
On Continuing Creativity 
 

Colin Clark 
Inclusive Design Research Centre 

OCAD University 
cclark@ocadu.ca 

Sepideh Shahi 
Inclusive Design Research Centre 

OCAD University 
sshahi@ocadu.ca 

 

Abstract 
For decades, the software industry has struggled with change, continually devising new methods to better 
control and manage the risk to software development projects. This paper attempts to reconsider change as 
a positive force that can produce better, more resilient software. It argues for providing “users” with greater 
creative influence throughout the design process, as co-designers; and to support them with material 
software tools that will allow them to enact unanticipated changes after design is complete. 

1. Inward-Facing Software Methods 
Change is hard. Much of the history of software design methodology has focused on devising strategies for 
controlling, minimizing, or formalizing change. Some methods attempt to reduce the possibility of 
disruption by “getting it right” up-front, via the use of formalized requirements gathering strategies and 
user research models1. Others aim to “embrace change” by establishing management and programming 
tactics that reduce the cost of responding to changes introduced at any time during the software development 
process2. All these methods invariably look inwards, at the working practices of teams of expert designers 
and programmers who have some measure of influence over the ways in which change is conceived, 
managed, and responded to during the process of creating a piece of software. 

Iterative, or agile, design and development methods involve the incremental evolution of a software product 
over the course of many short cycles of research, design, implementation, and stakeholder feedback. This 
approach offers effective opportunities for technical teams to change direction quickly and to recalibrate a 
program’s features, user interface, and other designed qualities more quickly and at a lower cost. However, 
it is notable that many of the most popular agile approaches to software development, such as Lean, Scrum, 
and others, still retain an explicitly industrialist mindset, often mimicking the assembly line manufacturing 
processes and production strategies of consumer objects such as automobiles. For example, Toyota’s “lean” 
Production System is often cited as a significant influence on agile software development methodologies3. 
While most agile processes have a “customer” or “product owner” role within the team, this role is usually 
performed by a single person who is embedded within or nominated by the management structure of the 
organization, and who may not represent the diverse needs and perspectives of the day-to-day users of the 
software.  

Here, an acceptance of change means cultivating strategies and technologies that support increased 
modifiability, parameterization, or reuse of software artefacts during the production process. Industrialized 
product design methods—including even the most flexible agile practices—still assume a conventional 
                                                        
1 As an example, Alan Cooper’s interaction design methods primarily provide design-based management strategies that centre 
around the creation of formalized design models such as personas and scenarios at the beginning of the software lifecycle. See 
Cooper, Alan et al (2014). About Face: The Essentials of Interaction Design 4th Edition. Wiley. 
2 Beck, Kent. (2000) Extreme programming explained: embrace change. Addison-Wesley Professional. 
3 In his “Agile Versus Lean,” Martin Fowler states that “There was a connection between lean manufacturing and agile software 
from the beginning in that many of the developers of the various agile methods were influenced by the ideas of lean manufacturing.” 
https://martinfowler.com/bliki/AgileVersusLean.html Mary Poppendieck has elaborated an entire software development 
methodology based on the direct application of Toyota’s automobile manufacturing methods to programming, such as in her “Lean 
Software Development.” https://dl.acm.org/citation.cfm?id=1248986 

PPIG 2018 121 www.ppig.org



producer/consumer dynamic, in which an object (in this case, the software product), though it may have 
changed frequently and freely over the course of its creation, is delivered to a consumer in a finalized and 
largely unchangeable form4. 

2. The Politics of Use 
For users, on the other hand, change is arguably even harder. Lacking direct influence over the process of 
its creation, software products tend to be a “take it or leave it” proposition for users—they work as they do, 
with perhaps limited configurability or the possibility of buying costly custom tailoring provided by vendors 
or consultants. If an individual user needs something different, often their only recourse is to look 
elsewhere, at other products. Yet at the same time, change is increasingly imposed on users, with the rise 
of mandatory software updates and cloud-based software-as-a-service platforms. Beloved features may 
disappear, move, or be recast by software designers at any time and without notice or permission, leaving 
users to adapt or relearn their hard-earned workflows. 

There is, of course, a power dynamic at work here. While the difficulties of change are felt by software 
designers and users alike, the power to enact (or forgo) changes, to manage their impacts, scales and timing, 
rests overwhelmingly in the hands of those who initially created the software. Although users often pay for 
their software, substantive ownership of it—that is, creative control over what it is, when it changes, and 
how it is intended to be used—remains too often locked up with those who originate it. This dynamic is 
reflected in the methods by which much software is made, the models by which it is deployed and 
distributed, and by structure of many programming idioms themselves—compiled, unidirectional, insular5. 

