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What Do We Want to Study?

e Benefits of (scoped) flooding in the network
o Content discovery, routes propagation, etc.
o Low state maintenance, low protocol complexity, etc.
o A scalable solution or not?

e Technically we want to know
o How to set the flooding scope optimally?
o How a network topology impacts the scope?
o How content availability impacts the scope?

In short, we want to flood on the right content at right place with right scope.
T UNIVERSITY OF

DUy - IR

@¥ CAMBRIDGE




Is This Really An Important Problem?

e Flooding is widely used but it lacks of theoretical backup.

e Understanding scope-flooding has further implications on
other topics such as opportunistic network, P2P, and etc.

e Lack of a network model to study the neighbourhood.

e Lack of a cost/gain model to study flooding related problems.

Most importantly, the model should be extendable.
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What Do We Need to Start With?

e Three components are needed:

O

O

The content (can be anything), only its value matters.
The representation of gain/cost as a function of # of
nodes and content (value).

The network model based on which, we can tell how the

# of nodes increases as a function of # of hops (scope).
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How Are These Components Connected?

e A node-centric ring-based model

""""" i ] . node who initiates the flooding

.2;‘_” radius . node who relays the flooding

Utility value is decomposed into multiple layers
accordingly. Flooding stops before the ring
where utility drops below zero.

U, = gain(@ - @) - cost(o...a)
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How Shall We Model Gain and Cost?

e Both gain and cost are functions of # of nodes.

e Important presumption:

After certain point, cost grows faster than gain.

where you should stop.

e Does this presumption make sense?

o If gain is always lower, you will never flood. Just stay still.

o If gain always grows faster, you will never stop flooding.
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How Is the Network Model Constructed?

e Weuse G =(V, p)instead of G = (V, E) as basis. Why?

e How fast the neighbourhood grows while the hop increases?

e Model functionality: given a scope r, the network model
calculates how many nodes can we reach.

e Remember, nodes can fail, and messages can get lost.
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What Can the Network Model Do?

e |f we define the average network growth rate (beta) as the
average ratio between # of ring r+1 nodes and # of ring r nodes,

e beta = (# of 2-hop neighbours / # of 1-hop neighbours).

e A node can estimate its neighbourhood with 2-hop knowledge.

e \We considered two network generative models: Random and
Scale-free networks. Both have closed-form expressions.

e \What is the caveat?
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How Accurate Can This Model Predict?

Table 1: Overestimation of the model at each hop for various network graphs. V: Number of nodes and E: Number of nodes
in the generated instance of the graph, /: average path length. Shaded cells represent the cases where the error is below 0.20.

: Overestimation of the model
Id Topology \Y E (k) [ Clustering =y T =3 T =4 1 r=5 1 7=6
1 Random 339 338 | 1.994 | 23.07 0 0.327 | 1.046 | 2.359 | 4.692 | 9.092
2 Random 8030 | 9761 | 2.431 | 12.03 0 0.152 | 0371 | 0.642 | 0972 | 1.399
3 Random 9426 | 15068 | 3.197 | 8.30 0.00040 0.060 | 0.130 | 0.212 | 0.332 | 0.565
4 Random 9811 | 20073 | 4.091 | 6.75 0.00049 0.023 | 0.053 | 0.106 | 0.259 | 0.873
5 Random 0928 | 25060 | 5.048 | 5.88 0.00048 0.004 | 0.017 | 0.079 | 0.419 2.79
6 Random 9989 | 35020 | 7.011 | 4.95 0.00066 0.003 | 0.030 | 0.229 | 2.139 | 54.124
7 | Scale-free, o =3.24 | 7141 | 9648 | 2.70 | 7.88 0.00057 0.093 | 0.271 | 0.529 | 1.069 | 2.599
8 | Scale-free, @ =3.35 | 5869 | 7347 | 2.50 | 8.66 0.00076 -0.115 | -0.174 | -0.194 | -0.16 | 0.013
9 | Scale-free, a =3.50 | 5960 | 7357 | 2.47 | 8.99 0.0004% | -0.356 | -0.555 | -0.68 | -0.757 | -0.794

Pretty accurately for big networks for 3 - 4 hops.
The larger the network is, the more accurate model can predict, the reason is due to
the small network diameter. 9
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How Accurate Can This Model Predict?
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Fast growth till 4-5 hops! Then drops due to limited network diameter.
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What Is the Missing Piece in Our Model?

e Do not forget the purpose of a flooding - content discovery.
e \We consider two cases of a given content set.
o The availability is given as a priori knowledge.
o The availability is unknown, so we apply Bayesian
inference to estimate.
e The rationality behind: the easier to find a content among

nearby nodes, the higher its availability is.
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How to Calculate the Optimal Scope?

