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Abstract—Caching is widely used to reduce network traffic
and improve user experience. Traditionally caches store complete
objects, but video files and the recent emergence of information-
centric networking have highlighted a need for understanding
how partial caching could be beneficial. In partial caching,
objects are divided into chunks which are cached either in-
dependently or by exploiting common properties of chunks of
the same file. In this paper, we identify why partial caching is
beneficial, and propose a way to quantify the benefit. We develop
an optimal n-Chunking algorithm with complexity O(ns2) for
an s-byte file, and compare it with ✏-optimal homogeneous
chunking, where ✏ is bounded by O(n�2). Our analytical results
and comparison lead to the surprising conclusion that neither
sophisticated partial caching algorithm nor high complexity
optimal chunking are needed in information-centric networks.
Instead, simple utility-based in-network caching algorithm and
low complexity homogeneous chunking are sufficient to achieve
the most benefits of partial caching.

I. INTRODUCTION

Network caching reduces network traffic by exploiting re-
dundancy in traffic [1] and popularity of content [2]. Different
caching strategies have been proposed for different cases, such
as web and media caching. An important, yet not widely
studied question in caching relates to whether objects should
be cached in their entirety (integral caching) or if only parts
of objects should be cached (partial caching). Traditionally,
web caching has favored the integral approach, whereas media
caching has also considered partial caching.

Information-centric networking (ICN) [3]–[6] uses caching
extensively for content delivery and some ICN approaches by
default divide objects into chunks, leading effectively to partial
caching. This is suitable for large video files, since they are
often only partially accessed [7]. Integral caching may waste
cache space by storing parts of objects that are less popular
than the most popular parts of the same objects. It appears
intuitive to develop efficient partial caching algorithms for
optimal handling of such differing popularities inside objects.

However, the reality is somewhat more nuanced, as we show
in this paper. Our focus is on understanding how different ways
of dividing the object (chunking) reflect on performance of
caching and how to optimally chunk an object. We show that,
while partial caching is useful for partially accessed objects,
similar results can be achieved via chunking the object into
enough many chunks and using simple caching algorithms.
In other words, there is only a very small range of system

parameters where sophisticated partial caching algorithms are
needed, even with erratic object access patterns.

Even though there is a large body of literature on ICN,
chunking analysis has long been overlooked. In addition, many
ICN proposals [3]–[6] adopted various chunking schemes
in their architecture design, but how fast the benefit from
chunking vanishes is still poorly understood. Consequently,
the optimal chunk size also remains as an open research
question. To the best of our knowledge, there has not been
any thorough theoretical analysis or empirical evaluation of the
effects of different chunking schemes on caching. Especially
in ICN, as content items are digitally signed and managed at
chunk level, finding a good tradeoff point between caching
efficiency and maintenance overhead is vital. These unsolved
questions have posed a significant challenge in front of system
architects, ISPs and IETF (Internet Engineering Task Force)
when they define the specifications of the content management
and transportation for the future Internet. We hope our work
can fill this gap by providing a deep understanding on the
optimal chunking and partial caching on ICN networks.

Specifically, the contributions of the paper are as follows:

• We analyze the effects of chunking and develop the
concept of popularity distribution distance to measure the
effectiveness of a chunking scheme. We derive bounds on
performance of partial caching and compare the optimal
chunking with naive homogeneous chunking analytically.

• We demonstrate the performance of partial caching algo-
rithms with different chunking schemes and the experi-
ments confirm our analysis that after a moderate number
of chunks, partial caching yields no further benefits.

• Both analytical and experimental results show neither so-
phisticated partial caching algorithm nor optimal chunk-
ing are needed in practice. Instead, a simple utility-based
caching algorithm with naive homogeneous chunking is
sufficient to achieve most benefits of partial caching.

The rest of the paper is organized as follows. Section II
describes our system model and Section III presents formal
analysis on chunking schemes. Section IV formalizes optimal
caching algorithms and evaluates their performance under
different chunking schemes. Section V introduces a utility-
based heuristic and compares its performance with the optimal
caching algorithms. Section VI reviews related work and
Section VII concludes the paper.



TABLE I: Summary of notations.

Notation Meaning
fi, fi,j File i and chunk j of file i

ni Number of chunks in file i

pi, pi,j Popularity of file i and popularity of chunk j of file i

si, si,j Size of file i and size of chunk j of file i

N Number of files
M Number of routers
L Number of routers that are directly connected with users
Ri Router i
Ci Storage capacity of router i
CP Content Provider
Rhit Router that holds the requested content
S Set of routers between an edge router and Rhit

Xt Content distribution on routers at time t

Xi,j,k,k Decision variable for storing fi,j at Rk

Xi,j,k,k0 Decision variable for retrieving fi,j from Rk0 by Rk

ck,k0 Cost of retrieving one byte from Rk0 to Rk

p, p̃ Real and observed popularity vector
M,M̃ Real and observed user request patterns

II. SYSTEM MODEL

Consider a network of M routers organized in a general
topology. Let R

i

denote the router i with cache storage
capacity of C

i

bytes. This network serves the users that
generate requests for files in the set I with |I| = N . We
denote a file by f

i

and its size by s

i

. All files are stored
permanently at the Content Provider (CP) which is represented
as the (M+1)

th router (R
M+1). Users interact only with the L

edge routers – routers connect to the users – also referred to as
leaf nodes1. A file f

i

is divided into n

i

smaller units referred
to as chunks, and j

th chunk is denoted as f

i,j

. Denote the
probability of request for a file by this file’s popularity p

i

,
and similarly denote the popularity of chunk f

i,j

by p

i,j

. We
refer to the popularity vector in both cases by p = [p

i

] (or
p = [p

i,j

]). If an edge router has the requested item in its
cache, we call this a hit and this item is transmitted to the user
directly from this router. In case of a miss – the case where
the router does not have the item, the request is retrieved from
the closest router storing this item. If the item is not stored in
the network, it is retrieved from CP.