It is becoming increasingly clear that equitably-designed software systems—those that are capable of 
including a diversity of needs and experiences—may never be fully realized using inward, expert team-
facing processes that result in static software “products.” Software’s complexity, and the dizzyingly varied, 
situated needs of different people and communities, suggest that we may never be able to design one single 
artefact that fits everyone. At the same time, the costs of specialized, isolated, and incompatible systems 
are increasingly unsustainable6. Today’s methods leave designers in a situation where their only substantive 
means for dealing with change is via the power of omission—intentionally leaving out features that have 
been measured, through one process or another, as having limited value, scope, or utility to a hypothetical 
average, norm, or majority of users7. For users on the margins, such as those who with disabilities or who 
have difficulty with literacy of complex digital systems—and thus who may need features that are 
specialized or individualized in some way—this “economy of the mainstream” perpetuates marginalization 
and exclusion.  

Change is hard, yet we need more of it—in new forms. We need design methods that open up new vectors 
of change, which include the reciprocal participation of diverse individuals and communities from the very 
beginning, and which allow those users to continue the design process—configuring, adding and removing 
features, connecting software artefacts together, sharing customizations with each other—even after the 
                                                        
4 On the other hand, it is notable that agile methods have flourished within in-house or long-term contracting software development 
teams, where there is an ongoing relationship between the software’s developers and the organization sponsoring it. This enables 
changes to be made continually throughout the lifetime of the software’s use within the organization. The scale and cost of this 
relationship, however, is far out of reach of ordinary users, and is typically reserved for large enterprises who can afford to 
continuously fund an active software development team. 
5 The consequences of encapsulation, and a discussion of alternative, open programming models, can be found in Clark, C., & 
Basman, A. (2017). “Tracing a Paradigm for Externalization: Avatars and the GPII Nexus.” In Proceedings of the 2017 
International Conference on the Art, Science, and Engineering of Programming Workshop: Salon des Refusés. 
6 The assistive technology market has been plagued by the issues associated with specialized, poorly interoperable solutions, as 
documented in Treviranus, Jutta (2018). Let’s not spend public funds to perpetuate digital disparity. Medium. Available at 
https://medium.com/@jutta.trevira/lets-not-spend-public-funds-to-perpetuate-digital-disparity-a4413132ca 
7 Treviranus, Jutta (2018) If you want the best design, ask strangers to help. Medium. Available at 
http://openresearch.ocadu.ca/id/eprint/2191/21/Treviranus_Strangers_2018.pdf 

PPIG 2018 122 www.ppig.org



originary design process is finished8. By reorienting our design processes around the idea of continuing 
creativity, we raise the stakes for the embrace of change while aiming to rebalance the relational dynamics 
of software’s design and use. This perspective emphasizes the role of non-expert “users” as co-designers 
during the initial process of software’s conception and creation, as well as advocating for new programming 
tools that support the continued redesign of software artefacts by non-programmers, even after they have 
been designed, coded, and shipped. 

3. Inclusive Co-Design 
Co-design is designing with, not simply for. It involves asking the people who might otherwise just be 
"users," particularly those on the margins of today’s technology experiences, to be part of the design process 
from the beginning. Lacking the proceduralism of industrialized design methods, co-design typically starts 
with a process of discovering and negotiating roles—asking participants how, when, and how often they 
want to be involved, and making space to accommodate different “scales” of investment and engagement. 
As a result, co-design takes time to do well. Its processes need to be tailored to the unique context and 
situation that a design intervenes into, and it demands that all participants have equal access to the 
information—plans, ideas, prototypes, and works in progress—that is essential for full decision-making 
and responsible contribution. A starting point for this involves an opening up of agile’s iterative and 
incremental processes to be more porous and include a broader range of team participants and modes of 
engagement. An example of this is the Fluid Project’s co-design practices, which combine designing and 
planning in an open wiki, remote participation in design crits and decision-making processes, and 
“embedded” co-design activities, all within the context of an open development community9. Fluid’s 
embedded co-design process involves creating toolkits of activities and resources that are intended to help 
engage people in the design process, situated within the context of their own communities, participants, and 
places. These toolkits are given to communities to organize and use themselves, without Fluid’s designers 
present, along with training and mentorship if needed. Thus, multiple levels of co-design can be performed 
independently and at different locations without central organization, all facilitated by those who are trusted 
within the communities they are practicing within. 

                                                        
8 This echoes Pelle Ehn’s concepts of “use before use” and “design after design.” See Ehn, Pelle. (2008). Participation in Design 
Things. In Proceedings of the Tenth Conference on Participatory Design, PDC 2008. Available at 
https://www.researchgate.net/publication/221631329_Participation_in_Design_Things 
9 The Fluid Project is an open source community that designs new material technologies and co-design methods. Their work is 
described in Clark C., Ayotte D., Basman A., Treviranus J. (2016) About Us, with Us: The Fluid Project’s Inclusive Design Tools. 
In: Antona M., Stephanidis C. (eds) Universal Access in Human-Computer Interaction. Methods, Techniques, and Best Practices. 
UAHCI 2016. Lecture Notes in Computer Science, vol 9737. 

