
IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 1

Kvasir: Scalable Provision of Semantically
Relevant Web Content on Big Data Framework

Liang Wang1, Sotiris Tasoulis2, Teemu Roos3, and Jussi Kangasharju3

University of Cambridge, UK1 Liverpool John Moores University, UK2 University of Helsinki, Finland3

Abstract—The Internet is overloading its users with excessive information flows, so that effective content-based filtering becomes
crucial in improving user experience and work efficiency. Latent semantic analysis has long been demonstrated as a promising
information retrieval technique to search for relevant articles from large text corpora. We build Kvasir, a semantic recommendation
system, on top of latent semantic analysis and other state-of-the-art technologies to seamlessly integrate an automated and proactive
content provision service into web browsing. We utilize the processing power of Apache Spark to scale up Kvasir into a practical
Internet service. In addition, we improve the classic randomized partition tree to support efficient indexing and searching of millions of
documents. Herein we present the architectural design of Kvasir, the core algorithms, along with our solutions to the technical
challenges in the actual system implementation.

Index Terms—Web application, information retrieval, semantic search, random projection, machine learning, Apache Spark.

F

1 INTRODUCTION

Currently, the Internet is overloading its users with
excessive information flows. Therefore, smart content provi-
sion and recommendation become more and more crucial in
improving user experience and efficiency in using Internet
applications. For a typical example, many users are most
likely to read several articles on the same topic while surfing
on the Web. Hence many news websites (e.g., The New
York Times, BBC News and Yahoo News) usually group
similar articles together and provide them on the same
page so that the users can avoid launching another search
for the topic. However, most such services are constrained
within a single domain, and cross-domain content provision
is usually achieved by manually linking to the relevant
articles on different sites. Meanwhile, companies like Google
and Microsoft take advantage of their search engines and
provide customizable keyword filters to aggregate related
articles across various domains for users to subscribe. How-
ever, to subscribe a topic, a user needs to manually extract
keywords from an article, then to switch between different
search services while browsing the web pages.

In general, seamless integration of intelligent content
provision into web browsing at user interface level remains
an open research question. No universally accepted optimal
design exists. Herein we propose Kvasir1, a system built on
top of latent semantic analysis (LSA).2 We show how Kvasir
can be integrated with the state-of-art technologies (e.g.,
Apache Spark, machine learning, etc.). Kvasir automatically
looks for the similar articles when a user is browsing a web
page and injects the search results in an easily accessible

1. Kvasir is the acronym for Knowledge ViA Semantic Information
Retrieval, it is also the name of a Scandinavian god in Norse mythology
who travels around the world to teach and spread knowledge and is
considered extremely wise.

2. We have introduced the basic Kvasir system framework in [51]
and demonstrated its seamless integration into web browsing in World
Wide Web Conference (WWW’15) in May, 2015.

panel within the browser view for seamless integration.
The ranking of results is based on the cosine similarity in

LSA space, which was proposed as an effective information
retrieval technique almost two decades ago [5]. Despite
some successful applications in early information systems,
two technical challenges practically prevent LSA from be-
coming a scalable Internet service. First, LSA relies on large
matrix multiplications and singular value decomposition
(SVD), which become notoriously time and memory con-
suming when the document corpus is huge. Second, LSA is
a vector space model, and fast search in high dimensional
spaces tends to become a bottle-neck in practice.

We must emphasize that Kvasir is not meant to replace
the conventional web search engines, recommender sys-
tems, or other existing technologies discussed in Section
2. Instead, Kvasir represents another potential solution to
enhance user experience in future Internet applications. In
this paper, by presenting the architectural components, we
show how we tackle the scalability challenges confronting
Kvasir in building and indexing high dimensional lan-
guage database. To address the challenge in constructing
the database, we adopt a rank-revealing algorithm for di-
mension reduction before the actual SVD. To address the
challenge in high dimensional search, we utilize approxi-
mate nearest neighbour search to trade off accuracy for effi-
ciency. The corresponding indexing algorithm is optimized
for parallel implementation.

In general, this paper focuses on the system scalability
perspective when utilizing big data frameworks to scale
up Internet services, and we present our solutions to the
technical challenges in building up Kvasir. Specifically, our
contributions are:

1) We present the architecture of Kvasir, which is able
to seamlessly integrate LSA-based content provision
in web browsing by using state-of-art technologies.

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 2

2) We implement the first stochastic SVD on Apache
Spark, which can efficiently build LSA-based lan-
guage models on large text corpora.

3) We propose a parallel version of the randomized
partition tree algorithm which provides fast index-
ing in high dimensional vector spaces using Apache
Spark.3

4) We present various technical solutions in order to
address the scalability challenges in building Kvasir
into a practical Internet service, such as caching,
parallel indexing and reducing index size.

The paper is structured as follows: Section 2 gives a
brief overview over the various topics covered in this paper.
Section 3 presents the architecture of Kvasir. In Section 4, we
illustrate the algorithms of the core components in details.
Section 5 presents our evaluation results. Finally, Section 6
and 7 extend the discussion then conclude the paper.

2 BACKGROUND AND RELATED WORK

Inside Kvasir, the design covers a wide range of different
topics, each topic has numerous related work. In the follow-
ing, we constrain the discussion only on the core techniques
used in the system design and implementation. Due to the
space limit, we cannot list all related work, we recommend
using the references mentioned in this section as a starting
point for further reading.

2.1 Intelligent Content Provision
Our daily life heavily relies on recommendations, intelligent
content provision aims to match a user’s profile of interests
to the best candidates in a large repository of options [43].
There are several parallel efforts in integrating intelligent
content provision and recommendation in web browsing.
They differentiate between each other by the main technique
used to achieve the goal.

The initial effort relies on the semantic web stack pro-
posed in [4], which requires adding explicit ontology infor-
mation to all web pages so that ontology-based applications
(e.g., Piggy bank [28]) can utilize ontology reasoning to
interconnect content semantically. Though semantic web
has a well-defined architecture, it suffers from the fact that
most web pages are unstructured or semi-structured HTML
files, and content providers lack of motivation to adopt this
technology to their websites. Therefore, even though the
relevant research still remains active in academia, the actual
progress of adopting ontology-based methods in real-life
applications has stalled in these years.

Collaborative Filtering (CF) [9], [33], which was first
coined in Tapestry [22], is a thriving research area and also
the second alternative solution. Recommenders built on top
of CF exploit the similarities in users’ rankings to predict
one user’s preference on a specific content. CF attracts
more research interest these years due to the popularity of
online shopping (e.g., Amazon, eBay, Taobao, etc.) and video
services (e.g., YouTube, Vimeo, Dailymotion, etc.). However,

3. The source code of the key components in Kvasir are publicly
accessible and hosted on Github. We will release all the Kvasir code
after the paper is accepted.

recommender systems need user behavior rather than con-
tent itself as explicit input to bootstrap the service, and is
usually constrained within a single domain. Cross-domain
recommenders [15], [34] have made progress lately, but the
complexity and scalability need further investigation.

Search engines can be considered as the third alternative
though a user needs explicitly extract the keywords from
the page then launch another search. The ranking of the
search results is based on multiple ranking signals such as
link analysis on the underlying graph structure of inter-
connected pages (e.g., PageRank [41] and HITS [32]). Such
graph-based link analysis is based on the assumption that
those web pages of related topics tend to link to each other,
and the importance of a page often positively correlates to
its degree. The indexing process is modelled as a random
walk atop of the graph derived from the linked pages and
needs to be pre-compiled offline.

As the fourth alternative, Kvasir takes another route
by utilizing information retrieval (IR) technique [20], [36].
Kvasir belongs to the content-based filtering and empha-
sizes the semantics contained in the unstructured web text.
In general, a text corpus is transformed to the suitable rep-
resentation depending on the specific mathematical models
(e.g., set-theoretic, algebraic, or probabilistic models), based
on which a numeric score is calculated for ranking. Different
from the previous CF and link analysis, the underlying
assumption of IR is that the text (or information in a broader
sense) contained in a document can very well indicate its
(latent) topics. The relatedness of any two given documents
can be calculated with a well-defined metric function atop
of these topics. Since topics can have a direct connection
to context, context awareness therefore becomes the most
significant advantage in IR, which has been integrated into
Hummingbird – Google’s new search algorithm.

Despite of the different assumptions and mechanisms,
aforementioned techniques are not mutually exclusive, and
there is no dominant technique regarding intelligent content
provision in general [7], [11]. Intelligence depends on a
specific context and can be achieved by combining multiple
other techniques such as behavioural analysis. [1], [7] pro-
vide a broad survey and thorough comparisons of different
technologies adopted in various recommender systems.

