
On the Nature of Programmer Expertise

Chris Parnin
NC State University
Raleigh, NC, USA
cjparnin@ncsu.edu

Janet Siegmund
University of Passau

Passau, Germany
siegmunj@fim.uni-passau.de

Norman Peitek
Leibniz Institute for Neurobiology

Magdeburg, Germany
npeite@lin-magdeburg.de

Abstract
Many experts in fields such as mathematics, medicine, and chess display intellectual marvels undimin-
ished with age. However, software engineers, much like athletes, seem to have a limited lifetime for
applying their expertise. Compared to other areas of expertise, the elements of which programming
expertise is built upon is unstable, short-lived, and often non-transferable. In this position paper, we de-
rive insights from psychology, cognitive neuroscience, and decades of software engineering research on
expertise. Using these insights, we strive to understand what representations, strategies, and cognitive
processes and mechanisms experts use when performing exceptional programming feats. In particular,
we want to understand how expertise shapes an expert’s mind, and understand the intricate patterns and
strategies that expert programmers hone over the years. To answer these questions, we propose to use
several brain-imaging techniques to study expert software engineers. Finally, based on these results, we
wish to derive guidelines in order to help companies and teachers in identifying and training program-
mers to quickly adapt to changes in terms of languages, projects, teams, and techniques.

1. Introduction
Some of the most amazing feats are performed by human experts, who demonstrate a mastery of skills
obtained through many years of deliberate practice (Ericsson & Lehmann, 1996). As an expert, pro-
grammer’s eyes glide across source code of a program, and in just seconds, they can extract a deep
understanding from abstract symbols and text arranged in program files, which may take a novice pro-
grammer a good part of a day to truly understand. Experts’ eyes dance around source code, finding points
of interest, such as method signatures, and follow relationships such as data-flow relationships between
program elements. They can spot typical errors like an off-by-one error incredibly fast, demonstrating
that they have abstracted the comprehension process to be more efficient. Expertise in programming,
as in any other areas, requires years and years of continuous and deliberate practice. But even after
extensive experience in programming, there are still tremendous differences in programmer expertise:
So called 10xers can be 10 or more times as productive as other programmers who have spent an equal
amount of time with programming (McConnell, 2010; Sackman, Erikson, & Grant, 1968). Likewise,
there are novice programmers who can grasp the concepts much faster than their peers, but until today,
we can only hardly explain why such differences occur.

Ever since the emergence of software engineering as a discipline, having programmer expertise on board
of a project has tremendous importance. However, still today, it is difficult to evaluate whether a pro-
grammer will be a good addition to a software project, especially when different software technologies,
architectures, and products may be involved. Despite decades of research on expertise and program
comprehension, there is a general lack of understanding of what programmer expertise actually is. Solv-
ing this problem is of fundamental importance. We believe that an understanding of the fundamental
human limitations associated with gaining expertise in programming skills will enable developers and
companies to more effectively invest in technology choices and training strategies. For example, the
ten-thousand rule1 is a common rule of thumb for estimating how long it takes to gain the highest level
of expertise. If an expert Java server-side developer needs to transition into a new role developing
front-end web technologies, does the developer also need to reinvest ten years of effort before regaining
proficiency or is it just six months?

1The ten-thousand rule states that it takes 10 000 hours of practice of a skill to become an expert.



Why is it so difficult to understand programmer expertise? In this position paper, we will bridge together
several insights into expertise and also define several research experiments that will help us find a way
out of this dilemma. To this end, we will first look at expertise from different angles:

• Cognitive Psychology: Cognitive psychology describes how humans create information from all the
data surrounding them. It matured as a discipline over many decades, so it offers lots of relevant
insights, for example, how learning strategies differ and how experts are created. Expertise in many
areas, including chess and tetris, is a well-studied phenomenon. Thus, this mature research will help
us to better understand the nature of programmer expertise.

• Neuroscience: Neuroscience uses neuro-imaging techniques, such as fMRI, EEG, CT, to relate brain
activation to cognitive processes. This area is relatively new, but it extends from cognitive psychology,
in that it can interpret the brain activation in relation to the well-studied cognitive processes. For
example, results show that experts use their brain more efficiently than novices, such that they use a
specialized brain area. Expert golfers need just one small area to perform a golf swing, but novices
use a large network of brain areas (Milton, Solodkin, Hlustík, & Small, 2007).

