made processing a little bit

more difficult and the storage gain is still higher with the 8-bit

difference encoding of 16-bit values. However, adding further data

types to EBS like 8-bit signed integers and 4-byte floating point

numbers is easily possible.

The TIME-BASED ORDER format is the natural choice for recording

equipment and other applications where the number of samples is not

known in advance. The CHANNEL-BASED ORDER is much more efficient for

processing applications that use only the data of one channel at a

time, because then, only the bytes for this channel have to be fetched

from mass storage devices. As there are good reasons for both

alternatives and as they can easily be converted, both are supported

in the EBS format. In a typical EBS usage scenario a conversion

program from a vendor specific recording equipment to EBS is necessary

and it is a good idea to do the TIME-BASED ORDER to the more efficient

CHANNEL-BASED ORDER conversion in this program.

The only compatibility problem for binary formats is that there exist

two different integer encodings on the hardware market: Bigendian and

Littleendian. Both alternatives are supported in EBS, because they can

easily be converted and because this allows at one Institution all

data to have the format optimized for the local hardware. However, the

performance gains of a suitable byte sex are not as serious as those

of the decision for a binary encoding or for the CHANNEL-BASED ORDER,

so using the Bigendian format as the preferred format (i.e. CIB_16) is

encouraged.

The number of predefined attributes has been limited as much as

possible, because this makes the implementation of most of them more

likely. It would have been possible to add much more text attributes

(e.g. who did the recording, type of equipment, diagnosis, ...), but

all of this information can easily be included in the DESCRIPTION or

in the PROCESSING HISTORY attribute. The INSTITUTION attribute has

been added as an exception to this rule, because some people prefer to

have this string printed or displayed separately at a prominent place

by their software. The attributes PROCESSING_HISTORY, CHANNEL_GROUPS

and EVENTS have no special integer value with the number of processing

steps, channel groups or events, because this allows attribute

management functions that simply add a few bytes at the end of an

attribute value to be used universally to add another item to these

lists.

Appendix E -- Implementation Hints

A program reading an EBS file might e.g. look like the following one

which is written in ANSI C. This example fragment of program reads the

fixed and both parts of the variable header. The patient name is

printed if present and all other attributes will be ignored. The final

fseek() call jumps to the beginning of the recorded sample values of a

selected channel.

/* Demo program for reading EBS files */

#include <stdio.h>

/* for old (non ANSI C) versions of stdio.h */

#ifndef SEEK_SET

#define SEEK_SET 0

#endif

/* Read in a Bigendian 32-bit integer from a file */

long fgeti32(FILE *f)

{

 long i;

 i = (long) getc(f) << 24;

 i |= (long) getc(f) << 16;

 i |= (long) getc(f) << 8;

 i |= (long) getc(f);

 return i;

}

int main(int argc, char **argv)

{

 FILE *fin;

 unsigned long samples_hi, samples;

 unsigned long length_hi, length;

 int channels;

 unsigned long tag;

 unsigned long attribute_length;

 long pos, data_start;

 int second_part, ready;

 unsigned short c;

 /* ... open fin, etc. ...*/

 /* read fixed header */

 if ((fgeti32(fin) != 0x45425394) ||

 (fgeti32(fin) != 0x0a131a0d) ||

 (fgeti32(fin) != 0x00000001) ||

 feof(fin)) {

 fprintf(stderr, "Input file is not in EBS CIB-16 format!\n");

 exit(1);

 }

 channels = fgeti32(fin);

 samples_hi = fgeti32(fin); /* number of samples: 2x32-bit */

 samples = fgeti32(fin);

 length_hi = fgeti32(fin); /* length of data part: 2x32-bit */

 length = fgeti32(fin);

 if (samples_hi != 0 ||

 (length_hi != 0 && !(length_hi == 0xffffffff && length == 0xffffffff))) {

 fprintf(stderr, "Input file is too long for this program!\n");

 exit(1);