2.2 Topic Models and Nearest Neighbour Search
Topic modelling [2], [5], [6], [19], [27] is a popular ma-
chine learning technology that utilizes statistical models to
discover the abstract topics in a collection of documents.
Topic models are widely used in many domains such as text
mining, network analysis, genetics and etc. In this paper, we
constrain our discussion in Vector Space Model (VSM) due
to both space limit and the fact that Kvasir is built atop of
VSM. The initial idea of using linear algebraic technique to
derive latent topic model was proposed in Latent Semantic
Analysis, i.e., LSA [5], [19]. As the core operation of LSA,
SVD is a well-established subject and has been intensively
studied over three decades. Recent efforts have been fo-
cusing on efficient incremental updates to accommodate
dynamic data streams [8] and scalable algorithms to process
huge matrices.

Probabilistic LSA (pLSA) [27] relates to non-negative ma-
trix factorization (NMF), it explicitly models topics as latent

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 3

variables based on the co-occurrences of terms and docu-
ments in a text corpus. Comparing to LSA that minimises
the L2 norm (a.k.a Frobenius norm) of an objective function,
pLSA relies on its likelihood function to learn the model
parameters by minimizing of the cross entropy (or Kullback-
Leibler divergence) between the empirical distribution and
the model using Expectation Maximization (EM) algorithm.
Projecting a query to a low dimensional space often re-
quires several iterations of EM algorithm in pLSA, which
in general is much slower than a simple matrix and vector
multiplication in LSA. Latent Dirichlet Allocation (LDA) [6]
is a generative model for topic modelling. LDA is similar
to pLSA but replaces maximum likelihood estimator with
Bayesian estimator, hence it is sometimes referred to as the
Bayesian version of pLSA. Namely, LDA assumes that the
topic distribution has a Dirichlet prior. All three aforemen-
tioned VSM are related to some extent but are different in
actual implementations, which one can generate the best
topic model still remains as an open question in academia.
In Kvasir, we choose to extend the basic LSA because of its
simplicity, good performance, and ease to parallelize.

Efficient nearest neighbour search in high dimensional
spaces has attracted a lot of attention in machine learning
community. There is a huge body of literature on this
subject which can be categorized as graph-based [23], [49],
hashing-based [26], [48], [52], and partition tree-based so-
lutions [16], [31], [38], [46]. The graph-based algorithms
construct a graph structure by connecting a point to its
nearest neighbours in a data set. These algorithms suffer
from the time-consuming construction phase. As the best
known hashing-based solution, locality-sensitive hashing
(LSH) [3], [35] uses a large number of hash functions with
the property that the hashes of nearby points are also close
to each other with high probability. The performance of a
hashing-based algorithm highly depends on the quality of
the hashing functions, and it is usually outperformed by
partition tree-based methods in practice [38]. In particular
the Randomized Partition tree (RP-tree) [16] method have
been shown to be very successful in practice regarding
its good scalability [18], while it was also recently shown
[17] that its probability to fail is bounded when the data
are documents from a topic model. RP-tree was initially
introduced as an improvement over the k-d tree method
that is more appropriate for use in high dimensional spaces,
drawing inspiration from LSH [35]. In this work, inspired by
a recent application of the random projection method [47],
we take advantage of the simplicity of the RP-tree method
to further develop its parallel version.

2.3 Popular Software Toolkits

There are abundant software toolkits with different empha-
sises on machine learning and natural language processing.
We only list the most relevant ones like WEKA [25], scikit-
learn [45], FLANN [39], Gensim [42], and ScalaNLP [44].

Both WEKA and scikit-learn include many general-
purpose algorithms for data mining and analysis, but the
toolkits are only suitable for small and medium problems.
Gensim and ScalaNLP have a clear focus on language mod-
els. ScalaNLP’s linear algebra library (Breeze) is not yet ma-
ture enough, which limits its scalability. On the other hand,

Gensim scales well on large corpora using a single machine,
but fails to provide efficient indexing and searching. Though
FLANN provides fast nearest neighbour search, it requires
loading the full data set in to memory therefore severely
limits the problem size [30]. None of the aforementioned
toolkits provides a horizontally scalable solution on big data
frameworks. However, horizontal scalability promised by
major frameworks plays a key role in achieving Internet-
scale services. The default machine learning library MLlib
in Apache Spark misses the stochastic SVD and effective
indexing algorithms [54]. Generally speaking, an effective
and efficient content-based recommender system needs to
be explicitly designed, tailored, and optimized according
to the specific application scenario. Despite of many off-
the-shelf software toolkits, very few (if not none) practical
systems were built directly atop of a general purpose ma-
chine learning package, because most toolkits are plagued
with severe performance and scalability issues when they
are used in a web service. Especially for large-scale LSA
applications, based on our knowledge, Kvasir made the
very first attempt and contribution in demonstrating the
feasibility of scaling up a complex IR technique to Internet
scale by exploiting the power of big data frameworks [51].
Comparing to Kvasir, other similar services we can find on
the Internet such as www.similarsites.com and Google Similar
Pages work only at domain level instead of page level to
avoid scalability issues from high computation complexity.

3 KVASIR ARCHITECTURE

At the core, Kvasir implements an LSA-based index and
search service, and its architecture can be divided into
two subsystems as frontend and backend. Figure 1 illustrates
the general workflow and internal design of the system.
The frontend is currently implemented as a lightweight
extension in Chrome browser. The browser extension only
sends the page URL back to the KServer whenever a new
tab/window is created. The KServer running at the backend
retrieves the content of the given URL then responds with
the most relevant documents in a database. The results are
formatted into JSON strings. The extension presents the
results in a friendly way on the page being browsed. From
user perspective, a user only interacts with the frontend by
checking the list of recommendations that may interest him.

To connect to the frontend, the backend exposes one
simple RESTful API as below, which gives great flexibility to
all possible frontend implementations. By loosely coupling
with the backend, it becomes easy to mash-up new services
on top of Kvasir. Line 1 and 2 give an example request
to Kvasir service. type=0 indicates that info contains a
URL, otherwise info contains a piece of text if type=1.
Line 4-9 present an example response from the server, which
contains the metainfo of a list of similar articles. Note that
the frontend can refine or rearrange the results based on the
metainfo (e.g., similarity or timestamp).

1 POST
2 https://api.kvasir/query?type=0&info=url
3

4 {"results": [
5 {"title": document title,
6 "similarity": similarity metric,

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 4

CrawlerCrawlerCrawlerCrawler

Cleaner

DLSA

PANNS

High-Dim
vector DB

2

3

4

Clean the raw text, remove html tags,
tokenization and etc. Then
build a dictionary and TF-IDF model.

Take the TF-IDF model as input,
build LSA model using stochastic
singular value decomposition.

Build a binary tree index for the LSA
vector space using parallel random
projection to speed up searching.

1

KServerKServerKServerKServer

5

KServer accepts users’
requests, returns a list
of similar documents
with meta information.

1 Visit http://wiki/dinosaur

2 Send the link back to KServer with
RESTful API https://api.kvasir/query...

Keeps crawling the high-quality
documents from the Internet.

B
ac

ke
nd

Fr
on

te
nd

3 Inject the results on the same page in the browser

REST
API

Fig. 1: Kvasir architecture – there are five major components in the backend system, and they are numbered based on their
order in the workflow. Frontend is implemented in a Chrome browser, and connects the backend with a simple RESTful
API. A screen shot of the user interface of the frontend is also presented at the bottom right of the figure.

7 "page_url": link to the document,
8 "timestamp": document create date}
9]}

The backend system implements indexing and searching
functionality which consist of five components: Crawler,
Cleaner, DLSA, PANNS and KServer. Three components
(i.e., Cleaner, DLSA and PANNS) are wrapped into one
library since all are implemented on top of Apache Spark.
The library covers three phases as text cleaning, database
building, and indexing. We briefly present the main tasks in
each component as below.

Crawler collects raw documents from the Web then com-
piles them into two data sets. One is the English Wikipedia
dump, and another is compiled from over 300 news feeds of
the high-quality content providers such as BBC, Guardian,
Times, Yahoo News, MSNBC, and etc. Table 1 summarizes
the basic statistics of the data sets. Multiple instances of
the Crawler run in parallel on different machines. Simple
fault-tolerant mechanisms like periodical backup have been
implemented to improve the robustness of crawling process.
In addition to the text body, the Crawler also records the
timestamp, URL and title of the retrieved news as metainfo,
which can be further utilized to refine the search results.

