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Glossary

ADSL Asymmetric Digital Subscriber Line. See DSL.

API Application Programming Interface. An interface (a defined set of func-
tion calls) which an application can use to interface with a library or
system service.

ATM Asynchronous Transfer Mode. A packet switching system designed
for use on high speed links, at both data link and network layers,
and which provides multiplexed voice, video and data services. ATM
works using Virtual Circuits (VCs) to set up a channel for communi-
cation between endpoints with guaranteed capacity and delay; ATM
therefore has basic QoS functionality built in.

CBQ Class Based Queueing (scheduling algorithm). See Section 2.3.3 (p 9).

CIDR Classless Inter-Domain Routing. A means of dividing an IP address
into arbitrary network address and host address portions. An example
address in CIDR notation would be 131.111.228.52/24; the “/24” indi-
cates that the first 24 bits (131.111.228) are the network address, and the
remainder is the host address within the context of that network.

DRR Deficit Round Robin (scheduling algorithm). See Section 2.3.2 (p 8).

DSL Digital Subscriber Line. A method for providing data services over
existing voice telephone lines. DSL uses the unused high frequency
capacity of the phone line, allowing analogue telephones to continue
to use the low frequency parts unhindered. DSL is subdivided into
ADSL (Asymmetric DSL), which has a higher downstream capacity
than upstream, and SDSL (Symmetric DSL), which has equal capacity
in both directions. The more common type is ADSL, which in the UK
is typically available with a downstream capacity of between 0.5 and
8 Mbit/s, and an upstream capacity of up to 0.5 Mbit/s.
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GLOSSARY

FCFS First Come, First Served (scheduling algorithm). Packets are pro-
cessed and transmitted in the order in which they arrive.

FIFO First In, First Out (buffer). Data is read from the buffer in the order in
which it was written.

FQ Fair Queueing (scheduling algorithm). See Section 2.3.2 (p 8).

FTP File Transfer Protocol. A method for transferring files across the Inter-
net. FTP is layered on top of TCP.

GPRS General Packet Radio Service. A method for sending data (in packets)
over a radio link, typically a mobile phone. Data rates are typically
around 28 kbit/s but depend on factors such as signal-to-noise ratio;
latency is typically much higher than DSL and is variable.

HTB Hierarchical Token Bucket (scheduling algorithm). See Section 2.3.3
(p 9).

HTTP HyperText Transfer Protocol. A simple method for transferring files
across the Internet. HTTP was originally designed for web browsing
but can be used for general-purpose file transfer.

IANA Internet Assigned Numbers Authority. The organisation responsible
for allocating IP parameters (addresses, port numbers, protocol num-
bers, etc.). http://www.iana.org/.

ICMP Internet Control Message Protocol. The in-band control protocol for
IP, which is mainly used for error reporting and diagnostics.

IP Internet Protocol [1]. See Section 2.1 (p 3).

ISP Internet Service Provider. A company which provides Internet connec-
tivity to customers.

Leaky Bucket A simple burst-smoothing scheduling algorithm. Packets can
enter a fixed-size bucket (a FIFO buffer) at any rate, but are constrained
to leave (through the “leak”) at a fixed rate determined by the link ca-
pacity. This is very widely used, partly because it is very simple to
implement.

MGCP Media Gateway Control Protocol [2]. A UDP-based VoIP protocol,
used by consumer services such as BT Broadband Voice [3].
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MTU Maximum Transmission Unit. The maximum size of a frame sent over
a network. This will be specific to the network in use, but is typically
1500 bytes on Ethernet. IPv6 specificies a minimum acceptable MTU
for any network of 1280 bytes.

OSI Open Systems Interconnect Reference Model. Describes the different
layers involved in network communications and the protocols for each
layer on the Internet. [4]

QoS Quality of Service. See Section 2.2 (p 4).

PPPoA Point to Point Protocol over ATM. A tunnelling protocol for sending
IP packets over an ATM network, for example between a customer and
an ISP over a DSL link.

PTB Prioritised Token Bucket. The scheduling algorithm I have devised for
this project. See Section 3.3 (p 19).

RED Random Early Detection (queue management algorithm). See Section
2.3.1 (p 8).

RFC Request For Comments. A series of technical documents about the In-
ternet, describing (amongst other things) standards for various proto-
cols. http://www.rfc-editor.org/

RR Round Robin (scheduling algorithm). See Section 2.3.2 (p 8).

SFQ Stochastic Fair Queueing (scheduling algorithm). See Section 2.3.2 (p 8).

TBF Token Bucket Filter (scheduling algorithm). See Section 2.3.1 (p 7).

TCP Transmission Control Protocol. See Section 2.1 (p 3).

TOS Type Of Service field [5] in the IP [1] header. See Section 2.2 (p 5).

TUN/TAP Universal TUN/TAP Driver. See Section 2.5.1 (p 11).

UDP User Datagram Protocol. See Section 2.1 (p 3).

VC Virtual Circuit. See ATM.

VoIP Voice over IP. Any means of performing a voice conversation over the
Internet.

VPN Virtual Private Network. See Section 2.5 (p 11).

WRR Weighted Round Robin (scheduling algorithm). See Section 2.3.3 (p 9).
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CHAPTER 1

Introduction

My project concerns the creation of an IP quality of service (QoS) system,
which I have called Qtun, to prioritise and control Internet traffic over slow
links such as DSL. The scenario I specifically aimed to improve was the si-
multaneous use of a UDP-based Voice-over-IP (VoIP) system and bulk TCP
data transfers such as HTTP or FTP, by minimising packet loss and unnec-
essary latency on the UDP stream and prioritising it over TCP. I have im-
plemented this using an overlay network based on a custom IP-over-UDP
tunnel, and demonstrated that it operates with the desired effect over a stan-
dard sub-megabit ADSL connection. My implementation meets, and in some
areas exceeds, the core goals outlined in my project proposal.

QoS guarantees are almost entirely absent from current widely-used In-
ternet protocols; TCP will by design aggressively make use of as much of a
link’s capacity as it can, to the extent that protocols without flow control, such
as UDP, will suffer increased latency and dropped packets. Furthermore, the
problem is compounded by the large First In, First Out (FIFO) transmission
buffers found on almost all DSL modems. These are fitted because they have
a beneficial effect on the throughput of bursty traffic. However a side-effect is
that when the DSL link is heavily used, the buffers will be full, and therefore
packets ready for transmission must wait in the buffer for some time before
actually reaching the DSL link. This adds considerable latency — a second or
more is common — and makes interactive applications such as VoIP barely
useable, especially when combined with packet loss arising from the frequent
overflowing of buffers. This effect is even more noticeable on a GPRS con-
nection over a mobile phone; because of the much slower speed, even a small
buffer can take a considerable time to be emptied, and I have often noticed
latencies of over ten seconds on a heavily-used GPRS connection.

It is possible to avoid this problem by using a simple traffic rate-limiting

1



1. INTRODUCTION
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Figure 1.1: Network diagram showing the scenario and my solution

system to ensure that the rate of data entering the DSL modem from a local
computer does not exceed the DSL link’s maximum transmission rate, hence
keeping the modem’s buffer almost empty. However there are transmission
buffers at both ends of the link, and it is only possible for an end-user to in-
stall such a system directly at one end; the other end is under the control of
the Internet Service Provider (ISP). Control over the incoming packet stream
is needed; existing techniques cannot achieve this effectively without coop-
eration with the ISP. My assumption is that the ISP will not be cooperative
in this regard (typically any QoS policies installed on the ISP’s routers will
be in their own interests rather than their customers’). In order to implement
effective QoS independently of the ISP a purpose-built overlay network with
QoS is required; Qtun provides such facilities.
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CHAPTER 2

Preparation

This chapter primarily contains a selection of background material on topics
relevant to my project.

2.1 Internet protocols

The Internet Protocol (IP) [1], of which the current widely-used version is
IPv4 (though IPv6 is scheduled to replace this eventually) is a means of send-
ing datagrams (blocks of data, typically variable-sized up to 1.5 kB) from a
source to a destination, optionally via one or more routers if the source and
destination are not on the same local network. The datagrams are sent as
packets, which prefix a small header to each datagram containing metadata
such as source, destination, length and checksum. IP networks make rout-
ing decisions on a hop-by-hop basis; each node just decides upon the node
the packet should next be sent to. Routes taken by packets from one node to
another can therefore change unpredictably at any time.

IP is said to be a data link layer protocol in the Open Systems Interconnect
(OSI) Reference Model [4]. IP is not designed to be used directly for applica-
tions, as it does not provide a means of multiplexing simultaneous streams of
data between two hosts other than by protocol; instead, other network layer
protocols providing various different services are encapsulated within the IP
packet.

The most common of these protocols are Transmission Control Protocol
(TCP) [6] and User Datagram Protocol (UDP) [7]. Both use source and des-
tination port numbers to multiplex simultaneous streams and identify ser-
vices. UDP just provides a means of sending datagrams; it provides no
guarantee that the datagram will arrive in order or even arrive at all. TCP
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2. PREPARATION

provides a reliable stream service which, although implemented using un-
reliable IP packets, is guaranteed and flow-controlled. Any lost packets are
retransmitted automatically, duplicate packets are discarded, and packets are
reassembled into a stream by the receiver in the correct order. The capacity
of the underlying data link is determined automatically and continuously
by the protocol in order to alleviate congestion, by gradually increasing the
transmission rate until packets are dropped. TCP streams start with a three-
way handshake indicating the start of a connection; the connection remains
until explicitly terminated.

Whilst it would appear at first that TCP is the superior protocol, UDP is
more suited to certain applications. In Voice over IP (VoIP) and other real-
time, latency-sensitive systems, if a packet is lost then it is more useful to
continue without it (resulting in a brief degradation of quality) rather than
introduce latency by waiting for it to be retransmitted. In addition, encap-
sulating a TCP stream within another TCP stream behaves very poorly and
exhibits instability, so when implementing tunnelling (see Section 2.5) it is
usual to use UDP or another non-flow-controlled protocol.

The VoIP system I will use for testing (a Fujitsu FDX-840 hardware
telephone-to-IP adapter with a BT Broadband Voice [3] connection) uses
MGCP, the Media Gateway Control Protocol [2], layered over UDP. This is a
simple protocol with an open standard which is easy to inspect programmat-
ically. However, my intention is to make Qtun sufficiently general-purpose
that it will work with any VoIP system.

2.2 Quality of Service

Quality of service (QoS) is a generic term referring to any guarantee which
can be provided by a network layer to higher-level services. Such guarantees
are typically stated in terms of latency or throughput, and could be expressed
as anything from a strict set of bounds (“the available throughput will exceed
1 Mbit/s”) to an indication of an order of priority (“interactive traffic will be
prioritised over bulk transfers”). The Internet needs QoS because of its multi-
purpose nature: many different types of traffic can traverse the Internet and
contend for capacity, and some types of traffic are considered by the user to be
more urgent than others. For example a VoIP telephone call made across the
Internet will suffer considerably from high latency, as this will result in a time
lag in the conversation (and it has been shown that a time lag of over 250 ms
in a conversation is intolerable to humans [8]); bulk downloads merely take
very slightly longer under high latency. Furthermore, there are some types
of traffic for which there is no “correct” QoS guarantee: web browsing traffic
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Quality of Service

may be seen as either interactive or bulk, and this will depend in part upon
the individual user’s preference. It is desirable for a user to be able to control
how traffic is prioritised on his or her own link to the Internet.