 }

 /* read variable header */

 second_part = 0;

 ready = 0;

 do {

 /* read attributes until final tag appears */

 while ((tag = fgeti32(fin)) != 0) {

 attribute_length = fgeti32(fin);

 pos = ftell(fin);

 switch (tag) {

 case 4: /* PATIENT_NAME */

 printf("patient name is ");

 do {

 c = fgetc(fin) << 8; /* read in 16-bit Unicode character */

 c |= fgetc(fin);

 if (c) {

 if (c < 127) putchar(c); /* print only ASCII characters and */

 else putchar('?'); /* '?' for other Unicode characters */

 }

 } while (c);

 printf(".\n");

 break;

 default:

 /* just ignore other attributes */

 break;

 }

 /* jump to the next attribute */

 fseek(fin, pos + attribute_length * 4, SEEK_SET);

 }

 if (!second_part) {

 /* if there is a second variable header part then remember

 the start of the data part and jump over it */

 data_start = ftell(fin);

 if (length_hi != 0xffffffff || length != 0xffffffff) {

 second_part = 1;

 fseek(fin, data_start + length * 4, SEEK_SET);

 } else ready = 1;

 } else ready = 1;

 } while (!ready);

 /* read data */

 fseek(fin, data_start + (<channel-of-interest> - 1) * samples * 2,

 SEEK_SET);

 /* ... */

}

Library functions for reading/writing/modifying EBS files allow much

easier EBS file management.

Appendix F -- The CGM Format

This appendix contains only a very brief introduction into the CGM

graphic file format which is used to store graphical diagrams in the

LOCATION_DIAGRAM attribute. This description might be sufficient for a

primitive implementation of the minimal subset defined for

LOCATION_DIAGRAM, but implementors are encouraged to read the official

standard (ISO 8632-1 for the specification of the functionality and

ISO 8632-3 about the binary encoding) or at least a book about CGM. In

case of ambiguities, this appendix should be ignored.

A binary encoded CGM file consists of a sequence of CGM elements very

similar to the attributes in the EBS variable headers. Most integer

values are 16-bit long, are stored with the most significant byte

first (Bigendian) and have a 16-bit alignment. The elements have a

class number and an identifier number (both together used like the EBS

tag number) and a length indicator. Two forms are possible: a

short-form element for element parameter data lengths between 0 and 30

bytes and a long-form element for arbitrary parameter lengths.

A short-form element starts with a 16-bit header of the form

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit

 | class | identifier | length |

and is followed by the number of data bytes indicated in the lower 5

bits which are the parameters of this element. If the number of data

bytes is odd, a single zero padding byte follows which gives the whole

element including the two header bytes an even number of bytes and

preserves the 16-bit alignment. The data length in a short form

element may be between 0 and 30 bytes.

Long-form elements start with a 32-bit header of the form

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit

 | class | identifier | 1 1 1 1 1| word 1

 +---+

 | P| partial length | word 2

followed by between 0 and 32767 bytes. If the bit P (partition flag)

is 1, then after the indicated number of data bytes another word with

a partition flag and a 15-bit partial length field follows which is

again followed by the indicated number of data bytes and if its P bit

is still 1, another length word will follow after the data bytes,

etc. A very long long-form element might look like this:

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit

 | class | identifier | 1 1 1 1 1| word 1

 +---+

 | 1| partial length | word 2

 +---+

 ... 'partial length' bytes ...

 +---+

 | 1| partial length |

 +---+

 ... 'partial length' bytes ...

 +---+

 | 0| partial length |

 +---+

 ... 'partial length' bytes ...

A zero padding byte is added again after the element if the number of

bytes of the element is odd in order to preserve the 16-bit

alignment.

The following elements are used in the minimal subset for

LOCATION_DIAGRAM:

 element name class identifier

 no-op 0 0

 BEGIN METAFILE 0 1 *

 END METAFILE 0 2 *

 BEGIN PICTURE 0 3

 BEGIN PICTURE BODY 0 4

 END PICTURE 0 5

 METAFILE VERSION 1 1 *

 METAFILE ELEMENT LIST 1 11 *

 VDC EXTENT 2 6

 POLYLINE 4 1

 * these elements must be present in every CGM file

A CGM file (and consequently also a LOCATION_DIAGRAM value) starts

with a BEGIN METAFILE element which is followed by a part called

'metafile descriptor'. After the metafile descriptor elements follow

zero, one or several pictures and finally an END METAFILE element.

No-op elements can have any parameter length and have to be ignored.