III. ANALYSIS ON CHUNKING

Cutting a file into smaller chunks improves caching per-
formance since more fine-grained caching decisions can be
made, especially when different parts of the file have different
popularities. However, quantifying the effects of chunking and
the resulting benefits in partial caching have largely been un-
explored. We now present the relationship between chunking
and performance, then quantify the benefits of partial caching,
and outline the steps of an optimal chunking algorithm.

Although the common understanding is that smaller chunk
size can capture user behavior (e.g., frequently-accessed parts
of a video) more accurately, the smallest indivisible unit in

1We use node, router, and cache interchangeably.
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Fig. 1: Illustration of chunking effect for a chunking scheme
with two chunks A and B.

practice is determined by many other factors, e.g., application
configuration, hardware limit, packet size, and etc. For the
simplicity of presentation, we refer one byte as the smallest
unit for the discrete case, and a continuous real function for
the continuous case to derive analytical results in closed form.
Note that our choice of the word byte is only for distinguishing
the smallest unit from chunk, rather than indicating byte-
granularity chunking in realistic settings.

A. Chunking Effect: Origin of Partial Caching Benefit
Assume that the smallest indivisible unit of a file is one byte

andd the instruction booklet “P the smallest unit requested by
the user is a chunk. Fig. 1 gives an example where a six-byte
file is divided into two chunks A and B. Users can access
individual bytes in an arbitrary manner and we denote this
“real user access pattern” as M. Because of chunking, the
real access pattern has to be translated into coarser granularity
chunk access pattern, from M to ˜M as in Fig. 1. This distorts
the popularity distribution of the bytes since unpopular bytes
could be in the same chunk as popular bytes (e.g., bytes 1 and
2 in the figure), thus inflating their observed popularity. Due
to this distortion, although the original popularity distribution
is p = { 2

3 , 0,

1
6 , 0,

1
6 , 0}, the translated popularity distribution

becomes p̃ = { 1
4 ,

1
4 ,

1
8 ,

1
8 ,

1
8 ,

1
8}. We call this distortion from

the real p to the translated p̃ chunking effect.
Chunking effect leads to the popularity d the instruction

booklet “Pof the bytes in the same chunk to be equal which
often also means over- or under-estimation of popularity.
Popularity estimate has direct impact on caching performance:

1) Overestimated popularity increases the chance of
caching unpopular content.

2) Underestimated popularity decreases the chance of
caching popular content.

Both cases lead to a failure to use cache efficiently because
of wasting cache space on unpopular content.

The effect can happen anywhere in the network: at the
client, at the server, or at a router whenever the chunk size
is bigger than the smallest unit. Nonetheless, the effect is the
same since the bytes in the same chunk will be given the
same popularity and we lose the information from the real
sequence. Vanichpun et al. [8] show that for most demand-
driven caching algorithms (e.g., LRU, LFU), it is reasonable
to assume that the closer p̃ is to p, the better caching decision a
caching algorithm can make, therefore achieve higher caching
performance.



B. Popularity Distribution Distance: Quantifying the Benefits

Multiple metrics could be used to measure information loss
due to the chunking effect. However, simple difference of two
distributions has very direct connection to the performance.

Vanichpun et al. [8] show that probability of an object
being cached is a function of its translated probability. Let
C : F(

˜M, C) ! x be a caching algorithm which maps
a translated request pattern ˜M and cache capacity C to a
caching decision vector x = {x1, x2, x3...}, where x

i

specifies
the probability that item f

i

should be kept in the cache. Let I
denote the set of the whole content items with N elements and
IC the items cached by C. Assuming unit size items, the total
size of the items in the cache sums to the cache capacity:P

N

i=1 x

i

= C. Let us introduce v = {x1
C

, . . . ,

xi
C

, . . . ,

xN
C

},
which is simply normalized version of x.

The performance of C can be evaluated by its (byte) hit rate
H which is simply the joint probability of an incoming request
being for a specific content f

i

and this item f

i

being stored
in the cache. We calculate H as follows:

H = P (f 2 IC) =

|I|X

i=1

P (f

i

, f

i

2 IC). (1)

Since the event that next coming request is f

i

is independent
from the event that f

i

is in the cache, Eq. (1) can be rewritten
as:

H =

|I|X

i=1

P (f

i

)P (f

i

2 IC) = Cpv

T

. (2)

From Eq. (2), hit rate can be viewed as a function of cache
size and the dot product of two distributions. Let X

k

denote
the set of k most popular objects, then the optimal caching
decision is:

v

⇤
=

⇢
1
C

if v 2 X
C

0 if v /2 X
C

.

Caching decision v is completely determined by a specific
caching algorithm. How close and how fast v converges to v

⇤

is an important metric to measure the quality of a caching
algorithm. Let H⇤ be the hit rate if the caching decision
is optimal (v⇤). Then, the performance gap between a non-
optimal and the optimal scheme is calculated as follows:

�H = H⇤ � ˜H = Cp(v

⇤ � v)

T

. (3)

Similarly, Eq. (3) can also be used to compare the perfor-
mance difference of two caching algorithms or two chunking
schemes under a specific caching algorithm. However, in most
cases, C : F(

˜M, C) ! v is too complicated to provide
any useful information. To get around this, we measure the
“expected performance loss” instead. As argued above, the
less information we lose in the request series, the better
caching decision we can make. Then, given the distribution
p̃ which is expected by a caching algorithm, what would be
the performance loss if the actual content popularity based on
user request is p? Expected performance loss can be calculated
as follows:
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Fig. 2: Benefit of chunking.

�H = H � ˜H = C(p � p̃)v

T / (p � p̃). (4)

In a sense, the “expected loss” shows the potential benefit
from partial caching. If we define |p � p̃| as the popularity
distribution distance to measure the difference of two distri-
butions, Eq. (4) shows that the potential performance gain of a
partial caching algorithm positively correlates to the popularity
distribution distance.