Strict bounds require every link and every device in the network to co-
operate in deciding upon and enforcing the guarantee, as any part of the
network could act as a bottleneck; the network architecture and protocols
need to be designed from the outset to accommodate this. ATM is a pro-
tocol designed with this in mind; when setting up an ATM virtual circuit
(VC) between two endpoints, negotiation of the capacity of that VC takes
place and this capacity is enforced for its lifetime. IP, however, has only very
limited QoS capabilities. The IP packet header does have a Type of Service
(TOS) field [5], intended to provide a vague hint to routers on how individ-
ual packets should be treated (for example, that latency should be minimised,
or throughput maximised) but few routers actually obey these hints — and
because of this, few applications make use of the TOS field.

For this reason, the Internet as a whole can provide no QoS guarantees.
Individual routers can be configured to perform QoS techniques according
to configured policies, but any guarantees arising will typically apply only
to individual links in one direction; end-to-end guarantees are not possible.
Even if we just consider communications between two fixed endpoints, due
to the unpredictable nature of Internet routing the provision of QoS guaran-
tees in such communications would require cooperation between the owners
of every possible router between the two endpoints. Furthermore, packets
will likely traverse routers belonging to several ISPs, who may have config-
ured conflicting policies on their routers.

The core of the Internet currently has plenty of spare capacity how-
ever, so working without QoS between core routers is acceptable until high-
bandwidth services such as streaming video become more widespread. Be-
tween an end user and a server, the bottleneck will almost certainly be the
user’s relatively slow link to his or her Internet service provider (which, for
the majority of home users in the UK, will be an ADSL or cable link with a
downstream capacity of between 0.5 and 8 Mbit/s and a lower upstream ca-
pacity). Tightly controlled prioritisation and packet scheduling is therefore
most crucial on this link, at the edge of the Internet.

Some ISPs do apply traffic shaping on their customers’ links, but gener-
ally this is heavily influenced by their own interests: for example, with the
intention of reducing the amount of peer-to-peer file-sharing traffic on their
network, and hence avoiding the increased costs associated with maintaining
a higher-capacity network to cope with demand. It is more frequent to find
users complaining about their ISP’s QoS system than praising it, not least
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2. PREPARATION

because the end user has no control over the system.

2.2.1 Transmission vs. reception

It is important to note that QoS techniques are much more effective at con-
trolling transmitted data than received data. Most attempts to control data
received over a slow link will cause the transmission buffers at the other end
of the link to remain full, and will not solve any latency problems. It is there-
fore necessary to install QoS systems with matched policies at both ends of
the link; this is the purpose of my project.

Techniques for controlling some types of incoming traffic do exist. It is
possible, for example, to cause the transmission rate of a TCP stream to be re-
duced by its source simulating congestion which will be detected by the flow
control algorithm, i.e. by dropping packets temporarily. Such techniques
are referred to as ingress policing algorithms; a simple example would be an
algorithm which allows incoming flows to be received up to a certain rate,
and drops any packets which arrive faster than this. RED (see Section 2.3.1)
can be used as a more sophisticated ingress policing algorithm. However it
is important to remember that such schemes are inefficient as some of the
link’s capacity will be used by packets which are intentionally dropped. It
also takes time for the source to detect the packet loss, and therefore ingress
policing algorithms are slow to respond to changes.

2.3 Techniques for providing QoS guarantees

There are several broad techniques for providing QoS, which have different
effects and are often used in combination; such a combination is sometimes
referred to as a traffic shaping setup. A summary of the most common tech-
niques follows.

A flow is defined as any stream of packets corresponding roughly to one
conversation between two endpoints. For connection-based protocols such
as TCP this is well-defined (an established TCP stream is a single flow),
whereas in datagram-based protocols such as UDP the definition is more
open to interpretation (most commonly, the flow is identified by the tuple of
source and destination addresses, optionally including the source and desti-
nation port numbers).

2.3.1 Rate limiting of a single flow

Rate limiting (also known as throttling) is the limitation of the maximum data
rate of a packet stream. This is applied to all data passing over a link in order
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to limit the total transmission rate of traffic — rate limiting algorithms as-
sume the existence of a single flow (though adaptations exist to handle mul-
tiple flows or classes of traffic, which are discussed later). Rate limiters are
typically first come, first served (FCFS), i.e. they do not intentionally reorder
packets (though of course another part of the QoS system could perform re-
ordering).

A modem can be considered as a throttling device, as it may have to
cope with packets arriving from a fast network (which could be, for exam-
ple, 100 Mbit/s Ethernet) at a higher rate than the output (for example, DSL)
is capable of. It achieves this by having a fixed-size FIFO buffer into which in-
coming packets are placed; packets are transmitted from this buffer as fast as
possible, but if the packet arrival rate is not sustainable then the buffer will
eventually become full and subsequently received packets will be dropped
until buffer space frees up. Such a setup is an example of the Leaky Bucket
algorithm (in which the FIFO buffer acts as the “bucket”). This has the ef-
fect of smoothing out bursts in traffic, which is achieved well; the larger the
buffer, the larger the bursts which can be smoothed. However, when the
buffer contains a large amount of data, packets will take a considerable time
between entering the buffer and being transmitted; in other words, latency
will suffer badly. As previously discussed, high latency causes problems for
interactive applications.

It is assumed that the behaviour of the modem cannot be changed by the
user, as it would require an extensive redesign of the modem’s hardware.
So if the latency problem is to be solved, the modem’s throttling behaviour
must be controlled by some means external to the modem. This is possible by
limiting the rate at which data enters the modem from the faster link: if this
data is already at a rate sustainable by the slower link, the buffer will only
ever contain packets currently arriving or being transmitted; packets will not
sit idle in the modem. A throttling device is therefore required between the
modem and the fast network; this can have more complex policies in place
of the FIFO policy of the modem which can avoid the drawbacks of the leaky
bucket algorithm.

A more flexible approach to rate limiting is the Token Bucket Filter (TBF)
algorithm (sometimes just referred to as token bucket; not to be confused
with leaky bucket). In this algorithm, tokens arrive into a bucket at a fixed
rate which determines the desired transmission rate. The transmission of
packets requires the expenditure of a number of tokens (typically one token
per byte); if insufficient tokens are available the packet is delayed, often by
queueing in a FIFO as in the leaky bucket algorithm. The token bucket can
only store a fixed number of tokens, beyond which incoming tokens are dis-
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2. PREPARATION

carded; the bucket size determines the maximum size of a burst of data which
can be transmitted after the link has been idle, before settling into a steady
transmission rate. Where low latency is important, the maximum burst size
must be small to avoid filling up the modem’s buffer.

The aforementioned algorithms only drop packets when a buffer is full.
An alternative approach is taken by the Random Early Detection (RED) [9]
algorithm, which attempts to maintain short queues (in order to keep latency
low) but still allow occasional bursts of packets. The algorithm does not per-
form rate limiting on its own, but is often combined with a rate limiting algo-
rithm such as leaky bucket or token bucket. RED works by dropping packets
early according to a function that depends upon the current queue length.
Above a threshold, the probability of dropping a packet increases linearly
with the size of the queue, such that a full queue drops a packet with a prob-
ability of 1, and an empty queue drops no packets. This is particularly suited
to flow-controlled protocols such as TCP, in which the transmission rate is de-
termined based upon which packets are dropped; RED’s dropping of packets
before the queue is full results in the transmission rate reaching the maxi-
mum available capacity more quickly (rather than repeatedly overshooting
and causing a large number of packets to be dropped) and remaining stable.

2.3.2 Scheduling of multiple flows

When multiple flows are transmitting simultaneously, it is desirable for them
to be able to share the link fairly — such that flows are all allowed the same
proportion of the throughput of the link. The scheduling of individual flows
is beyond the scope of my project, although I am including a brief overview
here as I have adapted techniques originally designed for such scheduling.

The standard policy of FCFS does not provide a fairness guarantee. Al-
though it tends to be approximately fair on average, there exist combina-
tions of circumstances which will cause a bias towards certain flows. Nagle
[10] suggested Round Robin (RR) scheduling of flows; this is fair if packets
have a constant size, which is rarely the case on IP networks. Fair Queueing
(FQ) [11] is an algorithm which achieves near-perfect fairness, but this scales
poorly when there are many flows present; it requires O(log(n)) work per
packet, where n is the number of flows. Stochastic Fair Queueing (SFQ) [12]
simplifies the FQ algorithm such that flows are grouped together into buck-
ets according to a hash function, and so n is smaller than the number of flows
(and may be constant), but this compromises on fairness as flows in the same
bucket can still interfere with one another.

Deficit Round Robin (DRR) [13] provides similar guarantees to FQ, using
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a much cheaper algorithm in which the required work per packet remains
constant. DRR is based upon RR, but compensates for RR’s unfairness with
variable-sized packets by keeping track of the past unfairness (“deficit”) the
algorithm has caused each flow, and uses this deficit to determine how much
data the flow is allowed to transmit on the next cycle. This can be considered
a multiple-flow version of token bucket, in which a flow’s deficit counter
corresponds to the number of tokens available to that flow.

2.3.3 Class-based scheduling

It is often useful to treat different types of traffic in different ways in order to
provide different sorts of guarantees to different applications. Such a system
will require a packet classifier which inspects packets, typically by looking
at fields in the headers at various levels (in the simplest case just the IP and
TCP/UDP headers are used, which provide such information as the packet’s
source, destination, port and length) but more complex classifiers will dissect
protocols encapsulated within the TCP stream or UDP datagram. According
to configured conditions the packet will be placed into one of several classes;
different classes are treated in different ways by the traffic shaper.

It would be possible to configure the system such that each class has an
independent rate limiter such as token bucket, with round-robin scheduling
between classes such that each class has a chance to transmit one packet in
turn. This would effectively allow the specification of maximum rates for
each type of traffic. However this setup is likely to waste capacity: if one
class is idle, then its capacity remains unused and cannot be transferred to
other busy classes. An algorithm is required which can take account of the
existence of multiple classes of which a subset are trying to transmit at un-
specified rates at any given time.

Class-based Queueing (CBQ) [14] is such an algorithm, which uses a
Weighted Round Robin (WRR) scheduler to transmit packets from different
classes in order of priority or according to limits on average and burst trans-
mission rate. CBQ can also throttle the combined total bandwidth use of all
classes by measuring and controlling the average idle time of the link: for
example when a 2 Mbit/s connection is throttled to 1.9 Mbit/s, CBQ ensures
that the link is idle 5 % of the time. The drawback of CBQ is that it requires
accurate, high-resolution timing, and also exact knowledge of the capacity
of the link (which may in reality be unknown or variable). These problems
are illustrated in the context of the Linux Traffic Control system (see Section
2.4.1) in the tc-cbq-details manual page [15].

Hierarchical Token Bucket (HTB) [16] is a class-based adaptation of token
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bucket. It was originally devised as part of the Linux Traffic Control sys-
tem, although the algorithm has since been used for a wide variety of other
applications such as IEEE 802.11 wireless networking [17]. This is easier to
implement than CBQ as it does not depend on interface characteristics, yet
achieves the same goals as CBQ. HTB works with a hierarchy of classes; in-
coming tokens are distributed between these classes in accordance with con-
figured priorities and limits. Most importantly, classes can take spare tokens
from other classes which are transmitting at less than their permitted rate.