 --

 | BEGIN METAFILE | metafile descriptor | pictures ... | END METAFILE |

 --

Reading applications may ignore the data part of BEGIN METAFILE and

simple writing applications should put a single zero byte in the data

part of this first element (followed by a padding byte). The END

METAFILE element has no parameters, its length field is always

zero. The metafile descriptor must contain at least the two elements

METAFILE VERSION and METAFILE ELEMENT LIST. Simple reading

applications may just ignore them and simple writing applications

should give METAFILE VERSION a single 16-bit integer value 1 as its

parameter. The parameter of METAFILE ELEMENT LIST is a list of the

class and identifier codes of the non-mandatory elements that might

appear in the file (which allows to determine quickly which subset of

CGM is supported by the application that wrote the file). Programs

that write only CGM files using this minimal subset should use the 11

16-bit integer numbers 5 (the number of elements specified), 0, 3, 0,

4, 0, 5, 2, 6, 4 and 1 as parameters to METAFILE ELEMENT LIST.

The BEGIN METAFILE element and the suggested metafile descriptor look

like this

 0x00,0x21,0x00,0x00,

 0x10,0x22,0x00,0x01,

 0x11,0x74,0x00,0x05,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x04,

 0x00,0x00,0x00,0x05,0x00,0x02,0x00,0x06,0x00,0x04,0x00,0x01

The END METAFILE element is

 0x00,0x40.

After the metafile descriptor elements, a sequence of pictures

follows. Each picture has the following structure:

 | BEGIN PIC. | pic. descr. | BEGIN PIC. BODY | pict. elem. | END PIC. |

Each picture starts with a BEGIN PICTURE ELEMENT and ends with an END

PICTURE element. Reading applications may ignore the parameter of

BEGIN PICTURE and simple writing applications can just use a single

zero byte (as with BEGIN METAFILE). The elements BEGIN PICTURE BODY

and END PICTURE have no parameters (i.e., their length field is always

zero). The BEGIN PICTURE BODY element separates the picture

descriptor elements from the elements that represent the graphical

objects (here only lines) of the picture.

The only required picture descriptor element in this minimal subset of

CGM is VDC EXTENT. It has 4 16-bit signed integer values as parameters

(length 8 bytes): The X coordinate of the lower left corner, the Y

coordinate of the lower left corner, the X coordinate of the upper

right corner and the Y coordinate of the upper right corner. These two

points define the VDC extent, a rectangular area which contains the

parts of the coordinate space that contains the diagram. Display

software must be capable of scaling the VDCs (virtual device

coordinates) used in the picture elements so that the VDC extend is

always mapped to a suitable size on the output device. This scaling

should use the same scaling factor for each axis in order to preserve

the aspect ratio. The positive direction of the X and Y axis is also

determined by the VDCs of the lower left and the upper right points

given in the VDC EXTENT element.

The only required graphical picture element in this subset that may

appear between BEGIN PICTURE BODY and END PICTURE BODY is POLYLINE.

This element represents a sequence of connected lines. Its parameters

are 2*p 16-bit signed integer values (length field: 4*p) which are

VDCs of p points stored as pairs of X and Y coordinates. The line is

drawn from the first point to the second, from the second point to the

third, ..., and from point p-1 to point p.

If unknown elements appear in a CGM file, the application should

either warn the user that it might not be able to display the full

diagram correctly and ignore the unknown elements or it may ignore the

whole CGM file.

[Note: Using the CGM standard as the format for the LOCATION_DIAGRAM

attribute allows easy extension of the graphical capabilities of this

attribute, because only the used subset of CGM has to be enlarged and

no new graphic format extensions have to be invented. In addition it

allows to use existing CGM tools for designing the diagrams.]

Appendix G -- Huffman encoding

tba.

Appendix H -- Glossary

attribute -- An information field identified by an attribute tag

number and delimited by a length indicator which may contain an

arbitrary sequence of bytes with additional information describing the

bio-signal data stored in an EBS file. The one or two variable header

parts of an EBS file contain the attributes.

attribute value -- This is the sequence of bytes contained in an

attribute. Its length is always a multiple of four bytes and may be

up to 16 gigabytes.