Cleaner cleans the unstructured text corpus and converts
the corpus into term frequency-inverse document frequency
(TF-IDF) model. In the preprocessing phase, we clean the
text by removing HTML tags and stopwords, deaccenting,
tokenization, etc. The dictionary refers to the vocabulary of
a language model, its quality directly impacts the model
performance. To build the dictionary, we exclude both ex-
tremely rare and extremely common terms, and keep 105

most popular ones as features. More precisely, a term is
considered as rare if it appears in less than 20 documents,
while a term is considered as common if it appears in more
than 40% of documents.

DLSA builds up an LSA-based model from the previ-
ously constructed TF-IDF model. Technically, the TF-IDF
itself is already a vector space language model. The reason
we seldom use TF-IDF directly is because the model con-
tains too much noise and the dimensionality is too high to
process efficiently even on a modern computer. To convert
a TF-IDF to an LSA model, DLSA’s algebraic operations
involve large matrix multiplications and time-consuming
SVD. We initially tried to use MLib to implement DLSA.
However, MLlib is unable to perform SVD on a data set of
105 features with limited RAM, we have to implement our
own stochastic SVD on Apache Spark using rank-revealing
technique. Section 4.1 discusses DLSA in details.

PANNS4 builds the search index to enable fast k-NN
search in high dimensional LSA vector spaces. Though
dimensionality has been significantly reduced from TF-IDF
(105 features) to LSA (103 features), k-NN search in a 103-
dimension space is still a great challenge especially when we
try to provide responsive services. Naive linear search using
one CPU takes over 6 seconds to finish in a database of 4
million entries, which is unacceptably long for any realistic
services. PANNS implements a parallel RP-tree algorithm
which makes a reasonable tradeoff between accuracy and
efficiency. PANNS is the core component in the backend
system and Section 4.2 presents its algorithm in details.

KServer runs within a web server, processes the users re-
quests and replies with a list of similar documents. KServer
uses the index built by PANNS to perform fast search in
the database. The ranking of the search results is based
on the cosine similarity metric. A key performance metric
for KServer is the service time. We wrapped KServer into a

4. PANNS is becoming a popular choice of Python-based approxi-
mate k-NN library for application developers. According to the PyPI’s
statistics, PANNS has achieved over 27,000 downloads since it was first
published in October 2014. The source code is hosted on the Github at
https://github.com/ryanrhymes/panns .

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 5

Data set # of entries Raw text size Article length
Wikipedia 3.9⇥ 106 47.0 GB Avg. 782 words
News 4.6⇥ 105 1.62 GB Avg. 648 words

TABLE 1: Two data sets are used in the evaluation.
Wikipedia represents relatively static knowledge, while
News represents constantly changing dynamic knowledge.

Docker5 image and deployed multiple KServer instances on
different machines to achieve better performance. We also
implemented a simple round-robin mechanism to balance
the request loads among the multiple KServers.

Kvasir architecture provides a great potential and flex-
ibility for developers to build various interesting appli-
cations on different devices, e.g., semantic search engine,
intelligent Twitter bots, context-aware content provision,
and etc.6

4 CORE ALGORITHMS

DLSA and PANNS are the two core components respon-
sible for building language models and indexing the high
dimensional data sets in Kvasir. In the following, we first
sketch out the key ideas in DLSA. Then we focus on the
mechanisms of PANNS and present in details how we
extend the classic RP-tree algorithm to improve the indexing
and querying efficiency. The code of the key components
in Kvasir are publicly accessible on Github, those who
have interest can either read the code to further study the
algorithmic details [50] or refer to our technical report [29].

4.1 Distributed Stochastic SVD
The vector space model belongs to algebraic language mod-
els, where each document is represented with a row vector.
Each element in the vector represents the weight of a term
in the dictionary calculated in a specific way. E.g., it can be
simply calculated as the frequency of a term in a document,
or slightly more complicated TF-IDF. The length of the vec-
tor is determined by the size of the dictionary (i.e., number
of features). A text corpus containing m documents and a
dictionary of n terms will be converted to an A = m⇥n row-
based matrix. Informally, we say that A grows taller if the
number of documents (i.e., m) increases, and grows fatter if
we add more terms (i.e., n) in the dictionary. LSA utilizes
SVD to reduce n by only keeping a small number of linear
combinations of the original features. To perform SVD, we
need to calculate the covariance matrix C = A

T ⇥A, which
is a n⇥ n matrix and is usually much smaller than A.

We can easily parallelize the calculation of C by dividing
A into k smaller chunks of size [m

k

] ⇥ n, so that the final
result can be obtained by aggregating the partial results as
C = A

T ⇥ A =
P

k

i=1 A
T

i

⇥ A

i

. However, a more serious
problem is posed by the large number of columns, i.e., n.
The SVD function in MLlib is only able to handle tall and
thin matrices up to some hundreds of features. For most of

5. Docker is a virtualization technology which utilizes Linux con-
tainer to provide system-level isolation. Docker is an open source
project and its webiste is https://www.docker.com/

6. We provide the live demo videos of the seamless integration
of Kvasir into web browsing at the official website. The link is
http://www.cs.helsinki.fi/u/lxwang/kvasir/#demo

the language models, there are often hundreds of thousands
features (e.g., 105 in our case). The covariance matrix C

becomes too big to fit into the physical memory, hence the
native SVD operation in MLlib of Spark fails as the first
subfigure of Figure 2 shows.

In linear algebra, a matrix can be approximated by
another matrix of lower rank while still retaining approx-
imately properties of the matrix that are important for
the problem at hand. In other words, we can use another
thinner matrix B to approximate the original fat A. The
corresponding technique is referred to as rank-revealing QR
estimation [24]. A TF-IDF model having 105 features often
contains a lot of redundant information. Therefore, we can
effectively thin the matrix A then fit C into the memory.
Figure 2 illustrates the algorithmic logic in DLSA, which is
essentially a distributed stochastic SVD implementation.

4.2 Parallel Randomized Partition Tree
With an LSA model at hand, finding the most relevant
document is equivalent to finding the nearest neighbours
for a given point in the derived vector space, which is
often referred to as k-NN problem. The distance is usu-
ally measured with the cosine similarity of two vectors.
However, neither naive linear search nor conventional k-d
tree is capable of performing efficient search in such high
dimensional space even though the dimensionality has been
significantly reduced from 105 to 103 by LSA.

Nonetheless, we need not locate the exact nearest neigh-
bours in practice. In most cases, slight numerical error
(reflected in the language context) is not noticeable at all, i.e.,
the returned documents still look relevant from the user’s
perspective. By sacrificing some accuracy, we can obtain a
significant gain in searching speed.

The general idea of RP-tree algorithm used here is clus-
tering the points by partitioning the space into smaller sub-
spaces recursively. Technically, this can be achieved by any
tree-based algorithms. Given a tree built from a database,
we answer a nearest neighbour query q in an efficient way,
by moving q down the tree to its appropriate leaf cell, and
then return the nearest neighbour in that cell. However in
several cases q’s nearest neighbour may well lie within a
different cell.

Figure 3 gives a naive example on a 2-dimension vector
space. First, a random vector x is drawn and all the points
are projected onto x. Then we divide the whole space into
half at the mean value of all projections (i.e., the blue circle
on x) to reduce the problem size. For each new subspace,
we draw another random vector for projection, and this
process continues recursively until the number of points in
the space reaches the predefined threshold on cluster size.
We can construct a binary tree to facilitate the search. As
we can see in the first subfigure of Figure 3, though the
projections of A, B, and C seem close to each other on x,
C is actually quite distant from A and B. However, it has
been shown that such misclassifications become arbitrarily
rare as the iterative procedure continues by drawing more
random vectors and performing corresponding splits. More
precisely, in [16] the authors show that under the assump-
tion of some intrinsic dimensionality of a subcluster (i.e.,
nodes of a tree structure), its descendant clusters will have

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 6

A

AT

B

BT

C
C

B

1 Covariance matrix C is too big to fit
into memory. So in-mem SVD fails.

2 Rank-revealing reduces
the dimensionality of A.

3 Thinner matrix B approximates
A so that C can fit into memory.

Fig. 2: DLSA uses rank-revealing to effectively reduce dimensionality to perform in-memory SVD. By converting the fat
matrix A to the thinner matrix B, we can effectively reduce the size of the covariance matrix C . At the same time, the
smaller matrix B remains as a good estimate of A.

a much smaller diameter, hence can include the points that
are expected to be more similar to each other. Herein the
diameter is defined as the distance between the furthest pair
of data points in a cell. Such an example is given in Figure
3, where y successfully separates C from A and B.

Another kind of misclassification is that two nearby
points are unluckily divided into different subspaces, e.g.,
points B and D in the left panel of Figure 3. To get around
this issue, the authors in [35] proposed a tree structure
(i.e., spill tree) where each data point is stored in multiple
leaves, by following overlapping splits. Although the query
time remains essentially the same, the required space is
significantly increased. In this work we choose to improve
the accuracy by building multiple RP-trees. We expect that
the randomness in tree construction will introduce extra
variability in the neighbours that are returned by several RP-
trees for a given query point. This can be taken as an advan-
tage in order to mitigate the second kind of misclassification
while searching for the nearest neighbours of a query point
in the combined search set. However, in this case one would
need to store a large number of random vectors at every
node of the tree, introducing significant storage overhead
as well. For a corpus of 4 million documents, if we use 105

random vectors (i.e., a cluster size of 20), and each vector
is a 103-dimension real vector (32-bit float number), the
induced storage overhead is about 381.5 MB for each RP-
tree. Therefore, such a solution leads to a huge index of
47.7 GB given 128 RP-trees are included, or 95.4 GB given
256 RP-trees.

The huge index size not only consumes a significant
amount of storage resources, but also prevents the system
from scaling up after more and more documents are col-
lected. One possible solution to reduce the index size is
reusing the random vectors. Namely, we can generate a
pool of random vectors once, then randomly choose one
from the pool each time when one is needed. However, the
immediate challenge emerges when we try to parallelize
the tree building on multiple nodes, because we need to
broadcast the pool of vectors onto every node, which causes
significant network traffic.

To address this challenge, we propose to use a pseudo
random seed in building and storing search index. Instead

of maintaining a pool of random vectors, we just need a
random seed for each RP-tree. The computation node can
build all the random vectors on the fly from the given
seed. From the model building perspective, we can easily
broadcast several random seeds with negligible traffic over-
head instead of a large matrix in the network, therefore
we improve the computation efficiency. From the storage
perspective, we only need to store one 4-byte random seed
for each RP-tree. In such a way, we are able to successfully
reduce the storage overhead from 47.7 GB to 512 B for a
search index consisting of 128 RP-trees (with cluster size
20), or from 95.4 GB to only 1 KB if 256 RP-trees are used.

4.3 Using More Trees with Small Clusters
A RP-tree helps us to locate a cluster which is likely
to contain some of the k nearest neighbours for a given
query point. Within the cluster, a linear search is performed
to identify the best candidates. Regarding the design of
PANNS, we have two design options in order to improve the
searching accuracy. Namely, given the size of the aggregated
cluster which is taken as the union of all the target clusters
from every tree, we can

1) either use less trees with larger leaf clusters,
2) or use more trees with smaller leaf clusters.

We expect that when using more trees the probability of
a query point to fall very close to a splitting hyperplane
should be reduced, thus it should be less likely for its
nearest neighbours to lie in a different cluster. By reducing
such misclassifications, the searching accuracy is supposed
to be improved. Based on our knowledge, although there
are no previous theoretical results that may justify such a
hypothesis in the field of nearest neighbour search algo-
rithms, this concept could be considered as a combination
strategy similar to those appeared in ensemble clustering,
a very well established field of research [40]. Similar to
our case, ensemble clustering algorithms improve clustering
solutions by fusing information from several data partitions.
In our further study on this particular part of the proposed
system we intend to extend the probabilistic schemes de-
veloped in [17] in an attempt to discover the underlying
theoretical properties suggested by our empirical findings.

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 7

+
+

+

A
B

C

+
+

+

A
B

C

mean value

mean value +
+A

B

mean value

D

Fig. 3: We can continuously project the points on random vectors and use mean value to divide the space for clustering.

In particular, we intend to similarly provide theoretical
bounds for failure probability and show that such failures
can be reduced by using more RP-trees.

To experimentally investigate this hypothesis we employ
a subset of the Wikipedia database for further analysis. In
what follows, the data set contains 500, 000 points and we
always search for the 50 nearest neighbours of a query point.
Then we measure the searching accuracy by calculating the
amount of actual nearest neighbours found.

We query 1, 000 points in each experiment. The results
presented in Figure 4 correspond to the mean values of the
aggregated nearest neighbours of the 1, 000 query points
discovered by PANNS out of 100 experiment runs. Note that
x-axis represents the ”size of search space” which is defined
by the number of unique points within the union of all the
leaf clusters that the query point fall in. Therefore, given the
same search space size, using more tress indicates that the
leaf clusters become smaller.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Size of search space

N
u
m

b
e
r

o
f
N

N
 f
o
u
n
d

5 trees
10 trees
20 trees
50 trees
150 trees

Fig. 4: The number of true nearest neighbours found for
different number of trees. For a given search space size,
more trees lead to the better accuracy.

As we can see in Figure 4, for a given x value, the curves
move upwards as we use more and more trees, indicating
that the accuracy improves. As shown in the case of 50 trees,
almost 80% of the actual nearest neighbours are found by
performing a search over the 10% of the data set.

To further illustrate the benefits of using as many RP-
trees as possible, we present in Figure 5 the results where the
size of search space remains approximately constant while
the number of trees grows and subsequently the cluster size
shrinks accordingly. As shown, a larger number of trees
leads to the better accuracy. E.g., the accuracy is improved
about 62.5% by increasing the number of trees from 2 to 18.

0 5 10 15 20 25 30 35 40
1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

4

Number of trees

N
u

m
b

e
r

o
f
N

N
 f

o
u

n
d

Fig. 5: The number of true nearest neighbours found as a
function of the number of RP-trees used, while the search
space size remains approximately constant.

Finally in Figure 6 similar outcome is observed when
the average size of the leaf clusters remains approximately
constant and the number of trees increases. In these experi-
ments, we choose two specific cluster sizes for comparisons,
i.e., cluster size 77 and 787. Both are just average leaf cluster
sizes resulted from the termination criterion in the tree
construction procedure which pre-sets a maximum allowed
size of a leaf cluster (here 100 and 1000 respectively, selected
for illustration purposes as any other relative set up gives
similar results). In addition, we also draw a random subset
for any given size from the whole data set to serve as a
baseline. As we see, the accuracy of the random subset
has a linear improvement rate which is simply due to the
linear growth of its search space. As expected, the RP-tree
solutions are significantly better than the random subset,
and cluster size 77 consistently outperforms cluster size 787
especially when the search space is small.

Our empirical results clearly show the benefits of using
more trees instead of using larger clusters for improving
search accuracy. Moreover, regarding the searching perfor-
mance, since searching can be easily parallelized, using
more trees will not impact the searching time.

4.4 Getting Rid of Original Space

To select the best candidates from a cluster of points, we
need to use the coordinates in the original space to calculate
their relative distance to the query point. This however, first
increases the storage overhead since we need to keep the
original high dimensional data set which is usually huge;

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 8

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Size of search space

N
u

m
b

e
r

o
f

N
N

 f
o
u

n
d

query cl. size 77
query cl. size 787
random subset

Fig. 6: The number of true nearest neighbours found as a
function of the search space size, while the average leaf
cluster size remains approximately constant. The random
subset serves as the baseline for comparison.

second increases the query overhead since we need to access
such data set. The performance becomes more severely
degraded if the original data set is too big to load into
the physical memory. Moreover, computing the distance
between two points in the high dimensional space per se
is very time-consuming.

Nonetheless, our results show that it is possible to com-
pletely get rid of the original data set while keeping the
accuracy at a satisfying level. The underlying core idea is
to replace the original space with the projected one. By
so doing, we are able to achieve a significant reduction in
storage and non-trivial gains in searching performance.

PANNS supports both ”searching with original space” and
”searching without original space” modes. To illustrate how
PANNS searches for k-NN of a given query point x 2 Rn

without visiting the original space, we first introduce the
following notations. We let T

i

denote the i

th RP-tree in the
search index file. Recall that a search index file is a collection
of RP-trees. We then let C

i

denote the target cluster at a
leaf node of T

i

which might contain the k-NN of x (or just
part of them). Instead of storing the actual vector values
of the original data points, each cluster C

i

stores only the
tuples of indices and projected values of the data points.
I.e., C

i

= {(j, y
i,j

)|i, j 2 N, y
i,j

2 R} wherein j is the index
of a data point in the data set and y

i,j

is its projected value
in C

i

. PANNS performs the following steps in order to find
the approximate k-NN of x.

Step 1 For each RP-tree T

i

in the index file, locate the
target cluster C

i

using the standard RP-tree algo-
rithm. We then project the query point x 2 Rn

into the same space as those points in C

i

, i.e.
x

0
i

2 R.
Step 2 For each C

i

, make another set D
i

which contains
the relative projected distances. Namely, the rel-
ative distance between x

0
i

and each point y
i,j

in
C

i

in the projected space. More precisely,

D

i

= {(j, d
i,j

)|d
i,j

= |y
i,j

� x

0
i

|, 8(j, y
i,j

) 2 C

i

}.
(1)

Step 3 Merge all the sets D

i

into D and utilize the
frequency information of each point to calculate

its weighted distance. Namely,

D = {(j, d
j

)|d
j

=

P
8Di

d

i,jP
8Di

I(j,D
i

)
, 8(j, ·) 2

[

8Di

D

i

}.

(2)

I(j,D
i

) is the identity function which returns 1
iff there is some (j, ·) 2 D

i

, otherwise returns 0.
Step 4 Sort the tuples in set D according to their

weighted distances d
j

in a non-decreasing order,
then return the first k elements as the result of
x’s approximate k-NN.

As shown above, the core operations of PANNS are in
the Step 2 and Step 3 which first calculate the relative pro-
jected distance between the query point and each potential
candidates in the projected space, then weigh the distances
based on the frequency in the target clusters. In fact, the
weighting scheme in Step 3 simply calculates the average of
the relative distance of every given point, hence we refer to
it as average weighting scheme in the following discussion for
convenience.

Although the average weighting scheme seem to present
a viable solution, our evaluations show that the effectiveness
of k-NN search is greatly affected by minor misclassification
errors making the particular task much more complex. For
example, given a query point x, even though the point y

is actually very far away from x in the original space, it is
still highly likely that y will be included in the final result
as long as y’s projected value appears to be very close to x

0
i

in just one of the RP-trees. To avoid such errors, we have to
consider that the probability of a point to be an actual k-NN
should increase accordingly if that point appears in several
target clusters C

i

.
We adopt another new weighting scheme called cubic

weighting scheme in PANNS implementation. As such in
the cubic weighting scheme, we empirically update the
calculation of the weighted distance as follows:

D = {(j, d
j

)|d
j

=

P
8Di

d

i,j

(
P

8Di
I(j,D

i

))3
, 8(j, ·) 2

[

8Di

D

i

}. (3)

By so doing, we give much more weight on the points
which have multiple occurrences in different C

i

by assum-
ing that such points are more likely to be the true k-NN.

To measure the effectiveness of the two weighting
schemes, we perform the following experiments wherein
only the projected space is used for searching for k-NN. The
experiment set-up remains the same as that has been pre-
sented in Section 4.3. The results are illustrated in Figure 7
which corresponds to using the cubic weighting scheme and
Figure 8 which corresponds to using the average weighting
scheme. Note that both figures use the same scale on y-
axis for the purpose of comparison. The dramatic effect of
the different weighting schemes is exposed by comparing
the results in both figures. The cubic weighting scheme has
more predictable behaviours and is much more superior
to the average weighting scheme regarding the searching
accuracy.

Interestingly, by comparing Figure 7 to Figure 4, we
notice that the accuracy does not improve as much as we

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 9

expected when the size of search space increases. More-
over, we can even observe a consistent decrease in all the
cases in Figure 8 despite of the increased search space. We
hypothesize that as the cluster size grows the amount of
points with multiple occurrences in different clusters grows
affecting the updated weighting distance. However, a more
thorough investigation is reserved for our future research in
order to gain a better understanding of such behaviours.

In general, the results of using cubic weighting scheme
confirm that it is feasible to use only the projected space in
the actual system implementation. Figure 7 shows that the
accuracy is already able to reach over 30% by using only 30
trees, and 50% by using 150 trees.

Furthermore, the results above also indicate that using
more trees with smaller clusters is arguably the more effec-
tive way (if it is not the only way) to improve the accuracy
than using larger clusters whenever only the projected space
is used. The reason is because enlarging search space does
not necessarily lead to any significant improvement in accu-
racy in such context.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Size of search space

N
u
m

b
e
r

o
f
N

N
 f
o
u
n
d

10 trees
20 trees
30 trees
50 trees
150 trees

Fig. 7: The number of true nearest neighbours found in the
projected space for different number of trees using the cubic
weighting scheme. Using more trees improves the accuracy,
but enlarging the search space by using larger clusters only
brings marginal benefits. Note that only the projected space
is used for searching for k-NN.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Size of search space

N
u

m
b

e
r

o
f

N
N

 f
o

u
n

d

10 trees
20 trees
30 trees
50 trees

Fig. 8: The number of true nearest neighbours found in
the projected space for different number of trees using
the original average weighting scheme. Neither using more
trees nor using larger clusters can improve the searching
accuracy. Note that only the projected space is used for
searching for k-NN.

4.5 Caching to Scale Up
Even though our indexing algorithm is able to significantly
reduce the index size, the index will eventually become
too big to fit into memory when the corpus grows from
millions to trillions of documents. One engineering solution
is using MMAP provided in operating systems which maps
the whole file from hard-disk to memory space without
actually loading it into the physical memory. The loading
is only triggered by a cache miss event due to accessing a
specific chunk of data which does not happen to be in the
memory. Loading and eviction are handled automatically by
the operating system.

With MMAP technology, we can effectively access large
data sets with limited memory. However, the performance
of using MMAP is subject to the data access pattern. E.g.,
search performance may degrade if the access pattern is
truly random on a huge index. In practice, this is highly
unlikely since the pattern of user requests follows a clear
Zipf-like distribution [10], [13] with strong temporal and
spatial locality [37]. In other words,

1) most users are interested in a relatively small
amount of popular articles;

2) most of the articles that an individual user is reading
at any given time are similar.

In vector-based language models, similar articles are clus-
tered together in a small part of the whole space. These
two observations imply that only a small part of the index
trees is frequently accessed at any given time, which leads
to the actual performance being much better than that of a
uniformly distributed access pattern.

5 PRELIMINARY EVALUATION

Because scalability is the main challenge confronting Kvasir,
the evaluation revolves around two questions as below.

1) How fast can we build a database from scratch using
the library we developed for Apache Spark?

2) How fast can the search function in Kvasir serve
users’ requests?

In the following, we present the results of our preliminary
evaluation.

The evaluation is performed on a small testbed of 10
Dell PowerEdge M610 nodes. Each node has 2 quad-core
CPUs, 32GB memory, and is connected to a 10-Gbit network.
All the nodes run Ubuntu SMP with a 3.2.0 Linux kernel.
ATLAS (Automatically Tuned Linear Algebra System) is
installed on all the nodes to support fast linear algebra
operations. Three nodes are used for running Crawlers, five
for running our Spark library, and the rest two for running
KServer to serve users’ requests as web servers. In this
paper, we only report the results on using Wikipedia data
set. News data set leads to consistently better performance
due to its smaller size.

5.1 Database Building Time
We evaluate the efficiency of the backend system using our
Apache Spark library, which includes text cleaning, model
building, and indexing the three phases. We first perform a

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 10

of CPUs Cleaner DLSA PANNS Total
1 1.32 20.23 13.99 35.54
5 0.29 6.14 2.86 9.29
10 0.19 4.22 1.44 5.85
15 0.17 3.14 0.98 4.29
20 0.16 2.61 0.77 3.54

TABLE 2: The time needed (in hours) for building an LSA-
based database from Wikipedia raw text corpus. The time
is decomposed to component-wise level. Search index uses
128 RP-trees with cluster size of 20 points.

sequential execution on a single CPU to obtain a baseline
benchmark. With only one CPU, it takes over 35 hours to
process the Wikipedia data set. Using 5 CPUs to parallelize
the computation, it takes about 9 hours which is almost
4 times improvement. From Table 2, we can see that the
total building speed is improved sublinearly. The reason
is because the overhead from I/O and network operations
eventually replace CPU overhead and become the main
bottleneck in the system.

By examining the time usage and checking the
component-wise overhead, DLSA contributes most of the
computation time while Cleaner contributes the least.
Cleaner’s tasks are easy to parallelize due to its straightfor-
ward structure, but there are only marginal improvements
after 10 CPUs since most of the time is spent in I/O
operations and job scheduling. For DLSA, the parallelizm
is achieved by dividing a tall matrix into smaller chunks
then distributing the computation on multiple nodes. The
partial calculations need to be exchanged among the nodes
to obtain the final result, and therefore the penalty of the
increased network traffic will eventually overrun the benefit
of parallelizm. Further investigation reveals that the percent
of time used in transmitting data increases from 10.5%
to 37.2% (from 5 CPUs to 20 CPUs). On the other hand,
indexing phase scales very well by using more computation
nodes because PANNS does not require exchanging too
much data among the nodes.

5.2 Accuracy and Scalability of Searching
Service time represents the amount of time needed to pro-
cess a request, which can also be used to calculate server
throughput. Throughput is arguably the most important
metric to measure the scalability of a service. We tested the
service time of KServer by using one of the two web servers
in the aforementioned testbed.

During normal operations, a KServer shall see a stream
of requests consisting of both URLs and pieces of text from
users, and the KServer shall be responsible for translating
them into corresponding vectors using the LSA model.
However, in our evaluation of the search scalability, content
fetching via a URL is completely unnecessary and brings no
insights at all in result analysis because the dominant factor
becomes network conditions rather than the quality of a
search algorithm. Therefore we let the client submit requests
directly in their vector format. The KServer only performs
the search operations using PANNS whenever a request
vector arrives. The request set is generated by randomly
selecting 5⇥ 105 entries from Wikipedia dataset.

We model the content popularity with a Zipf distribu-
tion, whose probability mass function is f(x) = 1

x

↵
Pn

i=1 i

�↵ ,

where x is the item index, n is the total number of items in
the database, and ↵ controls the skewness of the distribu-
tion. Smaller values of ↵ lead to more uniform distributions
while larger ↵ values assign more mass to elements with
small i. It has been empirically demonstrated that in real-
world data following a power-law distribution, the ↵ values
typically range between 0.9 and 1.0 [10], [12].

We plug in different ↵ to generate the request stream.
The next request is sent out as soon as the results of the
previous one is successfully received. Round trip time (RTT)
depends on network conditions and is irrelevant to the effi-
ciency of the backend, hence is excluded from total service
time. In the evaluations, we still access the original high
dimensional space in order to identify the true k-NN in the
last step of linear search. But it is worth noting that Kvasir
is able to work well by using only the projected space,
the improved scalability comes at the price of degraded
accuracy. Table 3 summarizes our results.

We also experiment with various index configurations
to understand how index impacts the server performance.
The index is configured with two parameters: the maximum
cluster size c and the number of search trees t. Note that
c determines how many random vectors we will draw for
each search tree, which further impacts the search precision.
The first row in Table 3 lists all the configurations. In
general, for a realistic ↵ = 0.9 and index (20, 256), the
throughput can reach 1052 requests per second (i.e., 1000

7.6 ⇥8)
on a node of 8 CPUs.

From Table 3, we can see that including more RP-trees
improves the search accuracy but also increases the index
size. Since we only store the random seed for all random
vectors which is practically negligible, the growth of index
size is mainly due to storing the tree structures. The time
overhead of searching also grows sublinearly with more
trees. However, since searching in different trees are inde-
pendent and can be easily parallelized, the performance can
be further improved by using more CPUs. Given a specific
index configuration, the service time increases as ↵ de-
creases, which attests our arguments in Section 4.5. Namely,
we can exploit the highly skewed popularity distribution
and utilize caching techniques to scale up the system.

As we mentioned, given a fixed number of trees, in-
creasing the cluster size is equivalent to reducing the num-
ber of random projections, and vice versa. We increase
the maximum cluster size from 20 to 80 and present the
results in the right half of Table 3. Though the intuition
is that the precision should deteriorate with less random
projections, we notice that the precision is improved instead
of degrading. The reason is two-fold: first, large cluster
size reduces the probability of misclassification for those
projections close to the split point. Second, since we perform
linear search within a cluster, larger cluster enables us to
explore more neighbours which leads to higher probability
to find the actual nearest ones. Nonetheless, also due to
the linear search in larger clusters, the gain in the accuracy
comes at the price of inflated searching time.

Nonetheless, given a fixed aggregated cluster size, we
can improve both searching performance and accuracy at
the same time by using a larger number of trees with
smaller cluster size. E.g., both index configurations (20, 64)
and (80, 16) lead to the similar aggregated cluster size after

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 11

(c, t) (20,16) (20,32) (20,64) (20,128) (20,256) (80,16) (80,32) (80,64) (80,128) (80,256)
Index (MB) 361 721 1445 2891 5782 258 519 1039 2078 4155

Precision (%) 68.5 75.2 84.7 89.4 94.9 71.3 83.6 91.2 95.6 99.2
↵1 = 1.0 ms 2.2 3.7 4.5 5.9 6.8 4.6 7.9 11.2 13.7 16.1
↵2 = 0.9 ms 3.4 4.3 6.0 6.8 7.6 7.2 9.5 14.9 15.3 17.1
↵3 = 0.8 ms 4.3 4.9 6.7 7.9 8.4 9.1 11.7 15.2 17.4 17.9
↵4 = 0.7 ms 5.5 6.3 7.4 8.5 9.3 11.6 13.4 16.1 17.7 18.5
↵5 = 0.6 ms 6.1 6.7 7.9 8.8 9.8 13.9 16.0 18.5 19.8 21.1
↵6 = 0.5 ms 6.7 7.3 8.2 9.0 10.3 16.6 17.8 19.9 20.4 23.1

TABLE 3: Scalability test on KServer with different index configurations and request patterns. (c, t) in the first row, c
represents the maximum cluster size, and t represents the number of RP-trees. Zipf-(↵, n) is used to model the content
popularity. The results confirm our analysis in Section 4.3 that using a larger number of trees of smaller clusters improves
both the searching performance and accuracy. E.g., compare (20, 64) to (80, 16), or compare (20, 128) to (80, 32).

taking the union of leaf clusters which is 20⇥64 = 80⇥16 =
1280. However, the configuration (20, 64) is more attractive
due to the following reasons. First, the accuracy of (20, 64) is
higher than that of (80, 16), i.e., 84.7% vs. 71.3%. Second, as
we mentioned, searching in different trees can be performed
in parallel, therefore using more trees will not degrade the
searching performance. Moreover, our experiments (in Sec-
tion 4.3) also show that using more trees in general renders
smaller aggregated cluster due to the increased overlapping
between the individual clusters, which further explains why
configuration (20, 64) is always faster than configuration
(80, 16). Similar results can also be observed by comparing
the following configuration pairs: (20, 128) to (80, 32), or
(20, 256) to (80, 64).

5.3 Scalability on Increasing Data Sets
To test the scalability of Kvasir, we use a much larger
data set from Yahoo company called L1 - Yahoo! N-Grams
(version 2.0) data set7, we refer to it as L1 data set for
short in the following discussion. L1 data set contains 14.6
million documents (126 million unique sentences, 3.4 billion
running words). The data set was crawled from over 12, 000
news-oriented sites over a period of 10 months between
February 2006 and December 2006. L1 data set does not
contain any raw HTML documents but only has n-gram
files (n = 1, 2, 3, 4, 5). This does not pose a problem in
evaluations since the text cleaning phase only has marginal
contribution to the total building time (please refer to Table
2). Moreover, we only use 1-gram file in our evaluation.

In order to gain an understanding on the performance
of Kvasir on larger data sets, we randomly select certain
number of documents from L1 data set to make a new
text corpus, and gradually increase the corpus size from
4 million to 14 million. Then we study the total building
time, query time, query accuracy respectively as a function
of increasing data size, as Figure 9 shows.

In Figure 9a, we can see that the total amount of building
time grows accordingly as the corpus size increases, and
the growth is basically linear with negligible variations.
Error bars in the figure show the variations in the building
time which are often caused by the stragglers [53] among
worker processes. In general, such variations depend on
both workload and traffic load in a cluster and are usually
small in most cases. Doubling the number of CPUs used in
index building (e.g., from 20 to 40) can significantly reduce

7. http://webscope.sandbox.yahoo.com/#datasets

(a) Data size (million entries)
4 6 8 10 12 14

To
ta

l b
ui

ld
in

g
tim

e
(h

ou
rs

)

0

2

4

6

8

10

12
20 CPUs
40 CPUs

(b) Data size (million entries)
4 6 8 10 12 14

Q
ue

ry
 ti

m
e

(m
s)

11

12

13

14 Search tree configuration: (20,256)
Content popularity skew: , = 0.5

(c) Data size (million entries)
4 6 8 10 12 14

Q
ue

ry
 a

cc
ur

ac
y

0.88

0.9

0.92

0.94

0.96

0.98
Search tree configuration: (20,256)

Fig. 9: Building time, query time, and accuracy as a function
of increased data size. As we can see, building time increases
linearly as data set grows, but using more CPUs decreases
the building time effectively. Increasing data set appears to
have marginal impacts on both query time and accuracy,
which indicates Kvasir’s scalability on large text corpora.

the total building time about 45%. Together with Table 2,
the results show that Kvasir has a very good horizontal
scalability over a resource pool.

In Figure 9b, we present the Whisker plot of query time
as a function of increasing corpus size. The average query
time is 11.2 ms for the smallest corpus size of 4 million doc-
uments, and this number increases to 12.7 ms for 14 million

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 12

documents. Even though the corpus size increases almost
three times, the actual query time only slightly increases
about 13.3% (i.e., 1.5 ms in its absolute value). To explain
such small degradation, first recall a search operation con-
sists of ”search in RP-trees” and ”search in aggregated leaf
clusters” two steps. The reason of the slow growth in query
time can be explained in two fold: First, the depth of a binary
search tree for 4 million documents is 17.6 levels while for
14 million documents it is 19.4 levels on average (given the
leaf cluster size is 20). Two more search levels only introduce
negligible overhead in practical searching time. Second,
when the original high dimensional space is accessed, the
linear search in the aggregated leaf clusters constitutes the
most time-consuming step in PANNS. However, since the
tree configuration remains the same (20, 256) throughout
the evaluations, namely a cluster size of 20 and 256 search
trees, the aggregated set will also remain roughly the same
size. Without accessing the original space, the linear search
in the last step can be skipped. In either case, the impact
on the searching time is marginal, which further shows the
capability of Kvair in handling large text corpora.

Figure 9c plots the impact of corpus size on the accuracy
of searching. Given a fixed search tree configuration (i.e.,
(20, 256) used as before), the search accuracy slightly de-
grades from 94.2% to 91.2% even though the documents in-
crease from 4 million to 14 million. In theory, increasing the
number of data points (or documents) in a unit high dimen-
sional ball leads to an increased density, which can further
increase the probability of misclassification as explained in
Section 4.2. However, since using both multiple projections
and multiple search trees can effectively ameliorate the neg-
ative effects of misclassification, the actual impact of a large
corpus becomes small, only 3% drop in search accuracy.
The degradation in search accuracy is much slower than
the increase in corpus size, which again indicates Kvasir’s
good scalability on large corpora. Moreover, using more
RP-trees can certainly improve the accuracy. Our further
investigation shows that using the RP-tree configuration
(20, 400) is able to bring the accuracy back to 95%.

Note that in this evaluation we are heavily constrained
by our available computational resources in the lab (refer to
Section 5). Larger data sets can certainly be handled when
more computation and storage resources are pooled in a
cluster. The preliminary results above already show that
Kvasir possesses good vertical and horizontal scalability.

5.4 Empirical Work on User Satisfaction
A full study of user experience is already out of the scope
of this paper due to our strong focus on architecture, data
structure and algorithm, therefore we only briefly share
some empirical results. In information retrieval, user satis-
faction is measured by Relevance metrics [14]. Human asses-
sors are required to manually label the relevant documents
in the search results for each given information need. With
the labelled data, multiple metrics are available to measure
the relevance, from the well-known precision and recall
to mean average precision, precision@k, R precision, and
etc. [36] Note that the classic metric recall is no longer
important for modern web scale IR systems because most
users only consume the results on first several pages. There-
fore, precision@k, which measures the percent of relevant

Query article from theguardian.com: The 2010 ’flash crash’: how it unfolded
Rank Page Title Source
#1 2010 Flash Crash Wikipedia
#2 High-frequency Trading Wikipedia
#3 Flash Crash, Could it happen again? CNN
#4 Stock market crash Wikipedia
#5 Algorithmic trading Wikipedia
#6 US options craft rules to fend off turmoil Thomson Reuters
#7 Are machines running exchanges CNN
#8 A dark magic: The rise of the robot traders BBC
#9 Market Structure: Perception Versus Reality Markets Media
#10 Volatility Time Horizon Contracts Markets Media

Query article from en.wikipedia.org: Merge sort
Rank Page Title Source
#1 Spreadsort Wikipedia
#2 Insertion sort Wikipedia
#3 Selection sort Wikipedia
#4 Funnelsort Wikipedia
#5 Quicksort Wikipedia
#6 Divide and conquer algorithms Wikipedia
#7 Bubble sort Wikipedia
#8 Sorting algorithms Wikipedia
#9 Best, worst and average case Wikipedia
#10 Linked list Wikipedia

TABLE 4: An illustration of Kvasir search results. The query
is a link to an Internet article with its page title and domain
specified on the first row of each table. Only page titles of
the top 10 returned results are presented due to space limit.

precision@k user #1 user #2 user #3 user #4 user #5
Average 0.9360 0.9260 0.9380 0.9560 0.9360
StdError 0.1005 0.0986 0.0805 0.0644 0.0663

TABLE 5: For each user (one column), the average and
standard error of precision@k of 50 queries are presented.
In total, 250 queries are performed and 2,500 articles are
manually assessed and labelled by five test users.

documents among the top k search results, becomes an
important measure especially for ranked results.

We performed a preliminary user experiment in the
Computer Lab at Cambridge University. Five users were
invited to participate, and each was asked to perform 50
queries via Kvasir. The user can decide what to query but
the query must be a link to an Internet article containing
meaningful content. Kvasir returns top 10 results, and the
user is required to manually check the content of every
result then mark it either {0: not relevant} or {1: relevant}.
Table 4 provides two example queries. The first one is a
news article from TheGuardian on a famous stock market
crisis in 2010. The first result links to a Wikipedia article
which has a full description of the crisis, the rest come
from various sources. The second example uses an article
on ”Merge sort” as query, and all the results are from
Wikipedia itself. In both cases, all the results have strong
relevance to the content of the query articles. Table 5 further
presents the values of precision@k in each user test. Kvasir
achieves promising results in all five user tests. On average,
Kvasir’s precision@k reached as high as 93.8%. We further
investigated on the results marked as ”non-relevant” by
users. It turned out that 107 out of 154 negatives were due
to the fact that a page was removed by the website so that
users could not access the content to evaluate. By excluding
such failure cases, the precision@k can increase to 98.0%.

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 13

6 DISCUSSIONS AND FUTURE WORK

Kvasir aims to provide a scalable platform of intelligent
content provision. It is by no means constrained by browser
frontends. In fact, many interesting applications can be
developed as frontends (e.g., mobile phone apps, enterprise
search engines, twitter bots, and etc.) thanks to Kvasir’s flex-
ible RESTful API and powerful backend. The recommended
content come from the data sets maintained by the backend.

We mainly focused on addressing the implementation
issues in the present paper, along with some empirical
evaluations and discussions on the performance, scalability,
and user satisfaction of Kvasir. It is worth noting that we
can improve the current design in many ways. E.g., new
content keeps flowing into Kvasir. However, we need not
necessarily to rebuild the LSA model and index from scratch
whenever new documents arrive. LSA space can be adjusted
on the fly for incremental updates [8]. Then, the trees are
updated by adding the new points to the corresponding leaf
cell. In fact, we are actively optimising Kvasir to integrate
aforementioned techniques to support dynamic data flows.

The results from KServer are ranked based on cosine
similarity at the moment. However, finer-grained and more
personalized re-ranking can be implemented by taking
users’ both long-term and short-term preferences into ac-
count. Such functionality can be achieved by extending one-
class SVM or utilizing other techniques like reinforcement
learning [21]. Kvasir provides a scalable Internet service
via a RESTful API. Content providers can integrate Kvasir
service on their website to enhance users’ experience by
automatically providing similar articles on the same page.
Besides, more optimizations can be done at frontend side
via caching and compression to reduce the traffic overhead.
Furthermore, a thorough measurement on user satisfaction
should be performed with the involvement of HCI experts
after a larger deployment of Kvasir.

Currently, Kvasir does not provide full-fledged security
and privacy support. For security, malicious users may
launch DDoS attacks by submitting a huge amount of ran-
dom requests quickly. Though limiting the request rate can
mitigate such attacks to some extent, DDoS attacks are diffi-
cult to defend against in general. For privacy, Kvasir needs
tracking a user’s browsing history to provide personalized
results. However, a user may not want to store such private
information on the server. Finer-grained policy is needed
to provide flexible privacy configurations. Security and pri-
vacy definitely deserve more thorough investigations in our
future work.

7 CONCLUSION

In this paper, we presented Kvasir which provides seam-
less integration of LSA-based content provision into web
browsing. To build Kvasir as a scalable Internet service,
we addressed various technical challenges in the system
implementation. Specifically, we proposed a parallel RP-
tree algorithm and implemented stochastic SVD on Spark
to tackle the scalability challenges in index building and
searching. The proposed solutions were evaluated on the
testbed and scaled well on multiple CPUs. The results
showed that Kvasir can easily achieve millisecond query
speed for a 14 million document repository thanks to its

novel design. Kvasir is an open-source project and is cur-
rently under active development. The key components of
Kvasir are implemented as an Apache Spark library, and all
the source code are publicly accessible on Github.