2.4 Existing QoS systems

Several systems already exist which can perform traffic scheduling in order
to provide QoS guarantees. Usually this is implemented as part of a larger
general-purpose system. Traffic scheduling is almost always done on routers;
routers may be implemented in software (for example, the Linux operating
system has facilities to become a fully-featured Internet router with QoS ca-
pabilities) or in hardware. Software routers are usually only used on a small
scale, for example to connect a home network to the Internet, or where ca-
pabilities are required which are not found in affordable hardware routers,
such as a VPN (see Section 2.5). Several “hardware routers” sold for home
use are in fact software routers, and furthermore many of them run Linux.
My project has been done in the context of a Linux-based software router, as
such routers are easily extended using user-space Linux applications.

2.4.1 Case study: Linux Traffic Control

The Linux kernel has a very flexible QoS architecture called Traffic Control,
which is controlled using the user-space utility tc. This works by associat-
ing a “qdisc” (queueing discipline) with each interface, on which packets to
be transmitted are enqueued by the kernel. The default qdisc is pfifo fast,
a FIFO implementation. Other simple qdiscs cover most of the algorithms
I described above: sfq, tbf, and red. More complex qdiscs are hierarchical
and create a tree which may contain other child qdiscs (of any type, including
another of the same type) into which packets are classified according to a set
of rules; these include prio (which has a numeric priority assigned to each
child, and passes control to the children in order of priority; this is approxi-
mately equivalent to WRR), cbq and htb. A simple ingress policing system
is also implemented, which can drop packets of flows which arrive above a
certain rate.
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Traffic Control is a very effective system as it stands. However it is not
well-suited to prototyping new systems which require additional code as it
runs entirely inside the kernel; making changes to the running code requires
restarting the entire system.

2.5 Tunnelling and overlay networks

Tunnelling refers to the encapsulation of a data link (or lower) layer proto-
col, such as IP or Ethernet, inside another data link (or higher) layer proto-
col, such as IP again or UDP. This is sometimes used to allow data for one
network to travel across another, incompatible network. For example, DSL
connections are usually natively ATM-based, but the PPPoA encapsulation
protocol is used to allow IP traffic to flow over this link between the DSL
customer and the Internet. Similarly, IPv6-in-IPv4 tunnels (either explicit or
implicit) are used to connect disparate IPv6 networks together over existing
IPv4 infrastructure [18, 19].

Another common use of tunnelling is in Virtual Private Networks
(VPNs). VPNs typically tunnel IP over IP (or occasionally Ethernet over IP),
but with an encryption and authentication layer. This has two major uses: to
protect data sent over the VPN from interception, and to allow a computer
to appear within another network in an authenticated manner (for example
a company employee could connect to a company VPN from a computer at
his or her home in order to appear within the company’s internal network
and hence communicate with other internal systems). There is a very wide
variety of VPN software, and even of VPN protocol standards, in existence.
Open source Linux VPN applications include Poptop PPTPd [20], OpenVPN
[21], tinc [22] and an IPsec [23] implementation in the kernel; each of these
uses a different protocol and has very different modes of operation.

A network which is in whole or in part constructed from tunnels layered
over other networks is known as an overlay network, as it hides the detail of
the underlying network from applications.

2.5.1 APIs for tunnelling

Linux includes a driver — the Universal TUN/TAP Driver [24] — to allow
the kernel to offload network functionality to a user-space application. This
is accessed by using standard C library calls (open, ioctl) on a special device
file (/dev/net/tun or /dev/tun) and will create a network interfaces to which
other applications can send packets in the same way they would send packets
over a physical network. The tunnelling application can use the write and

11
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read functions (or similar) to send a packet onto the network via the kernel,
and receive a packet which another application wishes to send, respectively.
A similar driver with the same interface is present in other UNIX variants
such as FreeBSD and Solaris.
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CHAPTER 3

Implementation

3.1 System design

3.1.1 Operating system and language

I will be implementing Qtun as a user-space Linux application, due to the
popularity of Linux in software routers (see Section 2.4). Linux is open source
so problems encountered with interacting with the kernel or libraries may
be resolved by inspecting its source code. In addition, Linux has the bene-
fit of providing APIs such as the universal TUN/TAP driver (Section 2.5.1),
which will make the integration with the kernel networking subsystem con-
siderably easier and more elegant. Other open source UNIX variants such as
FreeBSD would also satisfy these criteria; however I have very little experi-
ence of these.

The use of Linux and the universal TUN/TAP driver introduces a require-
ment for my project to be based upon the C programming language. Deriva-
tive languages such as C++ which allow direct calls to C library functions
would also be possible; however since a considerable portion of the code
is to be centred around C API calls I would have little opportunity to use
the higher-level features such languages provide. Furthermore use of C has
the benefit that the compiled code will be compact, fast, and not dependent
on the substantially-sized standard C++ libraries — thus making the code
portable to embedded systems such as home ADSL routers which typically
have tight constraints on memory and storage.

I have limited experience of programming in C, so my first steps on the
project will be to gain sufficient familiarity with the language.
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3. IMPLEMENTATION

3.1.2 Tunnelling

Upon first researching possibilities for implementation of this project, I de-
cided to implement it as an add-on to an existing VPN system. This quickly
proved to be much more complex than I had expected, as the VPN appli-
cations I investigated did not lend themselves to easy modification of their
queueing behaviour, and furthermore it is possible that such modifications
would affect the security of the system in unexpected ways. Instead I came
to the conclusion that implementing my own overlay network from scratch
would be simpler, and also more flexible as it would not tie the user to a par-
ticular VPN. If the security of a VPN is required, it is possible to layer Qtun’s
overlay network over most other Linux VPNs.

In order to provide the overlay network between Qtun nodes, I will im-
plement a custom IP-in-UDP encapsulation protocol. This will prefix onto
the IP packet a short identification header containing a magic number and
protocol version number, and place the result in a UDP packet for transmis-
sion across the Internet. The magic number and protocol version are checked
by the receiver and must both match the expected values; the purpose of this
is to avoid erroneous packets being output when incompatible versions of
Qtun are attempting to communicate. The protocol is illustrated in Figure 3.1.
A custom protocol will be used because there is no commonly-implemented
standard protocol which would be suitable; in any case the tunnel will only
ever exist between two Qtun nodes and no interoperability with other tun-
nelling systems is required.

The universal TUN/TAP driver provides a means of creating a standard
network interface and transferring packets to and from the kernel. Once
a packet is received from the kernel it will be passed to the queueing and
QoS module; packets output from that module then become encapsulated
within a UDP packet and sent onwards to the remote node. The remote node
will strip off the UDP header and pass the packet directly onwards to the
TUN/TAP driver — all QoS is performed by the transmitting node for the
reasons discussed in Section 2.2.1. The flow of a packet through the system

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Protocol version (initially 0x01) Magic number (0x42)
Encapsulated IP packet

...

Figure 3.1: Encapsulation packet structure
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Figure 3.2: Packet flow through the system

is illustrated in Figure 3.2.
The code for the encapsulation module will be in encap.c, and the

TUN/TAP driver interface will be tun.c. Together these modules will man-
age the Qtun overlay network.

3.1.3 Queueing and QoS module

The queueing and QoS module — queue.c — will be responsible for en-
queueing packets to transmit, and scheduling the dequeueing of such packets
according to a scheduling algorithm. This module will also contain a packet
classifier in order to select the correct one of a number of queues into which
a given packet should be placed; different queues will be treated in different
ways by the scheduler. As discussed in the previous chapters it is important
to keep queue sizes small in order to minimise latency, and to ensure that the
scheduler does not transmit data at a higher rate than the bottleneck link can
sustain.

This module must be implemented in a general-purpose manner, in order
that a wide range of QoS policies could be implemented. This is important
as the desired policy will vary greatly between different users and networks.
Although Qtun will be implemented with a particular scenario in mind —
the sharing of an ADSL link between UDP VoIP and bulk TCP streams — it
will not be restricted to such a scenario and aims to be easily modifiable to
solve a wide range of different problems.
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The packet classifier should be able to discriminate packets based upon
various criteria of the packet, such as source or destination address, trans-
port layer protocol (such as TCP or UDP), source or destination port number,
packet length (according to lower and upper bounds). These can all be ob-
tained from a packet by looking at fields at fixed locations in the IP, TCP
or UDP packet header. In addition, it may be useful to provide a facility to
match arbitrary strings at fixed locations within the packet data, in order to
inspect higher-layer protocols which are not implemented in the classifier di-
rectly; for example, this could be used to inspect fields in MGCP packets to
distinguish incoming from outgoing VoIP calls.

Various approaches for implementing queue scheduling algorithms were
discussed in Section 2.3. Of these the most suitable would be a class-based
variant of token bucket, such as HTB, as this allows accurate control of both
the total transmission rate and the priorities of traffic within each class, with-
out requiring high resolution timing (as this is not available to a user-space
application on a preemptive operating system such as Linux).

Rather than using HTB itself, I have opted for a simpler variant which
would be easier for the user to understand and is slightly less computation-
ally intensive; the full capabilities of the HTB algorithm are almost always
unneeded. HTB operates upon a hierarchy of classes. My algorithm — which
I shall call Prioritised Token Bucket (PTB) — instead maintains a linear linked
list of classes, which are allocated tokens in order of priority. I will discuss
the PTB algorithm in more detail in Section 3.3.

3.1.4 Internal signalling

In some situations it may be necessary for the two endpoints of the overlay
network to communicate events to each other. This will be done in-band
such that the signalling packets pass through the same scheduling algorithm
as data packets, in order that the total transmission rate can be controlled
(though it may be useful to prioritise signalling packets such that they are
always transmitted in favour of data). This will be handled by rmi.c, which
will implement a custom remote method invocation (RMI) protocol. RMI
packets will be marked as protocol 114 in the IP header (this protocol num-
ber is reserved by the IANA for “any zero-hop protocol”; RMI packets will
not leave the Qtun overlay network so satisfy this criterion). Packets will be
passed to rmi.c by encap.c upon decapsulation of a packet of that protocol
number. Figure 3.3 shows the detailed structure of an RMI packet.

The protocol will not provide any guarantees about message delivery di-
rectly; in this way it is similar to IP or UDP. For this purpose, I will im-
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0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

RMI type RMI opcode Magic number (0xF0AD)
Sequence number

Argument (up to 1000 bytes)
...

RMI type: 0x01 Unreliable RMI
0x02 RRMI

RMI opcode: 0x00 RRMI reset (startup)
0x01 Remote error
0x02 RRMI acknowledgement

...

Figure 3.3: RMI request structure

plement a Reliable RMI protocol (RRMI) on top of RMI, which will handle
acknowledgement of requests, retransmission of lost requests, etc..

3.1.5 Input/output abstraction layer

In order to avoid duplicated code for performing input and output opera-
tions on file descriptors, all such operations will be handled by an abstrac-
tion layer, io.c. This will allow the other modules, such as the TUN/TAP
driver interface, to register file descriptors (FDs) for reading and/or writing
(by calling the io add readfd or io add writefd function respectively), and
will handle the mechanics of reading or writing data from or to the relevant
FD when needed. This module is described in more detail in Section 3.4. The
interaction of the core modules is illustrated in Figure 3.4.

3.1.6 Other peripheral modules

There will be, in addition, modules to handle peripheral tasks such as the
logging of messages for debugging or for informing the user about error con-
ditions (log.c), and startup and initialisation of the other modules (main.c).
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File descriptor input/output
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Figure 3.4: Interaction of the core modules

3.2 Implementation approach

3.2.1 Toolchain and libraries

In order to allow Qtun to be ported to any hardware platform on which Linux
will run, I will be using the standard GNU C compiler, gcc [25]. I will not tar-
get any particular version of the compiler, as I will myself be testing Qtun on
several different computers, which may have different versions of gcc in-
stalled. The build process will be managed by SCons [26]. I chose this over
the more usual make because of its simplicity: with SCons it is possible to
just list the source files which should be compiled, and the correct build pro-
cess will be determined automatically (though if required, SCons can provide
more detailed control; it is configured using short Python scripts and is hence
very flexible).

The only libraries I will need to use will be the GNU C libraries [27]. These
are found on almost all Linux systems. The Linux kernel header files will be
required for building Qtun, due to the use of the universal TUN/TAP driver
whose interface is defined in these headers.

3.2.2 Version control

I will use Subversion [28] for version control. This has several benefits over
the more commonly-used CVS, the most useful to me being support for
changesets — i.e., changes to multiple files are committed together atom-
ically, which makes keeping track of related changes to different modules
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easier. Trac [29] will be used as a front-end to the Subversion repository and
to maintain a list of defects as I find them during testing.

3.2.3 Testing

As far as is possible, each module will be tested individually as it is com-
pleted. To do this I will make use of existing completed modules and skeleton
implementations of the modules which are still to write.

My approach to testing the complete finished system will involve both
subjective and objective testing. For subjective testing, a setup with a VoIP
telephone on an ADSL line with simultaneous TCP transfers can be tried by
users both without and with Qtun; the users would judge whether the audio
quality and perceived time lag on the conversation is acceptable.

The bulk of my testing, however, will be objective and quantitative. This
will involve the use of utilities to simulate various types of flow which will
pass through the system, and to gather statistics on the round trip time and
packet loss. As the ADSL line I have access to for testing does not have VoIP
equipment installed, I will implement a simulator which generates a UDP
traffic flow similar to that produced by a common VoIP system, and reports
statistics. I will produce graphs showing the throughput of different flows
passing along the line, both with and without a Qtun setup, in order to illus-
trate adaption to changing situations.

The testing procedures will be detailed in Chapter 4.

3.3 Prioritised Token Bucket algorithm

The PTB algorithm forms the core of Qtun’s QoS system. This is a class-
based token bucket filter (TBF) algorithm I devised for Qtun which draws
some ideas from hierarchical token bucket, although the implementation is
very different. PTB maintains a linked list of packet queues (queue list)
in priority order. Queues have the structured data type queue node, which
contains the following fields:

guaranteed rate: the data rate (in bytes per second) which the algorithm
will dedicate to this queue; lower priority queues are constrained to
use the remainder when this capacity is subtracted from the total avail-
able capacity of the link. If this queue does not make use of all of this
reservation, some capacity may be wasted. This could be used to en-
sure that, for example, a small portion of the link is always reserved for
low rate interactive traffic.
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ceiling rate: the maximum data rate at which this queue can transmit;
above this rate, lower-priority queues are allowed to transmit instead.
This is useful in order to limit the use of high-priority queues, and avoid
them starving lower-priority queues of capacity.

max queue size: the maximum amount of data this queue can contain, in
bytes. This must be small in order to keep latency to a minimum.

excess mode: the behaviour of packets arriving for the queue which would
cause it to become larger than max queue size. My implementation has
DROP as the only option here — such packets are discarded — but the
field is present in order to allow future extensions. A potential alterna-
tive option could, for example, close connections using an ICMP error
code (though this would be of very limited use).

queue head, queue tail: pointers to both ends of a linked list of packets
in the queue. Packets are added at queue tail and transmitted from
queue head.

queue size: the current size of the packet queue, in bytes.

guarantee: used for temporary storage by the algorithm; contains the num-
ber of tokens guaranteed to this queue in the current quantum (based
on guaranteed rate).

permit tokens: temporary storage; contains the number of tokens the queue
is permitted to use in this quantum (based on ceiling rate).

permit exceeded: temporary storage; a flag which when set indicates that
this queue cannot send another packet during this quantum as that
would cause the ceiling rate to be exceeded.

name: a textual identifier for the queue, for printing in debugging messages.

In addition, a global counter (sparetokens) is used to store the current
number of tokens available for use.

The algorithm itself is described in detail in Figure 3.5. It works by di-
viding time into quanta (the length of a quantum is customisable by setting
the QUANTUM constant, but I have found that 10 milliseconds works well at
DSL speeds). At the start of each quantum, the spare token counter is incre-
mented by a fixed number (TOKENRATE). One token can be used to transmit
one byte, i.e. a packet n bytes long requires n tokens to be expended in order
for the packet to be transmitted; packets must be transmitted whole. Some
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sparetokens = 0;1

repeat at the start of each quantum2

sparetokens += TOKENRATE;3

foreach queue do4

if queue.guaranteed rate > 0 then5

queue.guarantee += queue.guaranteed rate × QUANTUM;6

if queue.guarantee > GUARANTEEMAX then7

queue.guarantee = GUARANTEEMAX;8

sparetokens –= queue.guaranteed rate × QUANTUM;9

else queue.guarantee = 0;10

if queue.ceiling rate > 0 then11

queue.permit tokens += queue.ceiling rate × QUANTUM;12

if queue.permit tokens > PERMITMAX then13

queue.permit tokens = PERMITMAX;14

else queue.permit tokens = 0;15

queue.permit exceeded = false;16

repeat17

queue = first non-empty queue without permit exceeded set;18

if queue exists and head packet length ≤ sparetokens + guarantee then19

if queue.ceiling rate > 0 and packet length≥ queue.permit tokens then20

queue.permit exceeded = true;21

else22

if queue.guarantee > 0 then23

queue.guarantee –= packet length;24

if queue.guarantee < 0 then25

sparetokens += queue.guarantee;26

queue.guarantee = 0;27

else sparetokens –= packet length;28

if queue.ceiling rate > 0 then29

queue.permit tokens –= packet length;30

send packet to encapsulation module;31

while previous iteration sent at least one packet ;32

if sparetokens > TOKENMAX then sparetokens = TOKENMAX;33

Figure 3.5: Pseudocode for the PTB algorithm
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of these tokens are preallocated to queues with guaranteed rates (lines 5–10
of the pseudocode), and ceiling rates are converted into a number of tokens
each queue is permitted to use (lines 11–15).

After the preallocation of tokens, the algorithm finds the first non-empty
queue which has not exceeded its ceiling rate. The packet at the head of this
queue is transmitted if and only if there are sufficient tokens either in the
global spare token counter or in the per-queue preallocated token counter
to transmit the packet, and if transmitting the packet would not cause the
queue’s ceiling rate to be exceeded (lines 19–31). Multiple packets can be
transmitted per quantum, by repeating this Section of the algorithm until no
further packets can be transmitted.

The algorithm permits a degree of burstiness by allowing a limited num-
ber of unused tokens to be carried over from previous quanta. This applies
to both the global spare token counter, and to the preallocated per-queue to-
ken counters. The points at which these counters will saturate are controlled
individually, using the constants TOKENMAX (for sparetokens), GUARANTEEMAX
(for guarantee) and PERMITMAX (for permit tokens). I have set these to be
small in order to err on the side of low latency rather than burstiness, but the
algorithm provides the facility to allow more burstiness for other scenarios if
necessary.

3.3.1 PTB implementation details

In Qtun, the PTB algorithm forms the main loop, which runs continuously
during normal operation. As such, it calls various other modules’ housekeep-
ing functions periodically — in particular, rrmi check which performs re-
transmission of unacknowledged RRMI requests if necessary, and io select

which processes any pending transfers and callbacks in the I/O abstraction
layer. The latter can be used to pause program execution until either data
arrives on a file descriptor or a timer elapses; this is therefore used to wait at
the end of each quantum.

A packet enters queue.c through the enqueue packet function. This calls
the packet classification function, classify packet, which iterates through a
linked list of packet filters (of structured data type classifier entry) com-
paring the packet against the criteria in each. The first classifier entry which
the packet fully matches will be used to determine the queue to which the
packet will be assigned (or alternatively, will provide a function which will
be called on match). Each classifier entry contains the following fields:

src ip, src netmask, dst ip, dst netmask: criteria for matching the source
or destination IP address. The relevant IP address from the packet’s
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header is first masked using the src netmask or dst netmask (using
a bitwise AND) before being matched against src ip or dst ip. This
allows the matching of IP addresses within a given network, as in the
CIDR addressing scheme, rather than having to match the IP address
exactly. A zero value of the netmask is a wildcard and indicates that
any IP address will match.

src port, dst port: criteria for matching the TCP or UDP port numbers in
the packet header. A zero value is a wildcard and indicates that any
port will match; a non-zero value must match the relevant field in the
header exactly.

proto: criterion for matching the IP protocol number. Transport layer pro-
tocols such as TCP and UDP, and other protocols which may be em-
bedded in IP such as ICMP, each have their own protocol numbers (as
allocated by the IANA). A zero value is a wildcard; although zero is
technically a valid protocol number, it is unused in IPv4 so the packet
classifier will never see packets which actually have the protocol num-
ber set to zero.

minlength, maxlength: criteria defining a range of packet lengths which the
packet must lie within. Again, zero is a wildcard value for either field.
It is acceptable to set just one of these fields to specify a range with no
minimum or no maximum.

stringmatches: a pointer to a linked list of type classifier stringmatch.
This contains any number of arbitrary strings to match, specified by
position, length and data. All strings in the list must be satisfied by
the packet. A null pointer indicates that there are no such strings; any
packet will match.

target type: indicates the type of action that should be performed if a
packet matches all of the above criteria. This has the following options:

ENQUEUE: append the packet to the queue pointed to by the next field;

HOOK: pass the packet to the function pointed to by the next field.

target: a union whose actual type depends upon the value of target type.

The actual code for the PTB algorithm, the packet classifier, and related
functions and definitions is included in Appendix A.
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3.4 Input/output abstraction layer

The I/O abstraction layer deals with any file descriptor (FD) operations re-
quired by the other modules. It is specifically tailored to dealing with entire
packets, as it is usual to read or write packets atomically when dealing with
the Linux networking subsystem.

Arrays of FDs (embedded in structures containing associated metadata)
for reading (io readfds) and for writing (io writefds) are maintained
by this module. FDs registered for reading have an associated pointer
(callback) to the function to which packet data read from this FD is to be
passed. FDs registered for writing have an associated FIFO queue of packets
for transmission; during normal operation this will remain almost empty at
all times, but is present to handle the rare situation where the kernel is not in
a suitable state to accept a packet. Modules wishing to transmit packets call
io enqueue which appends to the relevant FD’s queue.

It should be noted that a file descriptor may occur separately in both
io readfds and io writefds, in order that it may be used for both reading
and writing which are handled independently.

The I/O layer also deals with the correction of the maximum transmis-
sion unit (MTU) setting on any network interfaces associated with the FDs
it manages — in particular the TUN/TAP interface, although the implemen-
tation is not tied to such interfaces and can configure any FD with an MTU.
“Message too long” error codes (EMSGSIZE) returned by the write system
call are detected and signalled (using another callback, mtu exceeded cb) to
the module that tried to transmit an over-sized packet. This is likely to be
the encapsulation module, encap.c; if this tries to prefix more headers to a
packet that is already at the maximum size, the packet will become too large
for the network to carry atomically. The module responsible should then
compute the correct MTU (the Linux networking subsystem provides a path
MTU discovery mechanism for this purpose) and send the result to the I/O
layer again. Any FDs which have the optional mtu update cb callback are
passed the updated MTU value so that they may reconfigure themselves.

The core of the I/O layer’s logic is contained in the io select function,
which contains at its core a call to the select library function. This is de-
signed to be called either periodically to poll FDs (by setting the timeout
parameter to zero) or whenever a wait of a known time is needed; queue.c
calls io select in both modes. The code for this function and other parts of
io.c is included in Appendix B.

During the implementation of this module, I discovered what appears
to be an inconsistency between the documentation for select and its actual
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behaviour on my Linux system. The documentation states that the timeout
value passed (by pointer) in the select call is updated to reflect the amount
of time of the timeout remaining, which will be either zero (if no activity on
the FDs was detected before the timeout) or between zero and its original
value. However I found that frequently the timeout was set to an incorrect
value, typically double its original value. As a result I had to implement my
own method to discover how much of the timeout was remaining.

3.5 Summary

Overall, the implementation went smoothly and without any major prob-
lems. The result was a working system which operated in the manner in-
tended and could be tested as a whole in a realistic scenario. The procedure
and results of such testing will be detailed in the next chapter.
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CHAPTER 4

Evaluation

During the implementation process, I performed basic unit testing in order to
ensure that each module individually behaved as intended. As each module
was completed, I checked that it operated correctly alongside all previously
implemented code, using skeleton implementations in place of the missing
modules.

This chapter describes my approaches to testing the completed system as
a whole, and evaluates the results of these tests.

4.1 Test network

In order to test Qtun in a realistic scenario, I have installed it in a scenario
as close as possible to its target use case as described in the Introduction and
illustrated in Figure 1.1. I set up Qtun nodes on two Linux-based comput-
ers, both running version 2.6.15 or newer of the Linux kernel and a recent set
of libraries and utilities. The first is a PC which acts as a router for a small
home network with a sub-megabit ADSL link to the Internet; it was my at-
tempt to use VoIP on this connection that originally inspired me to propose
this project, and all the problems I discussed are easily reproducible on this
network. The second node is a colocated server with a 100 Mbit/s Ethernet
connection to a high-speed Internet backbone; on this computer I configured
Linux packet forwarding to route packets from the Qtun overlay network
onto the Internet and vice versa. The round trip time for a small ICMP ping
packet sent between these two computers across the Internet and back again
is approximately 43 ms when the connection is idle. When the packet size
increases to 1280 bytes, the round trip time increases to 80 ms.

In addition to testing Qtun on its own, this setup will allow me to com-
pare Qtun’s performance to an existing widely-used alternative, the Linux
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Traffic Control system. This system only works at one end of the connection,
so is more limited in its capabilities. Although Traffic Control is known to
improve latency considerably on this network, I expect Qtun to demonstrate
a clear advantage.

4.2 End-user testing

Before beginning this project, I performed some qualitative tests of VoIP on
my ADSL connection with the intention of investigating whether Linux Traf-
fic Control could provide an adequate solution. This involved asking users
to make calls to a landline from the VoIP phone and hold a brief conversa-
tion; this was repeated with the router in various different configurations,
and with varying numbers of simultaneous TCP streams on the Internet link.

Calls made on this setup were perceived as similar in quality to a
landline-to-landline call when no TCP streams were sharing the connection.
With one TCP stream and no QoS, the system became unusable; the delay
(which I estimated to be over a second) made conversation impossible and
packet loss was sufficient that quality was vastly reduced. During the first
few seconds of the call, the line was mostly silent as the majority of packets
were being lost before TCP reduced its transmission rate. (It should be re-
membered that TCP uses packet loss to determine when it should reduce its
transmission rate; when the TCP stream is losing packets, the VoIP stream is
also, but unlike TCP the VoIP protocol will not retransmit lost packets.)

Linux Traffic Control — configured using an adaption of the Wonder
Shaper script [30], which makes use of HTB, SFQ and ingress policing —
improved the situation by reducing the delay considerably, but suboptimal
audio quality due to dropped packets was still observed. The problems dur-
ing the first few seconds were also still present to an extent: as Traffic Control
does not have direct control over the incoming data, it takes some time for
it to cause the competing TCP stream to throttle back. Adding another TCP
stream made the problem considerably worse to the extent that the line be-
came unusable again.

I found that the only way to make the first few seconds of the call ac-
ceptable using Linux Traffic Control was to permanently rate-limit non-VoIP
traffic such that capacity was always reserved for VoIP. In this situation, TCP
streams are throttled back to the correct rate before the VoIP stream begins.
This is, of course, highly inefficient — especially as the VoIP system requires
a sizeable proportion of the total link capacity. Additionally, the problem is
not solved entirely, as TCP streams which start during an active VoIP call
cause a momentary reduction of quality as packets are lost.
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Recent similar tests using Qtun in place of Linux Traffic Control, with
Qtun configured to prioritise all UDP traffic over TCP (with a ceiling rate on
UDP traffic to avoid starvation), were highly successful — due to the hard
bidirectional prioritisation, a VoIP call with simultaneous TCP streams was
consistently comparable in quality to one using an idle ADSL link. The VoIP
system in this setup was at all times useable for conversation, and had good
audio quality. The TCP streams did suffer minor problems due to the sudden
changes in available capacity, however, but recovered after a short delay.

4.3 Quantitative testing methods

4.3.1 Flow graphing

I will be using Ethereal [31] to analyse the packets passing across the ADSL
connection under test. Ethereal has a flexible graphing subsystem which can
plot packet rates or data rates for packets matching user-defined filters. With
suitable filters, I will use this to produce graphs showing how the capacity of
the link is shared between flows as the number and type of flows varies over
time.

4.3.2 Sample traffic generation

Due to the inconvenience of repeatedly making manual VoIP phone calls in
order to test Qtun, I have implemented an application — VoIPsim — which
simulates a simple VoIP-like stream, by sending UDP packets of a constant
size (1280 bytes) at a constant configurable rate in both directions between
two nodes. Whilst generating this stream, the simulator gathers statistics
about packet loss and latency. This data will be used in combination with
traffic graphs to analyse flow behaviour.

Incidentally, VoIPsim makes extensive use of the general-purpose logging
module and input/output abstraction layer from Qtun for a purpose which
I did not originally foresee, but for which they proved to be highly suitable.

TCP streams to compete with the simulator’s UDP traffic will be gener-
ated using wget to fetch large files via HTTP from a web server running on
either node.

When graphing the behaviour of Qtun compared to other systems I will
need to generate a fixed pattern of traffic, with various flows starting and
stopping at different times. This will be handled by a short shell script In
order to generate a fixed pattern of traffic consistently, which schedules the
following processes and captures the incoming packets using tcpdump [32]:
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• TCP download 1: begun immediately, and run for 90 seconds
• TCP download 2: begun 40 seconds from script start, and run for 30

seconds
• VoIPsim UDP stream transmitted at a fixed rate of 20 kBytes/sec: begun

20 seconds from script start, and run for 90 seconds

This allows the behaviour of the UDP stream to be graphed on its own,
and with one or two concurrent TCP streams.

4.3.3 Problems encountered during testing

During testing I found three minor problems with the test network. The first
was that an upgrade to a faster connection rate had been partially completed;
the modem was synchronising its downstream connection to the telephone
exchange at around 800 kbit/s, but the ISP was still enforcing a 512 kbit/s
transfer rate. This had a beneficial effect on latency: the buffers in the ISP’s
modem remained mostly empty as it could always transmit data faster than
it would arrive, thus solving (entirely coincidentally) one of the problems I
set out to solve with Qtun at the expense of available capacity. However, I
required graphs illustrating the problems associated with buffering on the
line; I hence reversed the direction of the test, as the upstream connection
was not affected and exhibited the latency problems I had previously ob-
served on the downstream link. The test flows would now be sent from the
home network to the colocated server, rather than vice versa. Since Qtun is
symmetric, it will be unaffected, but Linux Traffic Control would have to be
configured on the colocated server rather than the home network in order to
mimic the behaviour of a setup in which the majority of traffic is incoming
(i.e. downloads) as is required.

The second problem is ATM VC congestion (as detected and reported by
my ADSL modem) and can I believe be attributed to contention within the
network of my telephone service provider. (The ADSL connection to my ISP
is based upon an ATM virtual circuit (VC), upon which is layered IP.) Such
congestion appears to cause increased packet loss and delay. As the conges-
tion varies with the time of day, this problem was avoided by repeating tests
early in the morning when contention is lower.

The final problem occurred when testing Linux Traffic Control configured
using Wonder Shaper; I would frequently see that the order of packets in
the test UDP stream was changed considerably between transmission and
reception, resulting in some packets being delayed by several seconds. This
appears to be an artefact of Traffic Control’s SFQ implementation (which may
have mistakenly classified my single UDP stream as several flows sharing

30



Discussion of results

a link). SFQ is not relevant to my tests as it aims to solve an orthogonal
problem — it deals with the scheduling of individual flows within a class
(see Section 2.3.2), rather than scheduling the classes atomically — and can
therefore be replaced with a FIFO buffer without decreasing the validity of
my results. Removing SFQ did have the effect of alleviating the unwanted
packet reordering.

4.4 Discussion of results

I used the procedures detailed above to produce graphs of the data rate (in
bytes per second) of the automatically-generated flows on my test network,
under three different setups: without a QoS system, with Linux Traffic Con-
trol ingress policing (configured to attempt to limit incoming traffic to use
slightly less than the available capacity), and using Qtun.

4.4.1 No QoS

Figure 4.1 shows that with no QoS system in place, the UDP stream is re-
ceived at a very uneven rate when competing with a TCP stream for band-
width, despite being transmitted at a constant rate. The situation becomes
considerably worse when a second concurrent TCP stream is added.

When the UDP stream first begins to be received, it takes a significant
amount of time (several seconds) to reach a rate close to that at which it is
being transmitted. This correlates with the symptoms users noticed on this
setup: specifically, that the first few seconds of the call are almost silent. Sim-
ilar behaviour occurs when the second TCP stream starts.

While TCP streams are present, the received UDP packet rate fluctuates
and is frequently considerably below its transmission rate. The measured
UDP packet round trip time varied between 80 and 2900 milliseconds, with
a mean of 1500. If this were a VoIP stream, it would likely be unusable due
to the delay alone.

Relatively few packets were lost entirely — around 2% on average across
several runs — however a VoIP system would likely treat significantly-
delayed packets as lost.

4.4.2 Linux ingress policing

As shown in Figure 4.2, the Linux Traffic Control ingress policing algorithm
improved the behaviour of the system considerably. There is still jitter in
the UDP stream, but this is considerably reduced compared to the previous
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Key: red: TCP stream 1; green: TCP stream 2; blue: fixed-rate UDP stream; black: total traffic
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Figure 4.1: Graph of flow rate over time without QoS
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Figure 4.2: Graph of flow rate over time using Linux ingress policing
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Figure 4.3: Graph of flow rate over time using Qtun
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setup as the TCP traffic has been made less aggressive for capacity due to the
dropped packets. The measured UDP round trip time varied between 80 and
500 milliseconds, with a mean of 200, which is more likely to be useable for
VoIP though is close to the limit at which the latency becomes an irritation.

However, the packets dropped by the ingress policing algorithm will
have a noticeably detrimental affect call quality — Linux Traffic Control does
not provide a means of dropping only TCP packets in order to police a stream
comprising both TCP and UDP, so the dropping of UDP packets is unavoid-
able. Around 8% of all packets were dropped on average, though this Figure
varied over time and would occasionally be much higher for a short time as
TCP increased its transmission rate.

It should also be noted that the graph shown is the one exhibiting the
best behaviour after running the test several times and with slightly different
configurations of the ingress policer. This system is very sensitive to small
changes in configuration or conditions, so it is likely that the behaviour of
such a system implemented in a realistic setting would at times be consider-
ably worse.