Bigendian -- In 'Gulliver's travels' by Jonathan Swift a politician

which insists on opening an egg on the big end first. In computer

architecture the property of a microprocessor to store the more

significant bytes of a word at the lower addresses in

memory. Littleendians do it the other way.

CGM (computer graphics metafile) -- A file format for storage of

pictures as collections of graphical elements (e.g. lines, text,

circles, etc.) defined in ISO 8632.

channel-based order -- A data part layout in which the sample values

of a single channel for the complete recording time are stored

together sorted by the recording time. All these channel recordings

are stored together sorted by their channel number.

compressed encoding -- A storage representation of sample values that

is more efficient in storage capacity than the natural encoding of

using equally sized machine words for each sample value independently

of all other sample values.

data part -- This is the part of an EBS file that contains nothing but

encoded bio-signal data values (and up to 3 zero padding bytes at the

end if a second variable header is present).

EBS (extensible bio-signal file format) -- The type of computer file

specified in this text suitable for the exchange, processing and

storage of bio-signal recordings and additional information.

first variable header part -- The attributes and the first final tag

that are located directly after the fixed header and before the data

part.

fixed header -- The first 32 bytes of every EBS file form the fixed

header, which contains information needed by all programs that process

EBS files.

ISO -- Short name for the 'International Organization for

Standardization' in Geneva. You can order ISO standards from your

local national standards body (e.g. ANSI, DIN, BSI, AFNOR, etc.).

Littleendian -- see Bigendian.

multi-line text-string -- A simple data type that is used as a part of

many attribute value syntaxes. If not otherwise specified, it should

not contain more than 64 characters per line encoded in the UCS-2

character set. Lines are separated by the line feed control character

0x000a.

recording -- A complete collection of all sample values within a

certain interval of time measured at a certain sample frequency.

sample value -- A numeric representation of a physical or other

quantity at a point of time associated with a channel.

second variable header part -- The attributes and the final tag that

are located directly after the data part. This part of the variable

header may be absent.

single-line text-string -- A simple data type that is used as a part

of many attribute value syntaxes. If not otherwise specified, it

contains up to 64 characters encoded in the UCS-2 character set and no

line feed control characters.

tag -- An attribute tag is a 32-bit number that identifies the type of

an attribute, i.e. it indicates the syntax and semantic of an

attribute value.

time-based order -- A data part layout in which the sample values of a

single point in time are stored together sorted by the number of their

channel. All collections of these samples for a single point in time

are stored together sorted by their recording time.

UCS-2 -- The 2-byte encoding of the 'Universal Multiple-Ocetet Coded

Character Set' (UCS) defined in ISO 10646. This character set is also

known under the more popular name 'Unicode'.

variable header -- The part of an EBS file that contains the

information which is only needed by some applications. This

information is stored in attributes.

Appendix I -- References

American National Standard Institute (ANSI): Coded character set - American National Standard Code for Inforation Interchange (7-Bit ASCII), ANSI X3.4, New York, 1986.

International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) Information technology - Computer graphics - Metafile for the storage and transfer of picture description information. 2. edition, 8632, Genf, 1992. (Part 1-4).

International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC), Information technology - Universal Multiple-Octet Coded Character Set (UCS). 1. edition, 10646-1, Genf, 1993. (Part 1).

Hellmann, G., Kuhn, M. Prosch, M. Spreng, M., Stefan, H.: Entscheidungen zur EEG/MEG-Datenspeicherung: Untersuchungen zu Kosten, Kompression und Langzeitarchivierung, Epilepsie-Blätter, Gemeinsame Tagung der Deutschen, Italienischen und Österreichischen Sektion der Internationalen Liga gegen Epilepsie in Meran, S. 13, 1993

Hellmann, G., Prosch, M., Spreng, M. and Stefan, H. An extensible Biosignal-Data-Format. 1. Symposium on clinical Magnetometry, Hamburg, 1994.