• Software Engineering: Also in software engineering, expertise has been studied, but rather superfi-
cially in comparison to cognitive psychology and neuroscience. Specifically, researchers have been
studying how tasks, tools, and complexity affect programming productivity, but the relationship to
programmer expertise has not been well-studied. Thus, re-evaluating this research in its potential to
shed more light on programmer expertise will give us valuable insights, also into why there was and
is so little progress on programmer expertise.

Eventually, we expect that the research that we outline in this paper may eventually enable better
guidelines for training and measuring expert programmers. For example, with a set of validated fMRI
biomarkers of effective programming expertise, we can improve educational interventions by identify-
ing deviations from desired brain activation when reasoning about a particular programming problem or
concept such as recursion.

2. Expertise
In this section, we highlight the insights from cognitive psychology, neuroscience, and software engi-
neering. Afterward, we describe how these different viewpoints can help us answer about expertise, and
establish a roadmap toward understanding programmer expertise.

2.1. Insights from Cognitive Psychology
2.1.1. Deliberate Practice
Research in cognitive psychology revealed that experts demonstrate a mastery of skills obtained through
many years of deliberate practice (Ericsson & Lehmann, 1996). In understanding what makes an expert
an expert, scientists have studied the training strategies, cognitive representations, and problem-solving
strategies used when performing tasks with exceptional skill. Initial research focused on the train-
ing strategies and researchers found that there is a consistent difference between experience (in terms
of years spent) and expertise (performance levels) (Camerer & Johnson, 1991; Shanteau & Stewart,
1992)—the primary difference in performance arises from how experts were trained and not necessarily
how long. For example, when comparing chess experts who have spent equal time in gaining experience,
the consistently best performers are the ones who repetitively studied specific chess positions and sce-
narios, as opposed to lower performers who just practiced in tournaments (Charness, Krampe, & Mayr,
1996).

2.1.2. Problem Representation
Cognitive expertise involves chunking of information, or organizing a stream of perceptual cues into
a more meaningful pattern (De Groot, 1978). Experts use more effective problem representations and
generate better “next steps or moves” (in chess) (Simon, 1990) or select the best diagnostic option (in
medicine) (Elstein, Shulman, & Sprafka, 1990). Experts differ from novices in how they process infor-



mation and arrive at an answer, such that they look a bit deeper and process next steps faster (Holding,
1992), resulting in improved qualities of answers (Elstein et al., 1990).

2.2. Insights from Neuroscience
2.2.1. Neural Efficiency and Cortical Differences
Studies of brain activity find that experts demonstrate more efficient neuronal firing patterns than novices
with the same tasks (Neubauer & Fink, 2009). Expert brains work differently than non-expert brains.
When novices are compared with experts performing the same kinds of tasks, the differences can be
remarkable. When novice golf players try to perform a golf swing, their brains are alight with activity
throughout many areas of the brain as they clumsily try to coordinate the swing in their mind, whereas
experts have conceptualized the movements of a golf swing into a simple, focused, and energy-efficient
action in the brain (Milton et al., 2007). Not only does an expert’s brain act more efficiently, experts
sometimes also have a larger brain mass in these areas. A larger right posterior parietal cortex is seen in
expert video game players (Tanaka et al., 2013). Experienced London taxi drivers have larger parahip-
pocampal regions with size correlated with years of experience (Maguire, Woollett, & Spiers, 2006).

2.2.2. Specialization
Although the brain appears to have specialized areas for specialized tasks, when humans develop new
skills, there is often no specific area of the brain that supports that skill. Instead, learning processes
often recruit existing information-processing networks of the brain in support of the new skill. For
example, the fusiform face area is strongly associated with face perception, but it also gets recruited
when identifying a specific object, such as for bird experts who can distinguish between a vast variety of
bird species or for car experts who can identify distinct differences between many models and makers of
cars. Interestingly enough, bird experts who are not car experts do not use the fusiform face area when
observing cars, and vice versa (Gauthier, Skudlarski, Gore, & Anderson, 2000). Other studies also show
the involvement of the fusiform face area in experts of tasks that require visual perception, including
the categorization of chest radiographs (Harley et al., 2009) or understanding chess positions (Bilalić,
Langner, Ulrich, & Grodd, 2011).

2.3. Insights from Program Comprehension Studies
Over the past few decades, several theories of program comprehension have been proposed and empirical
studies attempting to validate them have been performed.