@ | Content availability :
( Ring-based model
: - Network model :
‘ # of 1-hop neighbours > cost/gain func Optimal scope
: — optimisation
‘ # of 2-hop neighbours

A good flooding strategy requires:

. A node is aware of its neighbourhood with an accurate topological inference.

‘ A node is aware of content availability with an accurate statistical inference on user request streams.
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How Does the Model Behave?

e Does the model generate meaningful behaviours?
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What Flooding Strategies Are Studied?

e Static Flooding (r)
o Same optimal scope for all nodes.
o Scope is optimised over the whole network using average # of 1-hop

and 2-hop neighbours of the network.

e Dynamic Flooding (r. for node i)
o Scope calculated for each node: a node utilises its local (2-hop)
topological information to optimise.
With content availability, only flood on popular content.
Without content availability, always flood 1-hop neighbours by default.
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Do Graph Generative Models Matter?
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Do Graph Generative Models Matter?
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Scale free: more heterogeneity, more divergence from network wide optimal scope.
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How Utilities Are Distributed in A Network?
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Is Dynamic Flooding Always Effective?

Improvement = (Utility of dynamic flooding - utility of static flooding) / utility of static flooding
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Dynamic flooding is less effective on random networks, only 10% of the nodes actually improve their performance

and over half have less than 10% improvement. In scale-free network, 30% of the nodes are improved, among
which over 60% have larger than 10% improvement.
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Is Dynamic Flooding Always Effective?

Improvement = (Utility of dynamic flooding - utility of static flooding) / utility of static flooding
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Correlation between beta and the utility improvement on random network is close to zero, indicating that the
significance of improvement is irrelevant of a node’s growth rate and its position in the network. Meanwhile, such
correlation on scale-free network is much stronger, with Pearson correlation being 0.5273.
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How Do We Setup the Experiments?

e Let's set up a more realistic experiments.

O

O O O O O

Four realistic ISP networks and a community network.
Each node has a 4GB cache with LRU algorithm.
Content set is based on a Youtube video trace.

Nodes of degree 1 are clients.

10 to 20 servers are randomly selected in a network.

The collective request trace is generated using a Hawkes
process, which is controlled by both temporal and spatial

locality factors.
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Do Flooding Strategies Impact Caching?

AS Byte hit rate Cost Avg. hops

nw | st dy | nw| st dy | nw | st dy
1239| 0.44| 0.40| 0.43| 1.0| 0.27| 0.28 | 1.90| 1.60| 1.62
2914| 0.49| 0.42| 047| 1.0| 0.31| 0.32| 1.75| 1.55]| 1.58
3356| 0.42| 0.39]| 042| 1.0| 0.25| 0.27| 2.02| 1.69| 1.74
7018| 0.47| 0.41| 0.45]| 1.0| 0.26| 0.28| 1.87| 1.54| 1.63
Guifi| 0.51| 0.44| 049| 1.0| 0.22| 0.23| 1.71| 1.32| 1.38

nw: network-wide flooding; st: static flooding; dy: dynamic flooding.
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Network-wide flooding always
achieves the best byte hit rate, the
improvement is marginal at the
price of 2 to 3 times increase cost.

Dynamic flooding consistently
outperforms static one.

Most content are discovered within
2 hops. Network-wide flooding has
the worst values due to its inherent
aggressiveness.




Does Spatial Locality Matter?

e Spatial locality does not play a significant role, especially when
content availability is not given as a priori.
o Higher values improve the hit rate marginally.
o No impact on cost at all because cost is a function of content

and topology, neither will be changed by spatial locality.

e Intuitive explanation: nodes are mostly constrained within a small
neighbourhood, and flooding do not go any further into the network.
Therefore what is happening outside is not important at all.
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What Are the Limitations of This Model?

e Clustering coefficient is not considered in the network model,
so it may overestimate the neighbourhood growth.

e Cost of retrieving a content is not considered.

e Sublinear growth in gain and exponential growth in cost, this
needs to be verified and justified in reality.

e Only evaluated with LRU, we do not know whether other in-

network caching algorithms will change our story or not.
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What Are the Takeaways?

If you cannot get most benefits from nearby neighbours,
there is no need to go further in a network.

The neighbourhood (of a medium scope) can be very well
approximated with a node’s 2-hop information.

The choice on static or dynamic flooding depends on the
network structure. l.e., random or scale-free networks.

The results justify the rationale of deploying collaborative
caches at network edge from content discovery perspective.
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Thank you. Questions?
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Fast Network Growth

Requires
communication
among nodes

Network growth:
# of 2-hop neighbors
# of 1-hop neighbors

\

Node degree: each router
knows its neighbors
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