Hellmann, G., Kuhn, M. Prosch, M. Spreng, M., Stefan, H.: Entscheidungen zur EEG/MEG-Datenspeicherung: Untersuchungen zu Kosten, Kompression und Langzeitarchivierung, in (Stefan, H., Canger, R., Spiel, G. Hrsg.): Epilepsie '93, Gemeinsamen Jahrestagung der Deutschen - Italienischen - Österreichischen Sektion der Internationalen Liga gegen Epilepsie in Meran, S. 298-300, 1994

Hellmann, G., Prosch, M., Spreng, M.: Extensible Biosignal (EBS) File Format, CD-ROM, AMICE (Strategic Alliances between Patient Documentation and Medical Informatics), 1995, Amsterdam

Hellmann, G.; Prosch, M.; Spreng, M. An Extensible Biosignal (EBS) File Format for Data Exchange, World Congress on Telemedicine, Toulose, 1995

Hellmann, G.; Prosch, M.; Spreng, M. An Extensible Biosignal (EBS) data format, in (Jan, J.; Kilian, P.; Provaznik, I. eds.) Analysis of Biomedical Signals and Images, vol.13, Technical University Brno Press, 1996

Hellmann, G.; Kuhn, M.; Prosch, M.; Spreng, M. Extensible Biosignal (EBS) File Format - Simple Method for EEG Data Exchange. in press, EEG clinic. Neurophysiol., 1996

Hellmann, G.; Prosch, M., Spreng, M., Stefan, H. An Extensible Biosignal (EBS) file format for data exchange. accepted, European Congress on Epileptology, Den Haag, 1996

Hellmann, G.; Prosch, M.; Spreng, M. Three years experience with an Extensible Biosignal (EBS) file format for data exchange, submitted, 3. Hans-Berger Congress, Jena, 1996

Kernighan, B.W. and Ritchie, D.M. Programming in C. 2. edition, Munich: Carl Hanser Verlag and Prentice-Hall International, 1990.

Kuhn, M. Specification of the EBS File Format for the Processing of Bio-Signals. version 1.7, Institut für Physiologie und Biokybernetik, Universität Erlangen-Nürnberg, 1993.

Kuhn, M., Prosch, M.: Vorschlag für ein Dateiformat für die Verarbeitung, die Archivierung und den Austausch von Biosignal-Daten, Tagungsband, Deutsche Gesellschaft für Medizinische Physik, S. 116, Erlangen, 1993

Prosch, M. Graphical user interface for the visualization of EEG/ECoG/MEG recordings and the parallelization of signal analyses in epileptic diagnosis on workstation clusters (in German). diploma, Institut für Physiologie und Biokybernetik und IMMD VII, Universität Erlangen-Nürnberg, 1994.

Schamburger, R. Implementation of data transform routines for EBS-files providing preprocessing and analysing and easy creation of test files using parallel concepts (in German). internal report, Institut für Physiologie und Biokybernetik und IMMD VII, Universität Erlangen-Nürnberg, 1995.

Scheel, A. Implemention of a data management system for EBS-files for efficient intraclinical exchange of biosignals (in German). internal report, Institut für Physiologie und Biokybernetik und IMMD VII, Universität Erlangen-Nürnberg, 1995.

Spreng, M., Hellmann, G., Hofmann, W., Kuhn, M., Prosch, M. and Stefan, H. Epilepsy diagnostics using biosignal processing on a PC/WS-cluster with an extensible file format (in German). BMT-Kongress '94, Rostock, 1994.

Spreng, M., Hellmann, G., Kuhn, M., Reinartz, K.-D., Stefan, H.: Unsupervised EEG/ECoG/MEG Classification in Epilepsy Using Array Processors, Second International Hans Berger-Congress, in (Eiselt, M.; Zwiener, U.; Witte, H. Hrsg.): Quantitative and topological EEG and MEG analysis, Universitätsverlag Druckhaus-Mayer, Jena, S. 133-136, 1995

Taegert-Kilger, C. Functions for mixing and cutting of parts of EBS files (in German). internal report, Institut für Physiologie und Biokybernetik, Universität Erlangen-Nürnberg, 1994.

Index

8-bit

16-bit

32-bit

64-bit

A

attribute

B

bigendian

C

channel

compression

D

data part

data type

E

event

F

floating point number

G

gap

H

header

I

integer

ISO 10646

ISO 84

J

K

L

little-endian

M

MRI

N

O

P

processing history

Q

R

range of tags

S

stimulation

T

tag

U

V

W

X

Y

Z

�

�SEITE �

Specification of the EBS File Format for Bio-Signals	page �SEITE �15�

