
A Bit Naming Convention for Cryptographic
Algorithms

Markus G. Kuhn?

University of Cambridge, Computer Laboratory, New Museums Site,
Pembroke Street, Cambridge CB2 3QG, United Kingdom

mgk25@cl.cam.ac.uk

Abstract. This is a proposal for a simple notational convention, created
in the hope that it will make descriptions of block ciphers, message digest
functions, and similar cryptographic algorithms less ambiguous, easier to
understand, and easier to implement in a portable way, especially in the
context of the eternal Big Endian versus Little Endian wars.

1 Introduction

One obstacle in understanding and correctly implementing the block-cipher spec-
ifications proposed in NIST’s Advanced Encryption Standard (AES) Contest [1]
turned out to be the lack of an unambiguous convention for naming bits [2]. No-
tational conventions used for earlier standards like DES, which were targeted at
hardware implementations, are not appropriate for the description of algorithms
designed for fast software implementations.

The variables of cryptographic algorithms are commonly binary words con-
sisting of 64, 128, 256, or more bits. As examples for such variables, we can
consider a block-cipher that defines a bijection between a plaintext P and a
ciphertext C using a key K. The key K is often expanded into a key schedule
S or into a set of r round-keys R[1], . . . , R[r] and in every round, intermediate
values X[1], . . . , X[r] are generated. All the parameters represented by a capital
letter here will typically not fit into a single machine word of common proces-
sors, therefore they cannot simply be treated as abstract bit arrays or integer
quantities, because their machine representation directly affects the design and
efficient implementation of the algorithm.

In the following, we will refer only to a single example parameter X, and
the notation described with X shall apply equally to all types of variables, no
matter whether they represent plaintext, round keys, etc.

We can refer to a cryptographic variable X in several ways:

– Array of bits. Assigning a number to every bit in a variable might be
the most intuitive view, if we think in terms of a circuit diagram for a
hardware implementation, where processor word sizes and communication
conventions do not matter. A bit-array notation was used in the original
DES specification, since it was designed for hardware implementations.

? Supported by a European Commission Marie Curie training grant

1

– Array of bytes. An array of 8-bit bytes (or “octets” as Francophone and
communications people prefer to say) is the most portable representation.
Practically all commonly used storage media and communication channels
process data as sequences of 8-bit words. Transferring a sequence of 8-bit
bytes between platforms and environments is not a common problem, be-
cause the conventions to transport and manipulate ASCII text correctly are
usually already in place, and ASCII text is just a sequence of 8-bit bytes.

– Array of words. This is the most convenient way of representing an algo-
rithm that has been designed for the efficient software implementation on a
processor with a given word size, for example 32-bit words in the case of the
AES reference platform (Intel Pentium).

Unfortunately, there exists no well established convention to convert between
the bit, byte, and word view of data. This is not a problem specific to crypto-
graphic algorithms, but has been a cause of pain for the designers of file formats,
network protocols, and multi-processor buses since the early days of interoperat-
ing computers [3–9]. It is unclear how to number bits within a byte, bits within
a word, and bytes within a word. Equivalently, there exists no single convention
for which bit or byte in a word is transmitted or stored first on a medium.

The numbering of bits and bytes within words is mostly a documentation
nuisance. The conventions for the transmission of 8-bit byte sequences are usually
well established for each type of interface. The real problem is the assignment
of parts of words to bytes. Two incompatible families of processors support
different memory conventions, which Cohen [3] nicknamed Little Endian if the
least significant byte is transmitted first or stored on the lower address and Big
Endian if the the most significant byte of a word comes first.

Examples for Little Endian processors are the Intel x86, Transputer, VAX,
and MIPS, while examples for Big Endian processors include the Motorola 680x0,
SPARC, Z8000, and RS/6000 processors, as well as the IBM mainframe archi-
tectures [8]. Newer processors, like the PowerPC family, can switch between
both modes [7, 9], while some other architectures use bizarre and inconsistent
mixtures of conventions. Formats specified in one convention force the implemen-
tors of the other camp to waste a few clock cycles on swapping bytes into the
right order, even though many modern processors provide special instructions to
do this extremely efficiently (e.g., BSWAP on the Intel486). Most internationally
standardized file formats and network protocols follow the Big Endian camp
(ASN.1/BER, TCP/IP, XDR, JPEG, JBIG, etc.), which has the advantage of
corresponding to the usual positional notation for numbers.

2 Proposed Conventions

At any time, we view a parameter X as an array of m words, each of which is
n bits long. We refer to the m words in the form X0, . . . , Xm−1 and we refer to
the bits inside a word Xi in the form Xn−1

i , . . . , X0
i . The number of words m

and the word size n are best introduced for each parameter X in the descriptive

2

text and kept unchanged throughout the description. If several different views
of a parameter are really required in a description, then we can also refer to bit
j in word i as X

j|n
i|m for values 0 ≤ i < m and 0 ≤ j ≤ n. Either |m or |n or both

can be dropped from the notation if they are obvious from the context. Only
one of |m and |n has to be present if multiple views of X are used in a text as
long as the total number k = mn of bits in X is clear from the context. We can
also speak of X|m if we treat variable X as an array of m words, and we speak
of X |n if we want to see X as an array of n-bit words.

If a word Xi is interpreted as an unsigned integer value modulo 2n, so that
arithmetic operations can be applied to it, then this shall always be in the sense
of

Xi =
∑

0≤j<n

Xj
i · 2j .

In other words, bit 0 is always the least significant bit (LSB). Note that although
this notation is mathematically intuitive and commonly used in computer ar-
chitectures, it differs from both the TCP/IP convention [10] of numbering the
most significant bit (MSB) with 0 and also from the ISO/ITU convention of
numbering the LSB with 1.

Algorithms intended primarily for hardware implementation should use the
X |1 1-bit array notation, that is the entire value is a sequence X0, . . . , Xk−1

of individual bits (word size n = 1). Algorithms designed for efficient software
implementation on n-bit processors should be described in the X |n notation,
that is as a sequence n-bit words. Transmission formats that might be processed
on different types of hardware should be described in the X |8 format, that is
as a sequence of 8-bit bytes (word size n = 8). Test examples should be given
in the same form in which the algorithm or format is specified, as sequences of
n-bit words in hexadecimal notation.

In the textual or graphical presentation of the bits in a variable, the LSB in
a word should appear rightmost to accommodate the common way of writing
values in positional number systems and also to preserve the notion of arithmetic
operations such as “rotate left”. Arrays of words should be written starting with
index 0 on the left to accommodate the writing direction of the Latin script and
also to remove an unfair bias towards either byte ordering camp.

It should not be within the scope of the standard that specifies a crypto-
graphic algorithm to define a single transformation between the portable X |8

view and the implementation-oriented X |n view of its parameters. A standard
should however name and define possible conventions, and the two commonly
used ones will certainly be the following (assuming that the implementation word
size n is a multiple of 8):

– Big Endian:
X

n−8−(8i mod n)+j|n
b8i/nc = X

j|8
i

For example:

X
31|32
0 , . . . , X

24|32
0 = X

7|8
0 , . . . , X

0|8
0

3

X
23|32
0 , . . . , X

16|32
0 = X

7|8
1 , . . . , X

0|8
1

X
15|32
0 , . . . , X

08|32
0 = X

7|8
2 , . . . , X

0|8
2

X
07|32
0 , . . . , X

00|32
0 = X

7|8
3 , . . . , X

0|8
3

X
31|32
1 , . . . , X

24|32
1 = X

7|8
4 , . . . , X

0|8
4

– Little Endian:
X

(8i mod n)+j|n
b8i/nc = X

j|8
i

For example:

X
31|32
0 , . . . , X

24|32
0 = X

7|8
3 , . . . , X

0|8
3

X
23|32
0 , . . . , X

16|32
0 = X

7|8
2 , . . . , X

0|8
2

X
15|32
0 , . . . , X

08|32
0 = X

7|8
1 , . . . , X

0|8
1

X
07|32
0 , . . . , X

00|32
0 = X

7|8
0 , . . . , X

0|8
0

X
31|32
1 , . . . , X

24|32
1 = X

7|8
7 , . . . , X

0|8
7

It shall be the responsibility of the specification of storage formats and com-
munication protocols to select which transformation between the X |n word view
and the X |8 byte view has to be applied. In the tradition of international stan-
dardization, Big Endian should generally be preferred.

There also exist at least two conventions for converting arrays of bits into
byte sequences:

– Little Endian:
X8i+7−j = X

j|8
i

For example:

X000|128, . . . , X007|128 = X
7|8
0 , . . . , X

0|8
0

X008|128, . . . , X015|128 = X
7|8
1 , . . . , X

0|8
1

X016|128, . . . , X023|128 = X
7|8
2 , . . . , X

0|8
2

– Big Endian:
Xk−8(i+1)+j = X

j|8
i

For example:

X127|128, . . . , X120|128 = X
7|8
0 , . . . , X

0|8
0

X119|128, . . . , X112|128 = X
7|8
1 , . . . , X

0|8
1

X111|128, . . . , X104|128 = X
7|8
2 , . . . , X

0|8
2

For the transformation of bit arrays into byte sequences, neither convention
has any immediate implementation benefit on any hardware architecture, there-
fore the specification of a cryptographic algorithm should clearly specify a single
one. Again, Big Endian should be preferred.

4

References

1. Request for Comments on Candidate Algorithms for the Advanced Encryption Stan-
dard (AES). US Federal Register, Vol. 63, No. 177, pp. 49091–49093, September
14, 1998.

2. Brian R. Gladman: Implementation Experience with AES Candidate Algorithms.
Second AES Conference, Rome, Italy, March 22–23, 1999.

3. Danny Cohen: On Holy Wars and a Plea for Peace. Computer, Vol. 14, No. 10,
IEEE Computer Society, October 1981, pp. 48–54.

4. Hubert Kirrmann: Data Format and Bus Compatibility in Multiprocessors. IEEE
Micro, Vol. 3, No. 4, August 1983, pp. 32–47.

5. D.B. Gustavson: More on Big-Endian vs Little-Endian Byte Ordering. IEEE Micro,
Vol. 5, No. 3, 1985, p. 4.

6. David V. James: Multiplexed Buses: The Endian Wars Continue, IEEE Micro, Vol.
10, No. 3, June 1990, pp. 9–21.

7. James R. Gillig: Endian-Neutral Software. Dr. Dobb’s Journal, Vol. 19, No. 11,
October 1994, pp. 62–70, No. 19, November 1994, pp. 44–51.

8. John Rogers:Your Own Endian Engine, Dr. Dobb’s Journal, Vol. 22, No. 11, pp.
30–36, November 1995.

9. William Stallings: Endian Issues. Byte, Vol. 20, No. 9, pp. 263–264, September
1995.

10. J. Reynolds, J. Postel: Assigned Numbers. Request for Comments RFC 1700, Net-
work Working Group, October 1994, <ftp://ftp.isi.edu/in-notes/rfc1700.

txt>.

5