C. Performance Bound: Decaying Speed of the Benefit
Let ⇡

i

(y) denote the probability of accessing the byte at
position y of file f

i

. In other words, it is the popularity of y

th

byte in f

i

. We assume that ⇡

i

(y) is a continuous function and
has at least second derivative over [0, s

i

]. We further denote
⇧

i

(y) as the popularity observed from a specific chunking.
Since all bytes in a chunk have the same popularity, ⇧

i

(y) is
a step function. While ⇡

i

(y) is the real popularity distribution
(as the discrete p), ⇧

i

(y) is the perceived one as p̃.
Fig. 2 illustrates why we can benefit from chunking. x-axis

is the offset in a file, and y-axis is the conditional probability
of this offset byte being accessed, i.e., the popularity of the
specific byte located at this offset. The curved boundary of
the shaded area in the figure represents the real popularity
⇡

i

(y). The solid red bars represent the popularity assigned
for each chunk in the file. Integral caching can be considered
as a special case of partial caching with only one chunk and
⇧

i

(y) = 1 as Fig. 2a shows. The area above the curve ⇡

i

(y) is
the overestimation part. Naturally, chunking a file into smaller
pieces reduces the difference of the two areas.

From Eq. (4), we can interpret that quantifying the benefit of
chunking is equivalent to measuring the distance of two mod-
els derived from ⇡

i

(y) and ⇧

i

(y) respectively. We calculate
the chunking benefit as follows:

�

⇡i,⇧i =

1

s

i

Z
si

0

��
⇡

i

(y) � ⇧

i

(y)

��
dy. (5)

�

⇡i,⇧i is normalized over the file size so that we can compare
files of different sizes. Based on the definition of �

⇡i,⇧i , we
can further define the upper bound of benefit from partial
caching to integral caching as �

⇡i,1, where 1 stands for
uniform chunk popularity function ⇧

i

(y) = 1 for all y 6 s

i

.
Obviously, the smaller the �

⇡i,⇧i is, the more accurately
⇧

i

(y) describes user’s real access pattern. Then, improving
chunking performance boils down to chunking a file in a way



that minimizes the difference �

⇡i,⇧i . A follow-up question is
how fast it converges to the actual access pattern, i.e., how
quickly �

⇡i,⇧i converges to 0.
Because ⇡

i

(y) may be arbitrary distribution, deriving the
exact decaying speed is difficult. However, ⇧

i

(y) is a step
function, and from Eq. (5), we can see the integration on the
second term is actually the Riemann sum of ⇡

i

(y) over [0, s

i

],
as the area of rectangles shows in Fig. 2. Suppose we use
midpoint Riemann sum for obtaining a tighter bound, and let
the middle point represented by ȳ

k

=

1
2 (y

k�1 + y

k

). Then
⇧

i

(y) can be defined as follows:

⇧

i

(y) = ⇡

i

(

y

k�1 + y

k

2

) = ⇡

i

(ȳ

k

) 8y 2 [y

k�1, yk).

Using Taylor series expansion on ⇡

i

(y), we calculate the
bound of the popularity distribution distance for the k

th chunk
as follows:

��
�

i,k

��
=

�����

Z
yk

yk�1

��
⇡

i

(y) � ⇧

i

(y)

��
dy

�����

=

Z
yk

yk�1

��
⇡

0
i

(ȳ

k

)(y � ȳ

k

) +

1

2

⇡

00
i

(ȳ

k

)(y � ȳ

k

)

2
��
dy

 1

24

(y

k

� y

k�1)
3
max

[0,si]
|⇡00

i

(y)|.

Summing over n chunks, we can get the bound for overall
popularity distribution distance as follows:

��
�

⇡i,⇧i

��
=

����
1

s

i

Z
si

0

��
⇡

i

(y) � ⇧

i

(y)

��
dy

����

 1

s

i

⇥ [

1

24

⇥ (s

i

� 0)

3

n

2
⇥ max

[0,si]
|⇡00

i

(y)|]

=

max[0,si] |⇡00
i

(y)|
24

⇥ s

2
i

n

2
.

The second term is the square of the average chunk size. If
we consider the chunk popularity and file size as given, we
can replace the first term with constant c. s

i

/n is the average
chunk size, denoted as s̄. The formula2 can be rewritten as:

��
�

⇡i,⇧i

��  c ⇥ (

s

i

n

)

2
= O(s̄

2
) = O(n

�2
). (6)

This shows that the popularity distribution distance is
bounded by the square of the average chunk size. For a given
file, the convergence speed of model distance is inversely
proportional to n

2. In practical terms, this implies that there
is a specific number of chunks for every file after which addi-
tional chunks bring only negligible benefits in performance. In
Section III-D we will discuss the overheads caused by optimal
chunking, and in Section III-E we will show the validity of
Eq.(6) via experiments.

Conclusion:
1) Performance of partial caching strategy positively cor-

relates to the popularity distribution distance, which
decays with the speed bounded by O(s̄

2
) and O(n

�2
).

2) Given a target performance, the number of chunks
needed increases linearly as file size grows.

2If Riemann sum is calculated using alternate methods, e.g., left, right,
minimum or maximum sum, the bound changes to O(s̄) and O(n�1).

D. Optimal Chunking and Complexity Analysis
Despite the fact that smaller chunk size helps in improving

the caching performance, we should avoid too many chunks
due to the maintenance overheads and other practical consid-
erations (e.g, hardware limitations, minimum video clip size,
and protocol overhead). In this section, we present an optimal
chunking algorithm and analyze its complexity. First, for a
given number of chunks n, we outline how to divide a file
into chunks to achieve the minimum �

⇡i,⇧i . Next, we find
the smallest number of chunks to attain a target �

⇡i,⇧i .
The following discussion revolves around these two ques-

tions and details the algorithmic analysis. In practice, the
first question focuses on locating the optimal dividing points
within a file to achieve the best caching performance, whereas
the second question focuses on finding out the least number
of chunks needed for optimal chunking. The two questions
together give an algorithmic solution to obtain the optimal
chunking scheme in an ICN system. However, by taking the
actual computation complexity into account, our following
analysis also attests that such optimal solution is nothing but
a white elephant function in ICN architectures.

Question 1: Given that an s-byte file is to be divided into
n chunks where s � n, how can we find the optimal chunk-
ing that achieves the minimum popularity distribution
distance �min? Assuming that the popularity of each byte is
known and a file can be partitioned into chunks from any point,
a naive algorithm checks all possible partitions and selects the
one achieving �min. Since there are

�
s�1
n�1

�
ways of dividing an

s-byte file into n chunks, the computational complexity equals
to

�
s�1
n�1

�
=

(s�1)!
(n�1)!(s�n)! =

1
(n�1)!s

n�1
+o(s

n�1
) showing the

time complexity of naive algorithm to be O(s

n�1
), and space

complexity to be O(n).
This optimization problem exhibits obvious “optimal sub-

structure”. Assume we look for a solution which produces
n = n1 +n2 chunks, and the first n1 chunks cover [0, i] bytes,
and the remaining n2 chunks cover [i + 1, s � 1] bytes. We
can first focus on [0, i] and optimize it, then turn to optimize
[i + 1, s � 1]. By combining the optimal solutions of both
parts, we have the optimal partition of the whole file. Let
�|n[a,b] be the minimum popularity distribution distance for the
file’s bytes between [a, b] in case of n chunks. The minimum
distance can be recursively found as follows:

�min = �|n[0,s�1] = min

0i<s

(�|1[0,i] + �|n�1
[i+1,s�1]). (7)

The top-down recursive solution Eq. (7) also tries all the
possible cutting points. The induced recursive tree has degree
O(s), and depth n�1 (restricted by the number of chunks n).
Although simple analysis shows that it suffers from the same
time complexity O(s

n�1
) as the naive algorithm, its optimal

substructure property helps us reducing the search complexity
by eliminating redundant calculations.

Algorithm 1 shows our heterogeneous n-Chunking algo-
rithm using bottom-up dynamic programming. The algorithm
first constructs two tables X and X

0 of size n ⇥ s. Element
X[i, j] stores the optimal � over bytes [0, j] by cutting it



Algorithm 1 Heterogeneous n-Chunking
1: Input: s-byte file, n chunks
2: Output: chunking scheme
3: Construct three tables X , X

0 and Y .
4: Set X[i, j] = +1 8i 2 [1, n � 1], 8j 2 [1, s]

5: Set X[i, 0] = �|i+1
[0,0] 8i 2 [0, n � 1]

6: Set X[0, j] = �|1[0,j] 8j 2 [0, s � 1]

7: Set Y [i, j] = �|1[i,j] 8i  j 2 [0, s � 1]

8: for i = 1 ! n � 1 do
9: for j = 1 ! s � 1 do

10: for j

0
= 1 ! j � 1 do

11: if X[i, j] > X[i � 1, j

0
] + Y [j

0
+ 1, j] then

12: X[i, j] = X[i � 1, j

0
] + Y [j

0
+ 1, j]

13: X

0
[i, j] = j

0

14: end if
15: end for
16: end for
17: end for
18: Return X , X

0

into i + 1 chunks. X

0
[i, j] stores the starting point of the last

chunk in an optimal chunking scheme over [0, j] with i + 1

chunks. Then the algorithm constructs another table Y of size
s

2, where Y [i, j] stores �|1[i,j]. Filling X[0, j], X[i, 0], and
Y [i, j] are trivial. Lines (8 – 17) are for the general case; the
three loops build the table row by row by filling each cell
X[i, j] with optimal �|i+1

[0,j] with the given chunk number (i.e.
i + 1) and data range (i.e. [0, j]). There are O(n ⇥ s) entries
in X , and for each entry, we need to consider O(s) cases.
Therefore the time complexity of n-Chunking is O(ns

2
), and

space complexity is O(s

2
). The optimal chunking scheme can

be easily constructed from X

0 returned by n-Chunking and
the corresponding �min is stored at X[n � 1, s � 1].

Question 2: Given a target popularity distribution dis-
tance �, what is the minimum number of chunks nmin

that achieves the desired �? This problem can be considered
as an extension of the previous one, and can be solved by
slightly adjusting n-Chunking algorithm. We can replace the
first deterministic n-round loop with a while loop, where we
keep comparing � with X[n

0
, s�1] (n0 is the current round),

and break the loop when � > X[n

0
, s�1]. Then nmin = n

0 is
the minimum number of chunks to achieve �, and X

0 contains
the corresponding chunking scheme. Tables X and X

0 grow
during the calculation. The complexity then depends on the
number of iterations nmin, and our analysis in Section III-C
shows nmin  c

1
2
s

��
�

��� 1
2 . O(nmins

2
) and O(s

2
) are time and

space complexities for solving Question 2, respectively.

E. Homogeneous Chunking: Low-Complexity Alternative

Figure 2b and 2c show examples of homogeneous and
heterogeneous chunking schemes. n-Chunking is an example
of heterogeneous chunking and it requires file internal popu-
larity distribution; its complexity is also considerably high. On
the contrary, a homogeneous chunking does not require any

information about popularity, as it simply divides the object
into equal-sized chunks. It can be easily extrapolated from
the conclusions in Section III-C, the performance difference
of n-Chunking and a homogeneous chunking is bounded by
O(s̄

2
) and O(n

�2
). In other words, as the number of chunks

increases, the difference between the schemes diminishes.
Even though there are concerns that the increased number of

chunks may bring up management overheads, [9], [10] actually
showed the feasibility of caching many small chunks without
degrading the performance in reality. Practically, it indicates
there is no need to incorporate complicated optimal chunking
scheme in the system. As we show in Section IV, after a
moderate number of chunks, there is essentially no difference
between the optimal and the homogeneous chunking.

Conclusion: Homogeneous chunking is ✏-optimal where
✏ =

cs

2
i

n

2 . In other words, the difference between homogeneous
chunking and n-Chunking is bounded by O(n

�2
).

IV. ANALYSIS ON CACHING SYSTEMS

To verify our analysis in Section III and obtain performance
bounds, we now evaluate different chunking schemes on a
caching system. Please refer to Table I for the notation.

A. Caching System Model

Assume that there is a centralized entity aware of the
network conditions. In particular, the content distribution at
time t denoted by Xt

= [x

t

i,j,k

] is available to this entity.
If chunk f

i,j

is stored at node R

k

, then x

t

i,j,k

is 1 and zero
otherwise. We devise a strategy called dynamic partial caching
(PDyPa) that gives a decision at each time instant when a user
requests a chunk f

u,v

, i.e., it dynamically adapts the cached
contents. Suppose at time t chunk f

u,v

is stored at node R

hit

and a user requests via a leaf node R

l

. R

l

will retrieve this
item from R

hit

, and each router on the path from R

hit

to
R

l

must decide: cache this object or not. In case the item is
cached in any of the nodes, some items stored in the cache
may need to be evicted from the cache. We refer the set of all
these intermediate nodes as S .

An optimal caching strategy minimizes the cost of serving
the whole user requests by storing the items at the most
appropriate routers and by favoring the most popular chunks
of the most popular files. Let c

k,k

0 denote the cost function
for fetching one byte from R

k

0 to R

k

. It reflects the distance
between the two entities which can be calculated using shortest
path algorithms, e.g., Dijkstra. The optimal strategy decides
if chunk f

i,j

is to be stored at R

k

and if not, from which
router R

k

0 to be fetched. Since this decision determines the
new content distribution at time t + 1, we define our decision
variables as Xt+1. Let our binary decision variable x

t+1
i,j,k

be 1
if chunk f

i,j

is to be stored at R

k

. Similarly, let x

t+1
i,j,k,k

0 be 1
if R

k

downloads f

i,j

from R

k

0 . For harmony of notation, we
re-define the content distribution by Xt

= [x

t

i,j,k,k

]. Given Xt,
the number of chunks in a file i (n

i

), file popularity (p
i

), chunk
popularity (p

i,j

), and chunk size (s
i,j

) information, using the



approach provided in [11], we can formulate PDyPa as follows:

PDyPa : min

⇣ LX

k=1

NX

i=1

niX

j=1

M+1X

k

0=1

s

i,j

p

i

p

i,j

c

k,k

0
x

t+1
i,j,k,k

0x
t+1
i,j,k

0
,k

0

+ s

u,v

p

u

p

u,v

(

LX

k=1

X

8Rk02S[RM+1

c

k,k

0
x

t+1
u,v,k,k

0)

⌘
(8)

subject to:
NX

i=1

niX

j=1

s

i,j

x

t

i,j,k,k

x

t+1
i,j,k,k

+s

u,v

x

t+1
u,v,k,k

(1�x

t

u,v,k,k

)C

k

, 8R

k

(9)
x

t+1
i,j,k,k

0  x

t+1
i,j,k

0
,k

0 8i, 8j, 8k, 8k

0 (10)

1 
M+1X

k

0=1

x

t+1
i,j,k,k

0 8i, 8j, 8k (11)

x

t+1
i,j,M+1,M+1 = 1 8i, 8j (12)

x

t+1
i,j,k,k

0 2 {0, 1} 8i, 8j, 8k, 8k

0
. (13)

Our objective (8) includes the cost of serving the request from
the edge router’s cache as well as the cost of serving from
any other content router in the ISP network and CP (i.e.,
R

M+1). The first term in (8) represents the cost of serving
the requests for the contents already existing in the system
whereas the second term is for serving the current request for
item f

u,v

. Please note that if x

i,j,k,k

= 1, then f

i,j

is stored
in R

k

. Const. (9) ensures the total size of items to be stored
in a cache cannot exceed cache capacity. Const. (10) reflects
the fact that f

i,j

can be fetched from R

k

0 only if R

k

0 stores
f

i,j

. Const. (11) forces the content item to be served from
some location (i.e., local cache, another router’s cache, or the
CP) while Const. (12) states that all items are permanently
stored in the CP. Const. (13) defines the type of variables. The
problem in (8-13) is an integer linear programming problem
(ILP) which can be solved by an optimization software once
c

k,k

0 values are computed.
If we assume that file and chunk popularities already contain

sufficient information to describe user behavior, we can further
simplify the optimal caching problem into a static content
placement problem, i.e., the set of items to be stored at
each cache is decided once and no changes are done. In
this approach, content distribution is time-invariant leading to
Xt+1

= Xt for all t. Hence, we can simplify PDyPa using this
equality to derive PStPa as follows:

PStPa : min

LX

k=1

NX

i=1

niX

j=1

M+1X

k

0=1

s

i,j

p

i

p

i,j

c

k,k

0
x

i,j,k,k

0
. (14)

The constraints would need to be similarly modified. Since
integral caching is a special case of partial caching with n

i

=

1 in Eq.(14), we skip the formulation for dynamic integral
caching (DyIn).

Compared with the dynamic model, the static model does
not take current content distribution into account and is
unaware of the specific user request sequence. The static

model aims to achieve the long-term optimality in content
placement while the dynamic model attempts to find the best
next caching decision based on the current content distribution
in the network. Besides both problems being hard to solve as
ILP problems [12], they require centralized global knowledge
which is infeasible in real networks. We use these models as
benchmarks for our lower-complexity heuristic in Section V.

B. Metrics and Setup
We use the following metrics to assess the performance of

the presented caching/chunking schemes:
• Byte hit rate (BHR): Byte hit rate is the percent of

requested data that can be served by the cache within the
network. It measures savings in outgoing traffic.

• Footprint reduction (FPR): Footprint reduction is the
product of traffic volume and the distance it travels in the
network. It measures traffic reduction inside the network
compared to retrieving the content from the CP.

• Cache-level similarity (�
c

) measures how much the same
content is stored at the caches of two caching strate-
gies subject to analysis. Hence, cache-level similarity
measures the average similarity over all routers in the
network under two caching strategies. We use Jaccard
similarity [13] for evaluating the similarity of two routers.

• Network-level similarity (�
n

) considers the whole
caches as a single huge cache and compares the similarity
of the caches of the two networks under comparison.
Network-level similarity calculated using Jaccard simi-
larity ignores the exact storage location and focuses on
if an item is stored in the network or not.

Cheng et al. [14] show that Youtube videos’ popularity
follows Weibull distribution with shape parameter k = 0.513;
we use this setting in the evaluation. We also use Weibull
distribution to model chunk popularity with different shape
parameters. Because there is no evidence showing that file
size correlates with its popularity, we select file sizes from
(5, 15) MB uniformly. Each video is chunked with the het-
erogeneous n-Chunking algorithm and user request pattern
follows Independent Reference Model (IRM). We evaluated
our model on both realistic ISP networks and synthetic ones
with regular tree structure. In the following, we present the
results of regular tree topologies as we observe very similar
results for both settings. Moreover, as discussed in [15]
effective topology essentially boils down to one or multiple
distribution trees. Therefore, for the purpose of simplicity and
also due to the space limitations, we only present the results
on the 4-level binary-tree topology with model parameters set
to M = 5, N = 4000 and C = 2 GB. We verified various
parameter settings on different topologies and results agree
with those shown here.

C. Partial Caching vs. Integral Caching
Fig. 3a shows three Weibull distributions with different

shape parameters (0.4, 0.6 and 0.8 for ⇡1, ⇡2 and ⇡3

respectively) to model the internal popularity. The partial
caching benefit for these distributions are �

⇡1,1 = 0.896,
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Fig. 3: Effect of chunk popularity on BHR and FPR in dynamic model.

�

⇡2,1 = 0.648 and �

⇡3,1 = 0.457. The calculation implies
distribution ⇡1 has the largest benefit and ⇡3 has the smallest.
Results in Fig. 3b and 3c match the analysis quite well, e.g.,
Fig. 3b shows that BHR increases by 21% for ⇡1 and 11%
for ⇡3, respectively. Eq. (4) suggests given the same cache
model and caching algorithm, the improvement ratio for these
distributions should equal to their partial caching benefit ratio.
The result shows these two values are indeed very close to
each other (�

⇡1,1 : �

⇡2,1 : �

⇡3,1 ⇡ 2 : 1.4 : 1). Compared
with integral caching, chunking also helps FPR improve from
-4% to 6%. The reason for a negative FPR is that the model
searches for content in the whole network which may lead to
fetching content from somewhere further than CP. The results
show that the closer the chunk popularity is to a uniform
distribution (⇡3), the less benefits partial caching brings.

Although �

⇡,1 can accurately predict the potential benefit,
it does not measure how fast it vanishes. Fig. 3d plots
the popularity distance �

⇡i,⇧i as a function of number of
chunks and shows that a few chunks can significantly reduce
popularity distance �

⇡i,⇧i . This is also visible in Figs. 3b
and 3c which show that the metric in question improves
fastest when the number of chunks is small. Adding chunks
beyond 10 yields negligible additional benefits. The slower the
convergence (⇡1), the larger the benefits from partial caching.

D. n-Chunking vs. Homogeneous Chunking
As mentioned in Section III-E, the differences between

chunking schemes diminish as the number of chunks increases.
Fig. 4a shows the performance of our n-Chunking scheme
and a homogeneous chunking scheme, and illustrate that the
difference disappears when there are 20 chunks. Fig. 4b shows
how BHR changes as a function of number of chunks for
different file sizes. The three black circles on each line mark
the number of chunks needed by n-Chunking algorithm to
achieve �

⇡,⇧ = 0.1. Note that this number increases linearly
as file size grows, i.e., �

⇡,⇧ = 0.1 is achieved at exactly same
chunk size (0.8 MB). It verifies our analysis in Section III-C,
showing that average chunk size is a key factor of performance
gain. The results also indicate that the speed at which partial
caching benefit decays will decrease as file grows because we
need more chunks to achieve the same gain. Increasing file
size also increases the number of chunks and even though
they follow the same popularity distribution, the tail becomes
heavier and degrades caching performance.

We also compared the number of chunks a scheme will
generate to achieve the target �

⇡,⇧. In the experiment, we
use Weibull distribution with different parameters to model the
internal popularity of a 10 MB file (� 2 [1, 5], k 2 [0.5, 5]).
Fig. 4c shows that for a small �

⇡,⇧, n-Chunking always uses
less chunks, with about 40%–50% improvement compared
with homogeneous chunking. However, as �

⇡,⇧ increases, two
schemes eventually become the same since one or two chunks
are sufficient to achieve the goal.

In Section IV-A we defined both a dynamic (DyPa) and
a static (StPa) caching strategy. Intuitively, DyPa should be
more effective and our results confirm this. For space reasons,
we present only the cache- and network-level similarities
between these two approaches. Fig. 4d measures what ratio
of the content in DyPa is the same as that in StPa in each
step. Initially the similarity is low, but as the simulation runs
longer, network-level similarity increases, indicating that they
store similar content. A partial explanation is that we do not
consider changes to content popularity, thus this result is to
be expected. However, the cache-level similarity remains very
low indicating that content placement is very different in the
two cases. Fig. 4d also shows that n-Chunking increases the
similarity at both network and cache level.

V. LOW-COMPLEXITY PARTIAL CACHING SOLUTION

We now propose a low-complexity heuristic caching strat-
egy combined with naive homogeneous chunking at the server
and evaluate its performance by comparing against the optimal
solution on tree topologies. We then compare against other
solutions in the literature on the realistic ISP topologies. The
results are from the emulation experiments on our testbed.

A. HECTIC: HighEst CosT Item Caching
HECTIC is a low-complexity caching strategy devised to

achieve the objectives in Section IV-A. To illustrate the de-
sign rationale of HECTIC, we consider three components –
admission policy, eviction policy and cooperation policy.

Admission policy determines which objects are to be cached
and which not. But in a network of caches, caches far
from clients only receive a filtered version of the actual
user request pattern because of the hits in the caches closer
to the client. This so-called filtering effect [16], [17] may
significantly impact the effectiveness of a hierarchical caching
network. In [18] we proposed Cachedbit which spreads content
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probabilistically in the caches along a path. The caching
probability at R

k

is the reciprocal of its distance from the
client: p

k

=

1
dc,Rk

. As we showed in [18], Cachedbit is easy
to implement, has low overheads, and provides some immunity
against filtering effect.

For eviction policy, we propose a utility-based replacement
algorithm. Let chunk utility of chunk f

i,j

at router R

k

be:

u

k

i,j

= s

i,j

p

i

p

i,j

c

k,M+1 8f

i,j

2 C

k

(15)

where c

k,M+1 represents the cost of retrieving this chunk from
CP. Utility function (15) considers chunk size, its popularity,
and the efforts of retrieving it. A cache will evict the chunk
with the smallest utility first.

Cooperation between caches can reduce duplicate copies
and allow for more efficient use of storage, but at the cost of
communication overheads. More specifically, we can consider
HECTIC’s cost from two perspectives: node collaboration and
chunking. The collaboration cost depends on the collaborative
algorithm design and has been well analyzed in [19], [20].
HECTIC is en-route strategy with very limited collaboration
range, therefore introduces negligible overhead. From chunk-
ing perspective, overly small chunk should be avoided due
to the transmission cost. However, as our chunking analysis
in Section III shows the benefit from small chunks decays
quickly. Furthermore, the realistic evaluation in Section V-C
attests that for all Youtube videos, more than 8 chunks per
file (i.e. smaller than 0.8-1 MB per chunk) will not bring extra
performance gain. Obviously, the nearly-optimal chunk size in
most context is much larger than the actual chunk size used
in many ICN proposals [9], [10], [21].

As a simple solution for reducing overhead, we use one bit
in the packet to indicate if an object is cached in an upstream
cache [18]. Note that the actual technical modification varies
in different ICN proposals, and such modification may not be
trivial in certain proposals if both header and content are cryp-
tographically bounded. Take CCNx as an example: according
to the newest specification [22], there is a 16-bit reserved
field in the header which can be used to provide additional
information [3]. Obviously, the communication protocol needs
to be adapted consistently to understand the semantic meaning
of the extension. This ensures that on a path from the CP to
one client, at most one copy of a chunk exists, but paths to
other clients may contain additional copies; this improves both
BHR and FPR.

level 0 level 1 level 2 level 3
HECTIC (1 GB) 0.3252 0.3207 0.3197 0.3249
HECTIC (2 GB) 0.4462 0.4427 0.4413 0.4489
LRU (1 GB) 0.3673 0.1784 0.1002 0.0647
LRU (2 GB) 0.4792 0.1936 0.0954 0.0512

TABLE II: Average BHR on each level of the distribution
tree for both HECTIC and LRU with two cache sizes. Level-0
nodes refer to the leaf-nodes. The variances in all the cases
are less than 10

�4 therefore are not presented in the table.

B. HECTIC on a Regular Distribution Tree Topology

We first compared HECTIC against the dynamic and static
optimal caching strategies from Section IV-A on a 4-level
binary-tree topology with parameters as in Section IV-B.
Because HECTIC is an en-route caching scheme, we restricted
the optimal strategies in being able to retrieve data only
from one hop away. Fig. 5a and 5b depict BHR and FPR
respectively, and shows that HECTIC outperforms static StPa
and reaches about 90% of the performance of the dynamic
DyPa. Fig. 5c depicts the change in �

⇡,⇧ with increasing
number of chunks. In line with the results of Figs. 5a and 5b,
we observe that partial caching benefit becomes practically
negligible beyond 8 chunks. One thing worth pointing out is
that the number of chunks depends on the file size. Recall the
conclusion 2 in Section III-C stating that the minimum number
of chunks for a given performance target increases linearly as
a function of file size. From conclusion 2, we can further
extrapolate that the percentage of a chunk constituting of the
target file will decrease proportionally as file size increases.
For example, in our case, 8 chunks are enough for most
Youtube videos which are practically around 10 MB, and each
chunk constitutes about 10% of the file. Whereas for large
files (e.g. high-definition videos), more chunks are certainly
needed. Empirically, we notice in our evaluations that chunks
smaller than 1 MB only bring marginal benefit on caching for
most video files that are over 10 MB. Therefore, for a 1 GB
video file, we need about one thousand 1-MB chunks, each of
which constitutes only 0.1% of the file.

Fig. 5d plots the popularity distribution of the received
requests on level-1 nodes, i.e., the next-hop nodes of edge-
routers. As we can see, simple LRU renders the bending head
in the popularity distribution, indicating severe filtering effect.
In contrast, for HECTIC the observed popularity in upstream
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nodes is almost identical to the original distribution. The
resistance to popularity deformation leads to high utilization
of upstream caches, which further explains the reason why
HECTIC outperforms other strategies.

Table II presents the average BHR of the nodes on the same
level in a distribution tree where level-0 nodes refer to the
leaf-nodes and level-3 node refers to the root. The results
provide numerical explanation of Fig. 5d by showing how
filtering effect impacts the actual caching performance. As
moving farther from the edge to the root node in level 3,
LRU’s BHR quickly degrades and drops eventually to 5-6%
due to the severe filtering effect. The same trend holds also
for bigger cache size; first level serves a significant fraction of
the requests from the cache and upper levels experience miss
for most of the requests. On the other hand, HECTIC’s BHR
remains the same across all the levels regardless of the node
position and cache configuration.

In other words, HECTIC spreads the most popular content
along the path from the CP to the edges to ameliorate the filter-
ing effects by increasing cache utilization in upstream nodes.
The immediate intuition is that such operation may increase
the average hops to deliver the content. However, considering
most real-world networks have small-world property which
indicates a short network diameter, the potential increase in
fetching time is negligible in practice, and can be easily outrun
by the gain from the reduction in intra- and inter-ISP traffic.

C. Evaluation with Realistic Settings

We verified HECTIC’s performance in more realistic set-
tings by comparing it on a testbed against several other
caching strategies from literature. We used four ISP router-
level topologies from Rocketfuel [23] project: Exodus, Sprint,
AT&T and NTT. We only present results on Sprint network
due to space limitations; other networks yielded similar results.
All the experiments are performed on our department cluster
consisting of 240 Dell PowerEdge M610 nodes equipped with
2 quad-core CPUs, 32GB memory, and connected to a 10-Gbit
network. All nodes run Ubuntu SMP with 2.6.32 kernel.