2.3.1. Syntax vs. Semantics
Software engineering researchers have proposed that programmers use knowledge structures that en-
code semantic (Shneiderman & Mayer, 1979) and domain information (Brooks, 1983) about a program
as well as prime structures (Linger, Mills, & Witt, 1979), that include elements of syntax, control-
flow and data-flow (Pennington, 1987b) of the program. These knowledge structures (Rich, 1981) have
been formalized referred to as programming plans. Motivation for programming plans was inspired
from theoretical constructs in text comprehension, such as scripts, which are mental representations of
common activities (e.g., eating in a restaurant) and can aid humans in understanding and remembering
narrative text (Bower, Black, & Turner, 1979). Programming plans act like schemas that are first instan-
tiated and then its slots are filled with concrete values as a programmer builds an understanding of the
code (Soloway, Ehrlich, & Bonar, 1982). Plans may help programmers fill in the “gaps” when trying
to understand code. Finally, it was proposed that programs follow basic rules of discourse and that any
violation to “accepted conventions of programming” should as a result hamper an expert’s ability to use
programming plans (Soloway & Ehrlich, 1984).

Evidence that expert programmers have different mental representations from novices has been de-
scribed in several studies, however not all evidence is consistent with the theory of programming
plans. In a series of studies, participants were asked to understand a piece of code and later recall
text of the program. Experts recall programs better than novices when the order of presentation is
correct (Shneiderman, 1976), but performance difference disappears when programs are presented in
random order. Further, when examining the details of what is recalled (Shneiderman & Mayer, 1979),



researchers found that experts could recall semantic information about source code, but incorrectly re-
called the exact details. Novices did the opposite: They could more accurately replicate the source code
syntax, but often mistook the meaning of the source code. In another study, when categorizing related
code snippets, experts and novices differed in their organization (procedural similarity vs. syntax simi-
larity) (Adelson, 1981). Finally, Soloway and Ehrlich (Soloway & Ehrlich, 1984) evaluated the theory of
rules of discourse by varying the style of the snippets, such that there were versions that followed typical
coding conventions (plan-like) and versions that explicitly violated such conventions (unplan-like). For
example, they changed the variable naming, such that in the violated version, the naming did not convey
the purpose of the variable, but rather the opposite (max was renamed to min). The results showed
that novice programmers were not affected by the violated coding conventions. However, experts were
significantly slower with these version and made significantly more errors—specifically, experts became
as slow and as incorrect as novices.

However, another series of studies cast doubt on the nature of programming plans. Gilmore and Green
failed to replicate Soloway and Ehrlich’s previous results (Soloway & Ehrlich, 1984) when using pro-
gramming plans from Pascal programs with Basic programmers (Gilmore & Green, 1988). They sug-
gested that programming plans may not generalize across different languages, and that plans cannot
represent the underlying deep structure of programs. Bellamy and Gilmore (Bellamy & Gilmore, 1990)
examined the protocols generated from experts in different languages as they created programs. Using
two different models of programming plans, they found neither model was well supported by protocols;
further, different programming language experts generated different types of representations. Finally,
Pennington (Pennington, 1987b) theorized that if programmers form plan-based mental representations,
then they should recognize lines faster when preceded by lines from the same plan structure. Unfor-
tunately, in the study, stronger priming effects were observed from syntax structure vs. plan structure.
Subjects also made fewer errors on control-flow questions, compared with data-flow and functional
questions. Pennington concluded that:

While plan knowledge may well be implicated in some phases of understanding and answer-
ing questions about programs, the relations embodied in the proposed plans do not appear
to form the organizing principles for memory structures.

2.3.2. Strategies
Several software engineering researchers have noted that expert programmers make better use of strate-
gies and are more fluid in adapting strategies when compared to novice programmers. Previous theories
of program comprehension have proposed two primary mechanisms: top-down and bottom-up program
comprehension. Top-down comprehension is a hypothesis-driven process, in which developers initially
form hypotheses about source code and, by looking at more and more details, refine these hypotheses
subsequently, until they form an understanding of the program (Brooks, 1978). The programmer is
guided by using cues called beacons that are similar to information scents in information foraging the-
ory (Pirolli & Card, 1999). With bottom-up comprehension, developers start with details of source code
and group these details to semantic chunks, until they have formed a high-level understanding of the
program (Shneiderman & Mayer, 1979). With opportunistic and systematic strategies (Littman, Pinto,
Letovsky, & Soloway, 1987), programmers either systematically examine the program behavior or seek
boundaries to limit their scope of comprehension on an as-needed basis. Von Mayrhauser and Vans
offered an integrated metamodel (von Mayrhauser & Vans, July 1993) to situate the different compre-
hension strategies in a single model scheme. Finally, Murray and Lethbridge (Murray & Lethbridge,
2005) have proposed that programmers develop and make use of specific strategies for specific types of
problems rather than conforming to a general framework (e.g., the strategy needed for understanding the
cultural practices of a team is distinguished from getting the big picture of a program).

Evidence for different strategy usage by experts and novices has been observed in several studies. Shaft
and Vessey evaluated how program-comprehension strategies depend on expertise in a program’s do-
main, and found that depending on familiarity, programmers use completely different strategies (Shaft



& Vessey, 1995). These results were consistent with top-down (familiar domain) and bottom-up (un-
familiar domain) comprehension models that were state of the art during that time. There are several
studies that evaluated these comprehension models and how context drives the comprehension process
that developers choose (Brooks, 1978; Widowski, 1987; Pennington, 1987a). In fact, some studies
suggest that the ability for an expert to switch strategies is a more important factor than knowledge
representation. For example, Widowski (Widowski, 1987) compared novice and expert programmers
working on unplan-like and plan-like programs of varying semantic and syntax complexity. Again
contradicting Soloway and Ehrlich’s results (Soloway & Ehrlich, 1984), experts actually did better on
unplan-like programs. Further analysis of protocols found that experts were able to adjust their strat-
egy (structure-oriented vs. variable-oriented) more than novices in order to do account for unplan-like
programs. Finally, Vessey (Vessey, 1987) observed when debugging a program, unsuccessful program-
mers used an erratic mix of reinspections and navigations, whereas successful programmers maintained
a smooth progression through the program’s execution. Further, effective strategy use could account for
74 % of debugging time, whereas chunking ability could only account for 31 %.

In conclusion, when considering programming plans and strategies, Gilmore (Gilmore, 1990) has argued
that “plans” are insufficient for explaining expertise alone, and instead, that multiple factors, including
practice and strategy acquisition must be examined:

Expertise is not as simple as we might sometimes think. Although high-level, efficient rep-
resentations of programming knowledge develop with experience, it seems that this knowl-
edge is not the sole determinant of programming success. Besides chunking of knowledge
structures, experts seem to acquire a collection of strategies for performing programming
tasks, and these may determine success more than does the programmer’s available knowl-
edge...Programming may be rather like riding a bike, or some other motor skill, without
practice it cannot be mastered.

3. How to Find a Way into the Light
Thus, with everything that we learned, we can sketch a roadmap toward a thorough understand of pro-
grammer expertise. We learn from cognitive psychology the role of deliberate practice, indicating that
how novices work with code plays a crucial role in their learning process. Neuroscience shows that
experts use their brain differently when completing a task they have experience in. Research in software
engineering revealed different aspects of code (e.g., plan-like vs. unplan-like) and knowledge of pro-
grammers determine how programmers work with code. Thus, combining these three areas will give us
unique opportunities to understand the nature of programmer expertise.

Based on the insights from the different disciplines, we have derived hypotheses that we think are the
most important to address in future projects. In this section, we discuss these hypotheses and outline
experimental designs to evaluate them.

3.1. How Does Programming Shape the Expert’s Mind?
Research Hypothesis: Experts and novices have a different neuroanatomical representation, such that
novices use a different network of brain areas.

Rationale: From brain imaging studies of experts in various fields, we know that experts in different
occupations use different neural mechanisms and the insights we get from one kind of expert may not
generalize to other types of experts. Different studies suggest that experts have encoded the process
more efficiently in a single/few distinct brain area, possibly one that is typically used for other processes
(like the fusiform face area, which is used by bird experts also to recognize birds). Programming is
a more complex task, which consists of, among others, understanding code and writing code. Both
processes are different, so we expect differences in brain activation. Thus, we expect that the study of
expert programmers will reveal unique patterns of brain activations.

Design: To understand the neuro-anatomical representation of programmer expertise, we need to study



novice and expert programmers. A large portion of programming activities consists of, in essence,
reading code. For this reason, we focus initially on code comprehension. A promising option is to build
on the snippets that have already been designed for neuro-imaging studies, such as in reported in several
brain imaging studies (Siegmund, Kästner, et al., 2014; Crk & Kluthe, 2014). Another way is to let
participants categorize source code snippets based on functionality (Adelson, 1981), or identity correct
or wrong implementations. Finally, another option is to use set of validated assessment instruments
called concept inventories (Adams & Wieman, 2011), which provides the ability to assess if someone
grasps the necessary concepts for expertise in a given field or domain.

We will collect block-based fMRI brain scans of expert programmers and novice programmers with
programming and control tasks. Block designs are well suited to localize functional areas and study
steady state processes, such as attention and comprehension, because they maximize the hemodynamic
responses associated with cognitive processes, allowing for improved ability to locale brain areas. Using
control tasks improves the ability to further isolate essential areas of cognitive for programming rather
than supporting areas (e.g., eye movement while reading or locating syntax errors).

Objectives: The study and analysis will attempt to achieve the following objectives.

• Identify brain regions associated with expertise in programming. Understanding how programming
shapes the expert’s mind will help us to get a deeper understanding of the nature of programmer
expertise. We expect that we will see differences in activation between novices and experts, such
that experts recruit one or a few areas to understand and create source code, while novices require a
wide-spread network of areas. Furthermore, we expect also a difference between experts and 10xers,
for example, regarding activation in an even more concise area. This will help us to spot experts and
10xers more easily, and light the path that novice programmers have to follow to become an expert.

• Identify cortical differences associated with expertise in programming. Structural MRI brain scans
of expert programmers and control participants will be analyzed using voxel-based morphometry, a
method that allows an automatic whole-brain analysis of gray-matter volume. Compared with con-
trols, we expect that expert programmers will have greater gray-matter volume in the previously
identified brain areas. This analysis will further validate our results, as it will demonstrate that expert
programmers not only use a distinct set of brain areas, but that years of programming experience has
indeed shaped the expert’s mind.

3.2. Which Theories of Programmer Expertise Can Be Supported?
Research Hypothesis: Top-down comprehension and bottom-up comprehension are represented in dif-
ferent networks of brain areas.

Rationale: Different representation of top-down and bottom-up processes have been observed in cog-
nitive psychology and neuroscience. Since both processes share similarity with their psychological and
neuro-scientific counterparts, we expect to observe a similar distinction in brain activation. Specifically,
we expect memory-related activation, because top-down comprehension requires concepts to be stored
in memory, and these should be retrieved during comprehension.

Design: To differentiate between top-down and bottom-up comprehension, we need to decompose each
process into its stages. For example, bottom-up comprehension requires perceiving and processing a
line of source code (visual perception, reading comprehension), retrieving meaning from the source
code (problem solving), chunking statements to semantic units (synthesis), and finally concluding the
purpose of source code (induction). To observe these stages in novice and expert programmers, we
will show both groups obfuscated code, preventing experts from applying their knowledge about plans,
strategies, and domains. Regarding top-down comprehension, programmers need access to their knowl-
edge (memory retrieval), deduce the high-level purpose of source code (deduction), and confirm the pur-
pose by examining details (memory retrieval, matching). To enable novices to actually use a top-down



approach, we intend to train them with specific snippets and according plans (e.g., that a decreasing loop
counter often indicates a reversing operation) and then observe both novices and experts with the same
snippets. This will also allow us to observe how expertise and the comprehension strategies interact with
different brain activation. Possibly, we observe four different patterns depending on expertise (novice,
expert), and strategy (top-down, bottom-up).

Objectives: The study and analysis will attempt to achieve the following objectives:

• Identify strategy differences between experts and novices according in the comprehension strategy. We
will use multivoxel pattern analysis and hidden semi-Markov models (Anderson, Pyke, & Fincham,
2016) to identify distinct stages associated with program comprehension. This analysis will allow
us to find differences in how long experts and novices spend time in different cognitive stages, and
whether novices or experts introduce any distinct stages or ordering in their problem solving.

• Identify differences in neural efficiency between experts and novices. We examine deactivation
strengths between different cortical areas in order identify neural efficiency (Durning et al., 2015). For
example, during cognitive tasks, the default network is often deactivated in order to enable concen-
tration on the task; the strength of the deactivation correlates with the difficulty of the task (Buckner,
Andrews-Hanna, & Daniel, 2008). Analyzing the deactivation, such as the default network, allows
us to observe when participants need to concentrate more in order to solve a task. Hence, we expect
differences in deactivation patterns between experts and novices. Furthermore, we expect a stronger
deactivation for bottom-up comprehension, compared to top-down comprehension.

4. Discussion
We discuss several implications and challenges for future research on programmer expertise.

4.1. Implications
In software engineering, in a classic study, Sackman evaluated typical tasks during programming, such
as implementing and debugging code, and measured the time and correctness developers needed to
complete such tasks (Sackman et al., 1968). He found that even for expert programmers, there are huge
differences in performance, up to a factor of 25. On average, the efficiency varied by a factor of 10,
leading to the term “10xer” for developers who are exceptionally good at their job. If we can understand
how experts deliberately practice programming, we can devise more efficient training strategies for
novice programmers and professional programmers to adapt their skills to new technologies.

There are several ideas that are promising. In the Pragmatic Programmer (Hunt, 2000), Hunt proposed
the idea of practicing a code kata, which was an exercise in programming that can help a programmer
practice a programming skill on a daily basis. Similarly, there has been a proposal to teach software
engineering concepts via athletic “cross-fit” programming exercises (Hill, Johnson, & Port, 2016). The
insight is that in cross-fit training, you try to best your previous performance record for a particular
workout. Likewise, students learn to practice programming exercises (workout of the day), but as they
practice the exercise, they measure their performance relative to an “expert”. In class, they be assessed
with a new challenge and only receive credit if they could complete exercise within 20 minutes. Overall,
the idea of targeted practice on a set of programming skills is consistent with effective training many
other domains, such as chess, where deliberate practice on specific openings, and practicing generating
moves for critical board positions was found to be more effective than just straight game play.

4.2. Challenges
Measures of Expertise: It is critical for the success of the study to choose appropriate and representa-
tive programmers for the novices and experts group in order to clearly distinguish cortical and strategic
differences in expertise. However, it is a challenge to establish a sound measure of programming exper-
tise, which does not simply rely on a rudimentary measure of experience. Many studies have used rather
superficial and ad-hoc measures to define programmer expertise. For example, Soloway and Ehrlich
categorized undergraduate students as novices, and graduate students as experts. However, a deeper
investigation into the expertise levels of their participants did not happen. This makes it rather difficult



to fully understand how expertise actually influenced the study results.

In industry, technical interviews are an expensive and often unsatisfactory process. Alternative methods,
such as standardized tests, requires considerable effort to develop and validate. For example, Bergerson
and others describe an approach to develop such an instrument, which is based on established techniques
that are rooted in psychology (Bergersen, Sjøberg, & Dybå, 2014). This test comprises several program-
ming tasks in Java and has been validated with 65 programming experts over two days. Extending
approaches for standardized measures of experience levels of programmers (Siegmund, Kästner, Liebig,
Apel, & Hanenberg, 2014) is a start. Additionally, screening participants with technical interviews and
standardized tests of programming expertise (Bergersen et al., 2014) can be a further filter. Conser-
vatively, only programmers who pass all screening measures should be admitted to the study’s experts
group.

A related challenge is to select 10xers from expert programmers. We expect the comparison between
10xers and experts will show further differences beyond the contrast of experts and novices. Thus, it is
interesting to also include 10xers and compare them to average expert programmers. Of course, finding
10xers under experts is a similarly difficult task. The previous selection process might not be enough to
identify 10xers from a group of expert programmers. To this end, recruiting participants with high ranks
from leaderboards, such as HackerRank, or through supervisor’s recommendations can be promising.

Material and Task Design: For creating code, specifying the programming problem will be challeng-
ing. Focusing on too small problems (e.g., factorial), it may be difficult to see differences between
novices, experts, and 10xers, but too large problems may again be impossible to implement, because
they require too much time or lead to source code that is too long. Further, depending on the presenta-
tion and context of the programming problem, some programmers may adapt a different strategy when
solving, which should be anticipated and controlled for. Using pilots to design programming tasks with
a known set of strategies and suitable difficulty outside a fMRI scanner is a good initial step.

5. Conclusion
Different insights from cognitive psychology, cognitive neuroscience, and classic studies in software
engineering can be combined in order to answer important challenges in understanding expertise of soft-
ware developers. Research on cognitive psychology tells us that deliberate practice plays an important
part toward becoming an expert. Neuroscience tells us that experts have specialized areas that support
a very efficient representation of cognitive processes. Software engineering studies have demonstrated
the importance of mental representation and strategies used by experts.

Studies in expertise are useful in guiding the program-comprehension research community. For exam-
ple, we could examine more closely how overloading the working-memory capacity affects program
comprehension or whether 10xers have above-average working memory, language skills, can better con-
centrate, or whether they use completely different approaches when working with source code. We may
be able to find alternative ways to identify experts and even support training. For example, we could
expect that programming experts have a certain activation pattern when working with code. Thus, if
we find such a pattern in a job applicant, we can assume a certain level of expertise. Furthermore, this
could facilitate educational interventions to improve desired regional brain activation in order to reduce
cognitive errors and increase programmer expertise. In the long run, ideally these kinds of studies can
finally contribute to answer long-asked and sometimes heatedly-discussed questions: Should we start
programming education with objects or functions first or teach generic language skills? What effect
does the mother tongue have on learning programming? What makes programmers efficient? Can any-
one become a good programmer? What does it take to become an exceptionally good programmer?
How can we help novices to overcome the typical obstacles of learning to program? Of course, fMRI
and also other neuro-imaging techniques are not a “silver bullet” that can definitely answer these ques-
tions, but they give a promising new and complementary perspective to our current understanding of
program comprehension and the ongoing endeavor to improve the life of programmers.



6. References
Adams, W. K., & Wieman, C. E. (2011). Development and validation of instruments to measure learning

of expert?like thinking. International Journal of Science Education, 33(9), 1289-1312.
Adelson, B. (1981). Problem solving and the development of abstract categories in programming

languages. Memory & Cognition, 9(4), 422–433.
Anderson, J. R., Pyke, A. A., & Fincham, J. M. (2016). Hidden stages of cognition revealed in patterns

of brain activation. Psychological Science, 27(9), 1215-1226.
Bellamy, R., & Gilmore, D. (1990). Programming plans: Internal or external structures. Lines of

thinking: Reflections on the psychology of thought, 2, 59–72.
Bergersen, G., Sjøberg, D., & Dybå, T. (2014). Construction and Validation of an Instrument for

Measuring Programming Skill. IEEE Trans. Softw. Eng., 40(12), 1163–1184.
Bilalić, M., Langner, R., Ulrich, R., & Grodd, W. (2011, July 13). Many Faces of Expertise: Fusiform

Face Area in Chess Experts and Novices. The Journal of Neuroscience, 31(28), 10206–10214.
Bower, G. H., Black, J. B., & Turner, T. J. (1979). Scripts in memory for text. Cognitive psychology,

11(2), 177–220.
Brooks, R. (1978). Using a Behavioral Theory of Program Comprehension in Software Engineering. In

Proc. int’l conf. software engineering (icse) (pp. 196–201). IEEE.
Brooks, R. (1983). Towards a Theory of the Comprehension of Computer Programs. Int’l J. Man-

Machine Studies, 18(6), 543–554.
Buckner, R., Andrews-Hanna, J., & Daniel, S. (2008). The Brain’s Default Network: Anatomy, Func-

tion, and Relevance to Disease. Annals of the New York Acadamy of Sciences, 1124, 1–38.
Camerer, C. F., & Johnson, E. J. (1991).

In (p. 195-217). New York, NY, US: Cambridge University Press.
Charness, N., Krampe, R., & Mayr, U. (1996).

In (p. 51-80). Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.
Crk, I., & Kluthe, T. (2014). Toward Using Alpha and Theta Brain Waves to Quantify Programmer

Expertise. In Engineering in medicine and biology society (embc), 2014 36th annual international
conference of the ieee (pp. 5373–5376). IEEE.

De Groot, A. D. (1978). Thought and choice in chess (Vol. 4). Walter de Gruyter GmbH & Co KG.
Durning, S. J., Costanzo, M. E., Artino, A. R., Graner, J., van der Vleuten, C., Beckman, T. J., . . .

Schuwirth, L. (2015, Mar 29). Neural basis of nonanalytical reasoning expertise during clinical
evaluation. Brain Behav, 5(3), e00309.

Elstein, A. S., Shulman, L. S., & Sprafka, S. A. (1990). Medical problem solving: A ten-year retrospec-
tive. Evaluation & the Health Professions, 13(1), 5–36.

Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: evidence of maximal
adaptation to task constraints. Annual review of psychology, 47(1), 273–305.

Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000, Feb). Expertise for cars and birds
recruits brain areas involved in face recognition. Nature Neuroscience, 3(2), 191-197.

Gilmore, D. J. (1990). Expert programming knowledge: a strategic approach. Psychology of program-
ming, 223–234.

Gilmore, D. J., & Green, T. R. G. (1988). Programming plans and programming expertise. The
Quarterly Journal of Experimental Psychology Section A, 40(3), 423-442.

Harley, E. M., Pope, W. B., Villablanca, J. P., Mumford, J., Suh, R., Mazziotta, J. C., . . . Engel, S. A.
(2009, Nov 25). Engagement of fusiform cortex and disengagement of lateral occipital cortex in
the acquisition of radiological expertise. Cereb Cortex, 19(11), 2746-2754.

Hill, E., Johnson, P. M., & Port, D. (2016, Jan). Is an athletic approach the future of software engineering
education? IEEE Software, 33(1), 97-100.

Holding, D. H. (1992). Theories of chess skill. Psychological Research, 54(1), 10–16.
Hunt, A. (2000). The pragmatic programmer. Pearson Education India.
Linger, R. C., Mills, H. D., & Witt, B. I. (1979). Structured programming: theory and practice.



Littman, D., Pinto, J., Letovsky, S., & Soloway, E. (1987). Mental Models and Software Maintenance.
J. Systems and Software, 7(4), 341–355.

Maguire, E. A., Woollett, K., & Spiers, H. J. (2006, December 1). London taxi drivers and bus drivers:
a structural MRI and neuropsychological analysis. Hippocampus, 16(12), 1091–1101.

McConnell, S. (2010). What does 10x mean? measuring variations in programmer productivity.
In A. Oram & G. Wilson (Eds.), Making software: What really works, and why we believe it
(chap. 30). " O’Reilly Media, Inc.".

Milton, J., Solodkin, A., Hlustík, P., & Small, S. L. (2007, April 1). The mind of expert motor perfor-
mance is cool and focused. NeuroImage, 35(2), 804–813.

Murray, A., & Lethbridge, T. C. (2005). Presenting micro-theories of program comprehension in pattern
form. In Iwpc ’05: Proceedings of the 13th international workshop on program comprehension
(pp. 45–54). Washington, DC, USA: IEEE Computer Society.

Neubauer, A. C., & Fink, A. (2009, July 10). Intelligence and neural efficiency. Neuroscience and
biobehavioral reviews, 33(7), 1004–1023.

Pennington, N. (1987a). Empirical studies of programmers: Second workshop. In G. M. Olson,
S. Sheppard, & E. Soloway (Eds.), (pp. 100–113). Norwood, NJ, USA: Ablex Publishing Corp.

Pennington, N. (1987b). Stimulus structures and mental representations in expert comprehension of
computer programs. Cognitive psychology, 19(3), 295–341.

Pirolli, P., & Card, S. K. (1999). Information foraging. Psychological Review, 106, 643–675.
Rich, C. (1981). Inspection Methods in Programming (Tech. Rep. No. TR-604). MIT. Retrieved from

http://hdl.handle.net/1721.1/6934
Sackman, H., Erikson, W., & Grant, E. (1968). Exploratory Experimental Studies Comparing Online

and Offline Programming Performance. Commun. ACM, 11(1), 3–11.
Shaft, T., & Vessey, I. (1995). The Relevance of Application Domain Knowledge: The Case of Computer

Program Comprehension. Information Systems Research, 6(3), 286–299.
Shanteau, J., & Stewart, T. R. (1992). Why study expert decision making? some historical perspectives

and comments. Organizational Behavior and Human Decision Processes, 53(2), 95 - 106.
Shneiderman, B. (1976). Exploratory experiments in programmer behavior. International Journal of

Computer & Information Sciences, 5(2), 123–143.
Shneiderman, B., & Mayer, R. (1979). Syntactic/Semantic Interactions in Programmer Behavior: A

Model and Experimental Results. Int’l J. Parallel Programming, 8(3), 219–238.
Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., . . . Brechmann, A. (2014).

Understanding Understanding Source Code with Functional Magnetic Resonance Imaging. In
Proc. int’l conf. software engineering (icse). (To appear)

Siegmund, J., Kästner, C., Liebig, J., Apel, S., & Hanenberg, S. (2014, October). Measuring and
modeling programming experience. Empirical Softw. Engg., 19(5), 1299–1334.

Simon, H. A. (1990). Invariants of human behavior. Annual review of psychology, 41(1), 1–20.
Soloway, E., & Ehrlich, K. (1984). Empirical Studies of Programming Knowledge. IEEE Trans. Softw.

Eng., 10(5), 595–609.
Soloway, E., Ehrlich, K., & Bonar, J. (1982). Tapping into tacit programming knowledge. In Proceedings

of the 1982 conference on human factors in computing systems (pp. 52–57). New York, NY, USA:
ACM.

Tanaka, S., Ikeda, H., Kasahara, K., Kato, R., Tsubomi, H., Sugawara, S. K., . . . Watanabe, K. (2013,
June 11). Larger Right Posterior Parietal Volume in Action Video Game Experts: A Behavioral
and Voxel-Based Morphometry (VBM) Study. PLoS ONE, 8(6), e66998+.

Vessey, I. (1987, July). On matching programmers’ chunks with program structures: An empirical
investigation. Int. J. Man-Mach. Stud., 27(1), 65–89.

von Mayrhauser, A., & Vans, A. M. (July 1993). From code understanding needs to reverse engineering
tools capabilities. In CASE’93 (pp. 230–239).

Widowski, D. (1987). Reading, comprehending and recalling computer programs as a function of
expertise. In Proceedings of cercle workshop on complex learning.