PPIG 2018 123 www.ppig.org



 
Diagram of Fluid’s embedded co-design process, which includes creating toolkits, training, and enabling 

communities to co-design within their own context and leadership structures. 

 

Co-design must be reciprocal. As Sherry Arnstein notes, participation is power10. Co-design is not a case 
of designers allowing users to participate, but rather, fully engaging them as citizens of the technological 
spaces that they are increasingly inhabiting, working, and expressing themselves within. This involves 
practicing in ways that are self-aware of the profound power and privilege that technologists hold, and in 
finding ways to fully share and give up that power. It is not enough simply to ask people for feedback; 
participants in co-design need to know that their input and ideas can have real power and influence in the 
resulting software. Co-design demands the knowledge that ideas will be heard, that they can have a direct 
influence, and that the mechanisms and processes by which they will potentially be enacted are clear and 
accountable. To this end, the Co-Designing Inclusive Cities project is currently developing a toolkit of co-
design practices and activities, along with community-led measures that can be used by participants to 
assess the extent and effectiveness of their engagement11. The project’s toolkit will be used to support the 
community-led design of civic infrastructure and connected cities such as Toronto’s Quayside project—an 
area in which there is currently significant risk of placation and consultation tokenism, and thus co-design 
practices are acutely needed. 

Co-design is not a new approach. It draws its roots from Scandinavian cooperative design projects such as 
Utopia, in which labour union members directly contributed to the design of new computer workstations12. 

                                                        
10 “Citizen participation is a categorical term for citizen power. It is the redistribution of power that enables the have-not citizens, 
presently excluded from the political and economic processes, to be deliberately included in the future. It is the strategy by which 
the have-nots join in determining how information is shared, goals and policies are set, tax resources are allocated, programs are 
operated, and benefits like contracts and patronage are parceled out. In short, it is the means by which they can induce significant 
social reform which enables them to share in the benefits.” Arnstein, Sherry. (1969). “A Ladder of Citizen Participation.” AIP, Vol. 
35, No. 4, July 1969, pp. 216-224. 
11 Inclusive Design Research Centre. (n.d.) Co-designing Inclusive Cities. Retried from https://cities.inclusivedesign.ca/ 
12 Bødker, S., Ehn, P., Kammersgaard, J., Kyng, M., & Sundblad, Y. (1987). A Utopian experience: On design of Powerful 
Computer-based tools for skilled graphic workers. In Computers and Democracy - a Scandinavian challenge. ed. / Gro Bjerknes; 
Pelle Ehn; Morten Kyng. Gower Publishing, 1987. p. 251-278. 

Co-design Artifacts

Collective results from using
the co-design toolkit 

Co-design Toolkit

Built with the community &
understanding of their
needs and prefernces

Co-Design
Team

Enabling Internal
Facilitators In The
Community

Embedding
External Facilitators
In The Community

Training Internal
Facilitators From
The Community

PPIG 2018 124 www.ppig.org



Elsewhere, Elizabeth B.N. Sanders has emphasized the value of engaging participants creatively within 
what she calls the “fuzzy front end” of design—the early, ambiguous, and chaotic phase of the design 
process prior to a product being fully conceptualized13.  

While co-design clearly opens new possibilities for more equitable participation by workers and citizens 
within software design teams during the scope of initial creation, ongoing change remains a factor that 
needs to be addressed. People change over time, our needs change, and unanticipated possibilities invariably 
emerge from use and experience. This suggests, then, that there is a need to find ways to extend the creative 
participation that co-design offers early in the process, continuing it even after the initial design process is 
finished. 

4. Material Systems 
Mads Dahlke is the Danish host of a popular do-it-yourself YouTube channel called Sail Life14. For the past 
several years, Dahlke has documented his process of taking a fully functional, thirty-year-old sailboat, 
disassembling it in a variety of artful and intrusive ways, and rebuilding it to suit his own needs and tastes 
as a sailor with ambitions of crossing oceans in it. Among other projects, Dahlke has removed and replaced 
the boat’s entire deck, designed custom-fit fuel tanks, completely reconfigured the layout of a cabin to 
better suit his needs as a workspace, and repaired many flaws resulting from oversights or cut corners during 
the boat’s original design and construction. Indeed, watching Dahlke’s weekly uncovering of new issues 
and challenges suggests that the boat’s original designers simply never conceived that their product would 
still be in active use today, nor did they design it with any intention of it being modified in the ways that 
Dahlke has accomplished. Yet Dahlke admits he is not a professional boat builder or expert restorer. He 
has pursued his project by acquiring some generalized technical skills and commodity tools, while 
participating in a larger community of other sailors and do-it-yourselfers who have worked on similar 
projects and shared their own learnings. 

Although Dahlke’s endeavour may not be particularly unique when seen from the perspective of DIY repair 
and renovation, it represents something that is very difficult, if not impossible, to do with software systems 
today. Coincidentally, Dahlke’s “day job” is as a professional software developer. And yet, despite his elite 
technology skills, Dahlke would nonetheless be hard-pressed to perform a comparable series of 
transformations and personalizations on a (closed source) piece of software that someone else had designed 
before him—especially at a comparable cost. His power to change his sailboat after the fact of its design 
far exceeds his power to change software under similar circumstances. For a non-professional—an 
“ordinary user”—such transformations would certainly be out of reach entirely. The cost and complexity 
of unanticipated change in software is always significant15, often intractable, and even sometimes 
inconceivable16. 

Material software is software that provides the power to be adapted, configured, re-presented, augmented, 
or separated in various ways, without needing to have been part of the original software development 
process or to have access to “elite-level” programming knowledge or tooling. In its simplest form, this 
materiality may take the form of simple transformations of a software’s user interface, such as those 
provided by the UI Options accessibility preferences framework17. Fluid Infusion (of which UI Options is 
                                                        
13 Elizabeth B.-N. Sanders & Pieter Jan Stappers (2008). Co-creation and the new landscapes of design, CoDesign, 4:1, 5-18. 
14 Sail Life. (n.d.) Home [YouTube Channel]. Retrieved from https://www.youtube.com/channel/UC5xDht2blPNWdVtl9PkDmgA 
15 On the order of 80% of software development costs are related to maintenance due to changing requirements. See Kniesel, et. al. 
(2002) “Unanticipated Software Evolution.” In J. Hernandez and A. Moreira (Eds.): ECOOP 2002 Workshops, LNCS 2548, pp. 
92–106. 
16 “The fundamental problem, supported by 40 years of hard experience, is that many changes actually required are those that the 
original designers cannot even conceive of.” Bennet, K.H. and Rajlich, V.T. (2000) “Software Maintenance and Evolution: A 
Roadmap.” Future of Software Engineering. pp. 75-87. 
17 https://build.fluidproject.org/infusion/demos/prefsFramework/ 

PPIG 2018 125 www.ppig.org



a part) is an effort to build a software framework that supports an open authorial ecosystem in which any 
software expression can be modified, refined, and replaced by consecutive authors, without breaking the 
linkages and connections amongst this network of expressions18.  

Material metaphors for software, of course, have distinct limitations. Software, we might imagine, is a 
“material of the mind,” yet one which is expressed in a uniquely computational form—infinitely 
reproducible, demanding of precision and detail. At least in theory, highly pliable. And yet anyone who 
has, for example, diligently attended to a complex writing project knows that this may not be literally the 
case. Ideas, in system, are complex and even sometimes inconceivable outside of the context in which they 
were originally situated and elaborated. Software is not yet, and perhaps never can be, a craft19. Its material 
qualities may be far too different, ultimately more subject to change and systematic contingencies than 
artefacts in the physical world. Nonetheless, these metaphors from the physical and craft worlds may help 
us to see more clearly the potentialities in the medium that we have overlooked or hidden away in 
computation’s dominant formalistic and neo-Romantic creative constructions. 

5. Conclusion 
So how can we start to come to terms with change, to give it space within our software designs as an 
opportunity, not just a risk? There are, of course, no silver bullets; no easy-to-follow checklists or master 
methodologies that will produce software that has the resilience, flexibility, and longevity that is needed to 
meet and include users where they are, rather than continuing to force them to adapt and compromise. Two 
interrelated strategies, described here as continuing creativity methods, suggest potential ways to fully 
embrace change. First, narrowing the gap between use and design via co-design, particularly by engaging 
diverse users as equals in the process from the beginning. Secondly, creating software tools, programming 
frameworks, and authoring environments that will increasingly support users in modifying and redesigning 
them, even after the software has shipped. These approaches represent an early and speculative collective 
work-in-progress, which will undoubtedly benefit from continued experimentation, exploration, mistake-
making, and active participation by “users,” designers, and programmers alike. 

                                                        
18 See Basman, A. et al. “The Open Authorial Principle” and Basman, A. et al “Software and How it Lives On – Embedding Live 
Programs in the World Around Them.”  
19 Basman, Antranig. (2016). “Software is Not Yet A Craft.” http://www.ppig.org/sites/default/files/2016-PPIG-27th-Basman2.pdf 

PPIG 2018 126 www.ppig.org