We connected the server to the router with the highest
degree and randomly connected clients at 30% of the routers.
Each router is equipped with cache size of 3GB. Link cost
and latency between two routers were set according to the
topology traces, which reflects the realistic values.

We used the gravity model for generating the traffic patterns.
In the gravity model, we first map a client to the city according
to its access router and traffic from the client is proportional
to the city’s population. The client in the city with the smallest
population sends out 1 million requests and traffic from other
clients is scaled up proportionally based on the city population.

For content, we used the real trace from Cha et al. [24]. We
selected Youtube Entertainment Category trace which contains
1,687,506 objects. The trace contains video id, length, views,
rating and etc. For other content parameters, we set based on
investigations on Youtube by [14], [25]. The aggregated video
size is 12.87 TB. Work in [24] showed that videos’ encoding
rates are similar, thereby it is reasonable to assume the file
size is proportional to the video length. In [14], Cheng et al.
showed that the average file size is 8.4 MB. Based on these
results, we set the video size proportional to their length.

To the best of our knowledge, there is no publicly available
data about file internal popularity. Therefore, we use a Weibull
distribution to model file internal popularity. We assume user
behavior on different videos differs. To model a heterogeneous
access pattern, � and k are drawn uniformly from [1, 5]

and [0.5, 5] respectively, which models the various situations
of how popularity varies within a file. All the results are
calculated as the arithmetic average of 50 experiments. In each
experiment, the client access routers are randomly re-selected
to guarantee the results are robust and representative.

We chose another three caching algorithms to compare
against HECTIC. LRU is a simple caching strategy with no
special admission policy and LRU as replacement policy.
Cachedbit is the algorithm presented in [18] and it uses the
simple admission policy described in Section V-A and LRU as
replacement. FlexSeg is a partial caching algorithm presented
in [26] where it was also shown to have better performance
than other partial caching algorithms.

Fig. 6a and 6b show how the performance of three caching
strategies change as the cache size increases from 1 GB
to 10 GB. Fig. 6c and 6d show performance change with
the increasing number of chunks and keeping the per-cache
storage at 3 GB. FlexSeg performs rather poorly, barely
beating the simple LRU-based solution, whereas HECTIC
shows very good performance. Compared with LRU, FlexSeg
has a fine-grained policy to capture the user request pattern.
Hence, it performs slightly better, especially in the case of a
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Fig. 6: Performance evaluation of different in-network and partial caching strategies on Sprint network.

single cache. However, FlexSeg is designed for edge caches
instead of a cache network. Like LRU, it suffers from very
low utilization of the aggregate cache storage along the path,
which accounts for its poor performance.

Conclusion: Naive chunking at the server and simple
caching in the network outperform complex partial caching
algorithms running in the network.

VI. RELATED WORK

Caching per se has been extensively studied in mainly
two different contexts, namely conventional IP network and
information-centric network.

In conventional IP network, most prior work on partial
caching concern video streaming services [26]–[34]. However,
a distinction can be drawn between the work which assume
a priori knowledge on content internal popularity, and which
obtain such information during the algorithm runtime. For the
first category with a prior knowledge, [27] proposes prefix
caching which caches the initial frames to reduce the start-
up latency at client side. Some others [28] are also developed
on the similar idea that the earlier segments are more popular
than the later ones. [29] further empirically studied the internal
popularity of videos on a streaming website to verify afore-
mentioned assumption. On the other hand, recent evidence [7]
clearly shows that internal popularity can be arbitrary mix of
non-continuous portions.

For the second category without such a priori assumption,
[26], [30], [32]–[34] try to infer the content popularity from the
request sequence. [30] proposes using two independent caches
with different caching policies to improve hit rate. [33] utilizes
lazy segmentation to determine the segment size on the fly.
Similarly, flexible segmentation policy (FlexSeg) in [26] also
allows runtime segment size, but the segment size is a function
of both frequency and recency of accesses. [31] adjusts the
coding rate dynamically to improve user experience.

In information-centric network, content is preprocessed
before distribution and the system usually works at chunk-
level. According to our knowledge, no research work has ever
been done on partial caching and chunking analysis. However,
the extensive work [9], [10], [15], [18], [19], [21], [35]–[39]
on evaluating and modeling in-network caching deepened the
understanding on cache networks and paved the way for our
work. Close to our analysis on caching system, [15], [19],
[35]–[37] also focus on the performance modeling and discuss

the optimal content placement in cache networks. [18], [38],
[39] further propose low-complexity heuristic similar to our
HECTIC design, but chunking and filtering effects are not
well studied. From practical perspective, [9], [10], [21] carried
out thorough reality check of ICN design, showing content
router is able to manage large amount of small chunks at line-
speed. A recent work [40] shows that optimal on-path caching
only slightly outperforms a simple edge-caching policy as
contents are pushed closer towards the content consumers with
increasing cache capacity. Regarding the performance metrics
for ICN caching, [41] discusses that optimal caching schemes
accounting for the network-centric metrics – cache hit rate and
hop count – may not be the optimal solution if user-centric
metric, i.e., content download delay, is the primary perfor-
mance metric. As mentioned, though the caching mechanism
has been intensively studied in various context, the content
itself and its proper chunking scheme was largely overlooked
by the community.

VII. CONCLUSION

In this paper, we study the partial caching by first identifying
the origin of the partial caching benefit. Next, we propose
a way to quantify the benefit of chunking and illustrate its
relation to the actual performance changes. Based on this
analysis, we present the optimal n-Chunking algorithm and
compare it with homogeneous chunking. To evaluate the
partial caching, we also develop an optimization model which
can be used to calculate the upper bound of in-network
caching performance. We devise a low-complexity heuristic,
HECTIC, which performs close to the optimal solutions on
simple topologies and outperforms existing caching solutions
on realistic topologies. To the best of our knowledge, our paper
is the first work in the ICN literature to provide a thorough
theoretical analysis and empirical evaluation of chunking ef-
fects on caching performance. Our analytical and experimental
results show that complex partial caching algorithms do not
perform as well as a naive homogeneous chunking at the server
combined with a simple utility-based caching strategy.
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