4.4.3 Qtun

It is immediately obvious from Figure 4.3 that all flows have considerably less
jitter in the setup using Qtun. The UDP stream in particular has very little
jitter. The line on the graph remains slightly jagged due to inaccuracies in
Ethereal’s graph-plotting system, which both plots at discrete time intervals
and assumes that packets arrive instantaneously. When the two TCP streams
are both active, they are only competing with each other to use the remaining
link capacity after the UDP stream has been accounted for. UDP round-trip
time varied between 80 and 200 milliseconds, with a mean of 120. This is only
a little over the the minimum round trip time possible on this test network,
and is entirely suitable for VoIP use.

The Qtun configuration in this setup is very simple. Two classes are
present: a high priority class containing all UDP packets, and a lower pri-
ority class for all other traffic.

The disadvantages to the use of Qtun over no QoS are minor: throughput
will be marginally lower, as traffic must be throttled to a slightly slower rate
than the channel’s raw capacity; the lack of large buffers on the link also
means that sudden high-rate packet bursts are likely to undergo packet loss
rather than smoothing and delay. This latter point is by design, however: low
latency is more important for interactive applications than the smoothing of
bursts.
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CHAPTER 5

Conclusion

I have implemented a general-purpose bidirectional traffic scheduling sys-
tem, Qtun, capable of effective implementation of a wide range of quality of
service policies. In particular, in the scenario in which I aimed to improve
performance — the concurrent use of UDP-based voice-over-IP and TCP on
the same ADSL link — Qtun is undeniably an improvement on existing QoS
systems, as illustrated in the Evaluation chapter. Using Qtun, it is possible to
use a low-capacity Internet link for voice-over-IP applications regardless of
other activity on the link. This was not possible in a reliable manner using
existing unidirectional QoS architectures such as Linux Traffic Control.

The implementation I ended up choosing was not quite the one I orig-
inally suggested in my proposal; rather than being based on an existing
VPN application, Qtun implements its own IP-over-UDP tunnelling proto-
col. From the implementation perspective, this gave me more freedom to
control exactly what packets are sent; from the user’s perspective, Qtun can
be used in combination with any VPN application (or none), and hence flex-
ibility of the system is increased.

At the core of Qtun is my Prioritised Token Bucket algorithm, which is
responsible for the scheduling of packets. This draws upon concepts and
ideas from existing packet scheduling algorithms, but is unique to Qtun. The
algorithm is presented in detail in Section 3.3. I believe this presents a very
flexible yet easy-to-understand architecture for specifying a QoS policy.

5.1 Future directions

As it stands, Qtun is a working prototype. Its main limitation is the require-
ment for every user to have administrative access to a server with a fast Inter-
net connection, and the knowledge to configure it by editing program source

35



5. CONCLUSION

files and recompiling. If Qtun is to be used to provide a real-world service to
users, a few changes would need to be made.

First and foremost, a Qtun node designated as a server would have to be
capable of sustaining connections to several independent other nodes, each
of which may have a different desired QoS policy. This would likely require
the use of multiple threads to maintain separate state for each client node (in
particular the queues should be independent to avoid different nodes inter-
fering with each other). Linux does provide a C threading library, but making
use of this in Qtun would have required a large amount of additional boil-
erplate code; I considered a multithreaded implementation to be beyond the
scope of my project.

Remote configurability would also be important. This would be possible
by adding further opcodes to the existing RMI scheme (see Section 3.1.4), to
add or remove queues or packet classifier entries, or to change global set-
tings (such as token rate). However, a naı̈ve implementation could intro-
duce security concerns: it may become possible for a malicious user to per-
form a denial-of-service attack on the server or on other nodes by crafting an
unusual queueing configuration (for example, one which never transmits a
packet and queues indefinitely would eventually exhaust the server’s mem-
ory). A full security audit would be required before untrusted users could be
allowed to use such a remote configuration system.

A potentially useful extra feature which could allow Qtun to be used on
links whose capacity is unknown or variable would be automatic recalibra-
tion of the correct token rate. This could be done simply by transmitting
as fast as possible briefly, and detecting the rate the connection can sustain;
however this is wasteful of bandwidth (which may be a major problem if
bandwidth is expensive) and it may interrupt flows which are legitimately
using the link. Instead, it may be possible to adjust the token rate gradually
to match the link’s capacity by monitoring the usage patterns on the over-
lay and the resulting additional latency. Brakmo et al [33] applied similar
techniques to TCP to form a new flow control algorithm, TCP Vegas; doing
the same for Qtun would likely involve considerable work modelling and
analysing protocol behaviour.

5.2 Final words

I believe my project has been a great success, and have both enjoyed it and
learnt much from it. A system based on Qtun would have the potential to
vastly increase the utility of most home Internet connections, and would
open up several new possibilities to users.
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APPENDIX A

Code for PTB algorithm

This appendix contains an abridged version of queue.c, which contains the
code for the main loop of the Prioritised Token Bucket algorithm, the packet
classifier, and related functions and definitions.

A.1 queue.c

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <stdbool.h>

#include <string.h>

#include <netinet/in.h>

#include <time.h>

#include <sys/time.h>

#include ”qtun.h”

#define QUANTUM 10000 /∗ usec ∗/
#define TOKENRATE 640 /∗ bytes per quantum ∗/
#define TOKENMAX 1500 /∗ maximum number of unused tokens we can retain after a quantum ∗/
#define PERMITMAX 1500 /∗ maximum number of tokens in a per−queue permit ∗/
#define GUARANTEEMAX 1500 /∗ maximum number of tokens in a per−queue guarantee ∗/
#define DEFQUEUESIZE 9000 /∗ default maximum length of a single queue in bytes; >=MTU! ∗/

typedef int token t;

struct classifier stringmatch {
· struct classifier stringmatch∗ next;
· size t pos;
· size t len;
· char∗ data;
};
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/∗ For {src,dst} port and proto, 0 is a wildcard. ∗/
struct classifier entry {
· struct classifier entry∗ next;
· struct classifier entry∗ prev;
· in addr t src ip, src netmask, dst ip, dst netmask;
· in port t src port, dst port;
· uint8 t proto;
· unsigned int minlength, maxlength;
· struct classifier stringmatch∗ stringmatches;
· enum { ENQUEUE=0, HOOK } target type;
· union {
· · struct queue node∗ queue;
· · queue hook hook;
· } target;
} ∗classifier list head, ∗classifier list tail;

struct queue node {
· struct queue node∗ next;
· struct queue node∗ prev;
· unsigned int guaranteed rate; /∗ bps ∗/
· unsigned int ceiling rate; /∗ bps ∗/
· unsigned int max queue size;
· enum { DROP=0 } excess mode;
· struct qtun listpacket∗ queue head; /∗ Remove here ∗/
· struct qtun listpacket∗ queue tail; /∗ Add here ∗/
· unsigned int queue size;
· token t guarantee; /∗ temporary storage ∗/
· token t permit tokens; /∗ temporary storage ∗/
· Bool permit exceeded; /∗ temporary storage ∗/
· char name[16];
} ∗queue list head, ∗queue list tail;

struct classifier entry∗ add classifier entry
· ( struct classifier entry∗ classifier entry local, Bool add at head );

struct queue node∗ add queue node
· ( struct queue node∗ queue node local, Bool add at head );

struct queue node∗ classify packet( void∗ pkt, unsigned int len )
{
· uint8 t∗ cpkt = pkt; /∗ for accessing pkt on byte boundaries ∗/
· uint32 t∗ wpkt = pkt; /∗ for accessing pkt on word boundaries ∗/
· unsigned int ihl = cpkt[0] & 0x0f; /∗ IP header length in words, min. 5 ∗/
· for ( struct classifier entry∗ iter = classifier list head; iter; iter=iter−>next ) {
· · if ( iter−>src netmask && ( ntohl( wpkt[3] ) & iter−>src netmask ) != iter−>src ip ) continue;
· · if ( iter−>dst netmask && ( ntohl( wpkt[4] ) & iter−>dst netmask ) != iter−>dst ip ) continue;
· · if ( iter−>src port && ( ntohl( wpkt[ihl] ) >> 16 ) != iter−>src port ) continue;
· · if ( iter−>dst port && ( ntohl( wpkt[ihl] ) & 0x0000ffff ) != iter−>dst port ) continue;
· · if ( iter−>proto && cpkt[9] != iter−>proto ) continue;
· · if ( 0 < iter−>minlength && len < iter−>minlength ) continue;
· · if ( 0 < iter−>maxlength && len > iter−>maxlength ) continue;
· · if ( iter−>stringmatches ) {
· · · Bool fail = false;
· · · for ( struct classifier stringmatch∗ sm = iter−>stringmatches; sm; sm=sm−>next )
· · · · if ( 0!=memcmp( ( ( uint8 t∗ ) pkt ) + sm−>pos, sm−>data, sm−>len ) ) {
· · · · · fail = true;
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· · · · · break;
· · · · }
· · · if ( fail ) continue;
· · }
· · /∗ If we reached here, everything matches. ∗/
· · /∗ If target is a hook, run it and continue, otherwise return the target queue. ∗/
· · if ( iter−>target type == HOOK ) {
· · · debug( ”calling classifier hook 0x%x”, iter−>target.hook );
· · · ( ∗iter−>target.hook ) ( pkt, len );
· · } else
· · · return iter−>target.queue;
· }
· /∗ Shouldn’t reach here. Try to cope anyway. ∗/
· warning( ”packet matched no classifiers!” );
· return queue list tail;
}

void enqueue packet( void∗ pkt, unsigned int len )
{
· struct queue node∗ target queue = classify packet( pkt, len );
· if ( target queue−>queue size + len >= target queue−>max queue size ) {
· · /∗ Queue full ∗/
· · switch ( target queue−>excess mode ) {
· · · case DROP:
· · · · debug( ”queue is full, dropping packet” );
· · · · break;
· · · default:
· · · · error( ”Unimplemented excess mode %d”, target queue−>excess mode );
· · }
· · return;
· }

· struct qtun listpacket∗ lpkt = malloc( sizeof( struct qtun listpacket ) );
· memcpy( lpkt−>data, pkt, len );
· lpkt−>length = len;
· lpkt−>next = NULL;

· if ( 0 == target queue−>queue size ) {
· · lpkt−>prev = NULL;
· · target queue−>queue head = lpkt;
· · target queue−>queue tail = lpkt;
· · target queue−>queue size = len;
· } else {
· · lpkt−>prev = target queue−>queue tail;
· · target queue−>queue tail−>next = lpkt;
· · target queue−>queue tail = lpkt;
· · target queue−>queue size += len;
· }
}

void queue setup()
{
· /∗ Example queueing configuration ∗/

· /∗ Add a default queue ∗/
· struct queue node ∗queue node default = add queue node(
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· · · &( struct queue node ) {
· · · · .name = ”Default”
· · · }, false );
· add classifier entry(
· · · &( struct classifier entry ) {
· · · · .target.queue = queue node default,
· · · }, false );

· /∗ Prioritise UDP ∗/
· struct queue node ∗queue node udp = add queue node(
· · · &( struct queue node ) {
· · · · .name = ”UDP”
· · · }, true );
· add classifier entry(
· · · &( struct classifier entry ) {
· · · · .target.queue = queue node udp,
· · · · .proto = IPPROTO UDP,
· · · }, true );

· /∗ Prioritise ICMP above all else ∗/
· struct queue node ∗queue node icmp = add queue node(
· · · &( struct queue node ) {
· · · · .name = ”ICMP”
· · · }, true );
· add classifier entry(
· · · &( struct classifier entry ) {
· · · · .target.queue = queue node icmp,
· · · · .proto = IPPROTO ICMP,
· · · }, true );
}

void queue main loop()
{
· struct queue node∗ cndq;
· token t sparetokens = 0;
· token t guarantee;
· int waittime;
· Bool morework;
· struct timeval tv, endtime;
· Bool first;

· while ( 1 ) {
· · gettimeofday( &endtime, NULL );
· · if ( endtime.tv usec + QUANTUM > 1000000 ) {
· · · endtime.tv sec++;
· · · endtime.tv usec += QUANTUM − 1000000;
· · } else {
· · · endtime.tv usec += QUANTUM;
· · }

· · sparetokens += TOKENRATE;

· · /∗ preallocate tokens where they’ve been guaranteed; compute permits ∗/
· · for ( cndq = queue list head; NULL != cndq; cndq = cndq−>next ) {
· · · if ( cndq−>guaranteed rate > 0 ) {
· · · · guarantee = cndq−>guaranteed rate ∗ QUANTUM / 1000000;
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· · · · cndq−>guarantee += guarantee;
· · · · if ( cndq−>guarantee > GUARANTEEMAX )
· · · · · cndq−>guarantee = GUARANTEEMAX;
· · · · sparetokens −= guarantee;
· · · } else {
· · · · cndq−>guarantee = 0;
· · · }
· · · if ( cndq−>ceiling rate > 0 ) {
· · · · cndq−>permit tokens += cndq−>ceiling rate ∗ QUANTUM / 1000000;
· · · · if ( cndq−>permit tokens > PERMITMAX )
· · · · · cndq−>permit tokens = PERMITMAX;
· · · } else {
· · · · cndq−>permit tokens = 0;
· · · }
· · · cndq−>permit exceeded = false;
· · }

· · do {
· · · morework = false;
· · · /∗ pick queue to send from ∗/
· · · for ( cndq = queue list head;
· · · · · NULL != cndq && ( 0 == cndq−>queue size || cndq−>permit exceeded );
· · · · · cndq = cndq−>next );
· · · if ( NULL != cndq ) {
· · · · if ( ( sparetokens + cndq−>guarantee ) >= cndq−>queue head−>length ) {
· · · · · morework = true;
· · · · · if ( cndq−>ceiling rate > 0 &&
· · · · · · · ( cndq−>permit tokens < cndq−>queue head−>length ) ) {
· · · · · · cndq−>permit exceeded = true;
· · · · · } else {
· · · · · · /∗ Update token counts and dequeue packet ∗/
· · · · · · if ( cndq−>guarantee > 0 ) {
· · · · · · · cndq−>guarantee −= cndq−>queue head−>length;
· · · · · · · if ( cndq−>guarantee < 0 ) {
· · · · · · · · sparetokens += cndq−>guarantee;
· · · · · · · · cndq−>guarantee = 0;
· · · · · · · }
· · · · · · } else {
· · · · · · · sparetokens −= cndq−>queue head−>length;
· · · · · · }
· · · · · · if ( cndq−>ceiling rate > 0 )
· · · · · · · cndq−>permit tokens −= cndq−>queue head−>length;
· · · · · · encap enqueue( cndq−>queue head−>data, cndq−>queue head−>length );
· · · · · · cndq−>queue size −= cndq−>queue head−>length;
· · · · · · cndq−>queue head = cndq−>queue head−>next;
· · · · · }
· · · · }
· · · · io select( 0 );
· · · }
· · } while ( morework ); /∗ keep repeating until we’re not sending more packets ∗/

· · if ( sparetokens > TOKENMAX )
· · · sparetokens = TOKENMAX;
· · assert( sparetokens>=0 );

· · rrmi check();

45



A. CODE FOR PTB ALGORITHM

· · first = true;
· · do {
· · · gettimeofday( &tv, NULL );
· · · waittime = timerop usec( &endtime, &tv, − );
· · · if ( waittime < 0 ) {
· · · · if ( first ) {
· · · · · warning( ”system is TOO SLOW for this quantum! main loop takes %d usec”,
· · · · · · · QUANTUM−waittime );
· · · · · io select( 0 );
· · · · } else
· · · · · break;
· · · } else {
· · · · io select( waittime );
· · · }
· · · first = false;
· · } while ( 0 < waittime );
· }
}
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Code for I/O abstraction layer

This appendix contains an abridged version of io.c, containing the code for
the core functions of the input/output abstraction layer, and relevant defini-
tions from its associated header file io.h.

B.1 io.h

#define MAX PACKET SIZE 1600

struct qtun listpacket {
· char data[MAX PACKET SIZE];
· unsigned int length;
· struct qtun listpacket∗ prev;
· struct qtun listpacket∗ next;
};

typedef void ( ∗qtun io pktpass cb ) ( void∗ /∗packet∗/, unsigned int /∗length∗/ );
typedef int ( ∗qtun io writefd cb ) ( struct qtun io writefd∗ );
typedef void ( ∗qtun io mtu update cb ) ( unsigned int /∗newMTU∗/ );

struct qtun io readfd {
· int fd;
· qtun io pktpass cb callback;
· qtun io mtu update cb mtu update cb;
};

struct qtun io writefd {
· int fd;
· qtun io writefd cb mtu exceeded cb;
· struct qtun listpacket∗ queue head; /∗ Remove here ∗/
· struct qtun listpacket∗ queue tail; /∗ Add here ∗/
· unsigned int queue length;
};
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B.2 io.c

#include <sys/socket.h>

#include <netinet/in.h>

#include <netinet/ip.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include ”io.h”
#include ”log.h”

#define MAX READ FDS 32
#define MAX WRITE FDS 8

static struct qtun io readfd∗ io readfds[MAX READ FDS];
static int io readfds len = 0;

static struct qtun io writefd∗ io writefds[MAX WRITE FDS];
static int io writefds len = 0;

static int io maxfd = 0;

void io add readfd( struct qtun io readfd∗ rfd );
void io add writefd( struct qtun io writefd∗ wfd );
void io enqueue( struct qtun io writefd∗ wfd, void∗ data, unsigned int len );

void io select( int timeout usec )
{
· fd set rset, wset;
· int i, r, drop;
· char buf[MAX PACKET SIZE];
· struct timeval tv;

· memset( &tv, 0, sizeof( tv ) );

· FD ZERO( &rset );
· if ( io readfds len>0 )
· · for ( i=0; i<io readfds len; i++ )
· · · FD SET( io readfds[i]−>fd, &rset );

· FD ZERO( &wset );
· if ( io writefds len>0 )
· · for ( i=0; i<io writefds len; i++ )
· · · if ( io writefds[i]−>queue length>0 ) {
· · · · if ( io writefds[i]−>queue length>2 )
· · · · · warning( ”backlog of %d packets on writefd %d”,
· · · · · · · io writefds[i]−>queue length−1, io writefds[i]−>fd );
· · · · FD SET( io writefds[i]−>fd, &wset );
· · · }

· if ( timeout usec<0 ) {
· · if ( 0>select( io maxfd+1, &rset, &wset, NULL, NULL ) ) {
· · · if ( EINTR==errno )
· · · · return;
· · · else
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· · · · fatal( ”select() failed: %s”, errstr );
· · }
· } else {
· · tv.tv sec = 0;
· · tv.tv usec = timeout usec;
· · if ( 0>select( io maxfd+1, &rset, &wset, NULL, &tv ) ) {
· · · if ( EINTR==errno )
· · · · return;
· · · else
· · · · fatal( ”select() failed: %s”, errstr );
· · }
· }

· if ( io readfds len>0 )
· · for ( i=0; i<io readfds len; i++ )
· · · if ( FD ISSET( io readfds[i]−>fd, &rset ) ) {
· · · · r = read( io readfds[i]−>fd, &buf, MAX PACKET SIZE );
· · · · if ( r == −1 )
· · · · · debug( ”readfd %d: read failed: %s”, io readfds[i]−>fd, errstr );
· · · · else
· · · · · io readfds[i]−>callback( buf, r );
· · · }

· if ( io writefds len>0 )
· · for ( i=0; i<io writefds len; i++ )
· · · if ( FD ISSET( io writefds[i]−>fd, &wset ) ) {
· · · · assert( io writefds[i]−>queue length != 0 );
· · · · assert( io writefds[i]−>queue head != NULL );
· · · · assert( (io writefds[i]−>queue length<=1) || (io writefds[i]−>queue head−>next!=NULL) );
· · · · r = write( io writefds[i]−>fd, io writefds[i]−>queue head−>data,
· · · · · · io writefds[i]−>queue head−>length );
· · · · if ( r == −1 ) {
· · · · · if ( errno == EMSGSIZE && io writefds[i]−>mtu exceeded cb )
· · · · · · drop = io writefds[i]−>mtu exceeded cb( io writefds[i] );
· · · · · else {
· · · · · · warning( ”writefd %d: write failed (will retry): %s”,
· · · · · · · · io writefds[i]−>fd, errstr );
· · · · · · drop = 0;
· · · · · }
· · · · } else if ( r != io writefds[i]−>queue head−>length ) {
· · · · · warning( ”writefd %d: incomplete write (sent %d, length %d); will retry”,
· · · · · · · io writefds[i]−>fd, r, io writefds[i]−>queue head−>length );
· · · · · drop = 0;
· · · · } else {
· · · · · drop = 1;
· · · · }
· · · · if ( drop ) {
· · · · · if ( io writefds[i]−>queue head−>next ) {
· · · · · · io writefds[i]−>queue head = io writefds[i]−>queue head−>next;
· · · · · · free( io writefds[i]−>queue head−>prev );
· · · · · · io writefds[i]−>queue head−>prev = NULL;
· · · · · } else {
· · · · · · assert( io writefds[i]−>queue length == 1 );
· · · · · · free( io writefds[i]−>queue head ); // (head==tail)
· · · · · · io writefds[i]−>queue head = NULL;
· · · · · · io writefds[i]−>queue tail = NULL;
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· · · · · }
· · · · · io writefds[i]−>queue length−−;
· · · · · assert( (io writefds[i]−>queue length==0) == (io writefds[i]−>queue head==NULL) );
· · · · }
· · · }
}

void io update mtu( unsigned int newmtu )
{
· for ( int i=0; i<io readfds len; i++ )
· · if ( io readfds[i]−>mtu update cb )
· · · io readfds[i]−>mtu update cb( newmtu );
}
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Project Proposal

C.1 Introduction

My idea is to develop a means of prioritising certain types of incoming and
outgoing IP traffic on a computer with a relatively slow Internet link (such
as ADSL). The prioritisation would be done based on various critera of the
IP packets, such as the protocol (e.g. TCP, UDP, ICMP) and port number, to
identify different applications (for example, TCP port 22 is typically used
for interactive SSH traffic, which could be given a higher priority than bulk
transfers in order to minimise latency on interactive sessions). Additionally,
other factors may be taken into consideration: for example, interactive traffic
typically has smaller packet sizes compared to bulk transfer traffic, so smaller
packets could be prioritised over larger ones.

There are a number of existing QoS systems designed to be run on a single
router or end system (see Starting point ) which maintain a queue of packets
according to some queueing discipline. However this approach is only ef-
fective for controlling transmitted data; received data (which often exceeds
transmitted data in volume, especially when bulk downloads are in progress)
will already have passed through the slow link by the time it reaches the
system doing QoS (assuming the Internet Service Provider is not running a
similar QoS system on its routers, which is generally the case). In the case
of TCP streams, dropping occasional packets can cause the transmission con-
trol algorithm to throttle the packet rate back, but dropping UDP packets (or
other connectionless protocols) is generally not a good idea: once a packet is
dropped, it is generally lost forever (unless a higher-layer protocol is capable
of retransmission).

A specific aim of this project is to allow UDP-based Voice-over-IP (VoIP)
traffic to share an ADSL link effectively with TCP downloads, without inten-
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tionally dropping any of the VoIP packets and without allowing the (typically
large) queues present in the ADSL modem from introducing unacceptable
delay into the audio stream (which will usually occur when the link is over-
saturated). The VoIP data typically uses 100-120 kbps in both directions, i.e.
around 20% of the download capacity of a 512 kbps ADSL link, so it is ineffi-
cient to always reserve part of the link for VoIP traffic when the VoIP system
is only used occasionally, especially if more than one VoIP system can share
the link.

C.2 Work planned

I intend to solve the problems mentioned above by applying a QoS system
at both ends of an overlay network consisting of an IP tunnel to a trusted
server with a considerably faster link to the Internet. All traffic passing over
the slow link should go through this tunnel; the QoS overlay would therefore
contain and control all data flowing through the slow link. The prioritisation
is intended to be configurable, and the two ends of the tunnel will commu-
nicate metadata between them such as configuration changes or details of
streams which must be given higher or lower priority.

The system will be implemented as an add-on or patch to an existing
VPN system (see Starting point ) in order to take advantage of an existing
IP tunnelling protocol, and to provide authentication and privacy of tun-
nelled data as a useful side-effect. However I am currently undecided as
to whether all the packet scheduling code should be within the VPN applica-
tion, or whether this should be offloaded to another program — this decision
will be made early in the development process, following some research into
the workings of the VPN system I decide to use.

It should be noted that unlike many other QoS systems, such as those
proposed by the IETF’s Diffserv1 and Intserv2 working groups, the system I
propose does not need to be supported on any systems except the endpoints
of the tunnel; the intermediate routers will see a single flow between the
endpoints and do not need to perform any intelligent queueing or scheduling
themselves.

1http://www.ietf.org/html.charters/OLD/diffserv-charter.html
2http://www.ietf.org/html.charters/OLD/intserv-charter.html
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C.3 Resources

I will need a computer with a high-bandwidth Internet link on which to run
the server, and a computer with a lower-bandwidth link to act as a client. For
the former, I intend to use a computer running Debian Linux in my college
room with a 100 Mbps connection to the Trinity Hall network and the Uni-
versity network (CUDN), and hence to the Internet. I have a number of other
computers in my room which I could use should one fail. The college permits
me to run server software on my computers, so I do not foresee a problem
with doing this. However, if this turns out to be inadequate for whatever
reason or if I decide to try the system under different conditions, I own a
colocated server (also with a 100 Mbps link to the Internet) which could also
be used.

For the client computer, I intend to use a computer at my parents’ house,
which has a 512 kbps PlusNet ADSL link. This computer runs Gentoo Linux
and I have SSH access to it. Should this fail, I know a number of other people
with ADSL links (generally 2 Mbit) who could probably be persuaded to let
me run this system on their computers. I may also attempt to simulate links
of various speeds by using other software to limit transmission rate at both
ends of the tunnel.

If I have sufficient time, I intend to try the system out on systems slower
than ADSL, such as a GPRS mobile phone; for this I would require access to
the Computer Lab’s GPRS equipment.

C.4 Starting point

C.4.1 Existing VPN systems

There are a number of freely-available, open source VPN systems which
I could use as a starting point; the three I have experience of are Poptop
PPTPD3, OpenVPN4, and TINC5. I have been involved in a project to write a
logging system for Poptop, so should I choose to use that I would start with
basic knowledge of the plugin architecture and an example plugin to work
with (however a logging plugin is likely to be very different to one for QoS!).

3http://www.poptop.org/
4http://openvpn.net/
5http://www.tinc-vpn.org/

53

http://www.poptop.org/
http://openvpn.net/
http://www.tinc-vpn.org/


C. PROJECT PROPOSAL

C.4.2 Existing QoS systems

I have in the past used the QoS system in the Linux kernel (tc) in previous ex-
periments to try to prioritise my VoIP phone on an ADSL link. This is a very
flexible queueing discipline system which goes beyond what I intend to im-
plement, but is by nature independent of other nodes and has no support for
collaborating with another host running tc at the far end of a tunnel. I do not
intend to copy code directly from tc into my project; however I will look at
the code and algorithms used for inspiration. A popular script based on this
system, “Wonder Shaper”6, is moderately effective at prioritising interactive
traffic over bulk transfers, but assumes that the volume of the traffic being
prioritised is low — this is not the case for VoIP traffic, and I have found that
Wonder Shaper is not effective at prioritising this.

The Click Modular Router Project7 also contains basic queueing and
packet scheduling modules, which may be of use, but again this is designed
for an independent router.

C.4.3 Existing packet classifiers

It is possible that identification of “trigger packets” (see Detailed description)
will require detailed dissection of a protocol, for example identifying a VoIP
system’s “start of call” packet. There are systems already in existance which
are capable of dissecting many different protocols, such as tcpdump/libp-
cap8 and Ethereal9; if I need to do protocol dissection in my system I may use
code from such an existing system as an example. Alternatively it may turn
out that I can identify the packets I need by just looking at one or two bytes
at a fixed location in the packet, which should not pose any problem.

I will refer to the relevant standards documents to determine which pack-
ets should be trigger packets; for example, my VoIP phone uses MGCP, which
is defined in detail in RFC 270510.

C.4.4 Programming languages

All of the VPN systems I mentioned above are written in C, so it is likely that
much of my code will also have to be written in C if I am to interface with
or extend these. I have little experience of writing large programs in C, so I

6http://lartc.org/wondershaper/
7http://pdos.csail.mit.edu/click/
8http://www.tcpdump.org/
9http://www.ethereal.com/

10http://www.faqs.org/rfcs/rfc2705.html
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intend to learn this as I proceed with this project. The Click Modular Routing
Project is written in C++, which I may also have to learn.

C.5 Detailed description

The project will involve implementing a packet classifier to identify pack-
ets to be sent with different priorities. This will inspect packet headers and
categorise packets according to any number of protocol, port number, size,
source, and destination. The packets will then be added to a queue; it is
likely that there will be multiple queues for different classes of packet. Pack-
ets will be dequeued according to a queueing discipline, at a maximum bit
rate to ensure that the slow link is never over-saturated; this avoids queues
over which we have no control from filling up, such as queues in an ADSL
modem or router.

Additionally, some packets may cause the state of the queueing discipline
to change; I will refer to these as “trigger packets”. For example, a trigger
packet may be used to identify the start of a VoIP call; when this is detected,
a fixed amount of capacity could be reserved for the call, ensuring that the
call is given absolute priority over all other traffic. TCP connections would be
throttled to use the remainder of the link, using a technique such as Random
Early Detection (RED)11.

C.5.1 Examples of queueing disciplines

Below are described a number of queueing disciplines which I will con-
sider for inclusion in my QoS system. A number of these summaries are
adapted from the Linux Advanced Routing and Traffic Control (LARTC)
manual pages12.

• FIFO (First In, First Out) — very simple, so this will be useful for test-
ing; however this will have no QoS effect as the VPN systems I will be
adapting are already FIFO by design. However FIFO can be adapted to
do simple QoS by maintaining a number of FIFO queues for different
priorities of packet which are emptied in a set order.

• RED (Random Early Detection), as mentioned above — this simulates
physical congestion by randomly dropping packets when nearing a
configured maximum bandwidth allocation, with a probability which

11Floyd, S., and Jacobson, V., Random Early Detection gateways for Congestion Avoidance;
http://www.aciri.org/floyd/papers/early.pdf

12http://www.lartc.org/manpages/
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increases with queue length to ensure that the queue remains relatively
short.

• SFQ (Stochastic Fairness Queueing) — reorders queued traffic such
that each flow (identified by a hash of source address, destination ad-
dress, and source port) is permitted to send a packet in turn.

• TBF (Token Bucket Filter) — ensures that packets are not sent out above
a precise maximum bandwidth, by providing the queue with “tokens”
(roughly corresponding to bytes) at a fixed rate, and each packet sent
consumes a number of tokens; when there are no tokens, no packets are
sent until a token arrives.

These all act on one queue, and can be combined in various ways to be
effective with multiple queues; for example LARTC’s HTB (Hierarchy Token
Bucket) is an adaption of TBF which guarantees that higher-priority queues
will be allocated tokens first if they need them, with “spare” tokens allocated
to lower-priority queues.

C.6 Assessment criteria

C.6.1 Core goals

The primary goal of this project is to create a QoS system which works ef-
fectively with simultaneous TCP and non-retransmitting (e.g. UDP, ICMP)
traffic. Specifically, it should be capable of throttling a TCP-based download
in favour of a UDP stream on an ADSL link, for example VoIP, with minimal
increase in end-to-end delay and without causing significant packet loss on
the UDP stream. This will be tested both subjectively (by testing whether the
quality and delay on the VoIP service is “acceptable”, or at least better than in
a setup with the QoS system turned off) and objectively (by measuring delay
and by gathering packet loss statistics).

It should also be capable of throttling back a TCP download in favour of
interactive TCP traffic, such as SSH. This will be tested in a similar way, by
subjectively comparing how useable the SSH session is during a download
with and without the QoS system, and objectively by measuring latency.

C.6.2 Intended extensions

Depending on time availability, I intend to implement a number of the fol-
lowing extensions:
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• Manual configurability of prioritisation, based on packet protocol /
source address / destination address / port number etc.

• A limited amount of automatic configuration, for example automatic
testing of the capacity of the Internet link (either one-off or repeat-
edly during operation to deal with variable-capacity channels, such as
a shared ADSL link where some traffic will bypass the QoS system)

• Automatic gathering of statistics (such as the effect of traffic volume
upon latency) — this may be necessary for objective testing of the sys-
tem

• Dealing with slower links such as GPRS, which have much lower ca-
pacity, non-negligible packet loss, and variable latency

• Extension of the system to allow more than two nodes: for example, a
single client connecting to multiple servers and selecting which to use
for a particular packet based on proximity to the packet’s destination,
or multiple clients connecting to a single server.

• If the system is sufficiently complete, I will consider submitting my
work to the maintainers of the VPN system I adapted.
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C.7 Plan of work

Weeks Work

Michaelmas term Week 1 begins on 22nd October 2005
1–2 Investigating existing VPN systems, and selecting

one to use
3 Gain familiarity with VPN system’s code; deter-

mine whether project should be implemented en-
tirely within the VPN system or by passing packets
through a separate program

4–6 Implement packet classifier
6 Milestone: Modified VPN system is capable of de-

termining protocol, size, source, destination, and
port of packets

Christmas vacation
7 Catch-up buffer
8 Implement packet queueing and dequeueing (ini-

tially FIFO)
9-10 Begin implementing queueing discipline

Lent term Week 11 starts on 14th January 2005
11 Milestone: The modified VPN system will still for-

ward packets correctly after passing them through
a FIFO queue

11–14 Complete implementation of queueing discipline
12 Deliverable: Progress Report
13 Milestone: Core goals complete

15–16 Testing & collecting performance statistics
17–18 Writing dissertation

18 Deliverable: Draft dissertation (without Evalua-
tion chapter)

Easter vacation (primarily set aside for revision)
19 Completing draft dissertation

Easter term Week 20 starts on 22nd April 2005
20 Deliverable: Draft dissertation

20–21 Finalising dissertation
23 Deliverable: Final dissertation
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