ACKNOWLEDGMENTS

This research was co-supported by the Academy of Finland
under ”The Finnish Centre of Excellence in Computational
Inference Research (COIN)”. We thank Nik Sultana, Richard
Mortier, and Jon Crowcroft for their valuable comments.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions. Knowledge and Data Engineering, IEEE Transactions on,
17(6):734–749, June 2005.

[2] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed
membership stochastic blockmodels. J. Mach. Learn. Res., 2008.

[3] A. Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. In Foundations
of Computer Science, 2006. 47th Annual IEEE Symposium on, 2006.

[4] T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web.
Scientific american, 284(5):28–37, 2001.

[5] M. Berry, S. Dumais, and G. O’Brien. Using linear algebra for
intelligent information retrieval. SIAM Review, 37(4):573–595, 1995.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
J. Mach. Learn. Res., 3:993–1022, Mar. 2003.

[7] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutirrez. Recom-
mender systems survey. Knowledge-Based Systems, 2013.

[8] M. Brand. Fast low-rank modifications of the thin singular value
decomposition. Linear Algebra and its Applications, 2006.

[9] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of
the 14th Conference on Uncertainty in Artificial Intelligence, 1998.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: evidence and implications. In
INFOCOM ’99, IEEE, volume 1, pages 126–134 vol.1, Mar 1999.

[11] R. Burke. Hybrid recommender systems: Survey and experiments.
User modeling and user-adapted interaction, 12(4):331–370, 2002.

[12] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I tube,
you tube, everybody tubes: Analyzing the world’s largest user
generated content video system. In ACM IMC’07, 2007.

[13] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. An-
alyzing the video popularity characteristics of large-scale user
generated content systems. IEEE/ACM Trans. Netw., 2009.

[14] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan,
S. Büttcher, and I. MacKinnon. Novelty and diversity in informa-
tion retrieval evaluation. In ACM SIGIR’08, 2008.

[15] P. Cremonesi, A. Tripodi, and R. Turrin. Cross-domain recom-
mender systems. In Data Mining Workshops (ICDMW), IEEE, 2011.

[16] S. Dasgupta and Y. Freund. Random projection trees and low
dimensional manifolds. In ACM Theory of Computing, 2008.

[17] S. Dasgupta and K. Sinha. Randomized partition trees for exact
nearest neighbor search. CoRR, abs/1302.1948, 2013.

[18] C. M. De Vries, L. De Vine, S. Geva, and R. Nayak. Parallel
streaming signature em-tree: A clustering algorithm for web scale
applications. In International Conference on World Wide Web, 2015.

[19] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman. Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6):391, 1990.

[20] W. B. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data
Structures and Algorithms. Prentice-Hall, Inc., USA, 1992.

[21] D. Glowacka, T. Ruotsalo, K. Konyushkova, K. Athukorala,
S. Kaski, and G. Jacucci. Scinet: A system for browsing scientific
literature through keyword manipulation. In ACM International
Conference on Intelligent User Interfaces Companion, 2013.

[22] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collabo-
rative filtering to weave an information tapestry. Commun. ACM,
35(12):61–70, Dec. 1992.

[23] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang. Fast ap-
proximate nearest-neighbor search with k-nearest neighbor graph.
In International Joint Conference on Artificial Intelligence, IJCAI’11,
pages 1312–1317. AAAI Press, 2011.

IEEE TRANSACTIONS ON BIG DATA, AUTHOR’S VERSION. 14

[24] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure
with randomness: Probabilistic algorithms for constructing ap-
proximate matrix decompositions. SIAM Rev., 2011.

[25] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten. The weka data mining software: An update. ACM
SIGKDD Explor. Newsl., 11(1):10–18, Nov. 2009.

[26] J. He, W. Liu, and S.-F. Chang. Scalable similarity search with
optimized kernel hashing. In ACM SIGKDD, 2010.

[27] T. Hofmann. Probabilistic latent semantic indexing. In ACM
SIGIR, pages 50–57, 1999.

[28] D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank: Experience
the semantic web inside your web browser. In Y. Gil, E. Motta,
V. Benjamins, and M. Musen, editors, The Semantic Web, 2005.

[29] V. Hyvönen, T. Pitkänen, S. Tasoulis, L. Wang, T. Roos, and
J. Corander. Technical report: Fast k-nn search. arXiv preprint
arXiv:1509.06957, 2015.

[30] H. Jegou, M. Douze, and C. Schmid. Product quantization for
nearest neighbor search. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 33(1):117–128, Jan 2011.

[31] Y. Jia, J. Wang, G. Zeng, H. Zha, and X.-S. Hua. Optimizing kd-
trees for scalable visual descriptor indexing. In IEEE Computer
Vision and Pattern Recognition (CVPR), pages 3392–3399, 2010.

[32] J. M. Kleinberg. Authoritative sources in a hyperlinked environ-
ment. J. ACM, 46(5):604–632, Sept. 1999.

[33] Y. Koren and R. Bell. Advances in collaborative filtering. In F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender
Systems Handbook, pages 145–186. Springer US, 2011.

[34] B. Li, Q. Yang, and X. Xue. Can movies and books collaborate?:
Cross-domain collaborative filtering for sparsity reduction. In
International Joint Conference on Artificial Intelligence, 2009.

[35] T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation of
practical approximate nearest neighbor algorithms. In Advances in
Neural Information Processing Systems, MIT Press, 2004.

[36] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction to
information retrieval, Cambridge University Press, 2008.

[37] L. Wang, S. Bayhan, J. Ott, J. Kangasharju, A. Sathiaseelan,
and J. Crowcroft. Pro-Diluvian: Understanding Scoped-Flooding
for Content Discovery in Information-Centric Networking. In
Information-Centric Networking (ICN’15), ACM, 9-18, 2015.

[38] M. Muja and D. Lowe. Scalable nearest neighbor algorithms for
high dimensional data. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 36(11):2227–2240, Nov 2014.

[39] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In International Conference on
Computer Vision Theory and Application, INSTICC Press, 2009.

[40] O. Okun, editor. Supervised and Unsupervised Ensemble Methods and
their Applications. Springer-Verlag Berlin, Germany, 2008.

[41] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Stanford Technical
Report, 1999.

[42] R. Rehurek and P. Sojka. Software framework for topic modelling
with large corpora. In LREC 2010 workshop New Challenges for NLP
Frameworks, 2010.

[43] P. Resnick and H. R. Varian. Recommender systems. Commun.
ACM, 40(3):56–58, Mar. 1997.

[44] Scalanlp, http://www.scalanlp.org/.
[45] scikit-learn toolkit, http://scikit-learn.org/.
[46] R. Sproull. Refinements to nearest-neighbor searching ink-

dimensional trees. Algorithmica, 6(1-6):579–589, 1991.
[47] S. Tasoulis, L. Cheng, N. Valimaki, N. J. Croucher, S. R. Harris,

W. P. Hanage, T. Roos, and J. Corander. Random projection
based clustering for population genomics. In IEEE International
Conference on Big Data, pages 675–682, 2014.

[48] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for
scalable image retrieval. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 3424–3431, June 2010.

[49] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li. Scalable k-nn
graph construction for visual descriptors. In IEEE Computer Vision
and Pattern Recognition (CVPR), pages 1106–1113, 2012.

[50] L. Wang. Kvasir project, http://cs.helsinki.fi/u/lxwang/kvasir.
[51] L. Wang, S. Tasoulis, T. Roos, and J. Kangasharju. Kvasir: Seamless

integration of latent semantic analysis-based content provision
into web browsing. In International Conference on World Wide Web
Companion, pages 251–254, 2015.

[52] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu. Complemen-
tary hashing for approximate nearest neighbor search. In IEEE
Computer Vision, pages 1631–1638, 2011.

[53] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting. In USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, 2012.

[54] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster computing with working sets. In USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, 2010.

Liang Wang is a research associate in the Com-
puter Laboratory at University of Cambridge,
United Kingdom. In 2003, he received his BEng
in Computer Science and Mathematics from
Tongji University, Shanghai, China. Later, he
received both his MSc and PhD degrees in
Computer Science from University of Helsinki,
Finland in 2011 and 2015 respectively. Liang’s
research interests include system and network
optimisation, information-centric networks, ma-
chine learning, and big data frameworks.

Sotiris Tasoulis received his diploma in Mathe-
matics and his MSc in Mathematics of Comput-
ers and Decision Making in 2009 from University
of Patras, Greece. In 2013 he received his PhD
from University of Thessaly, Greece. In the same
year he joined Helsinki Institute for Information
Technology (HIIT) and Department of Computer
Science of the University of Helsinki as a post
doctoral researcher in Knowledge discovery in
Big Data. Since September 2015 Sotiris is a lec-
turer in the Department of Applied Mathematics

at Liverpool John Moores University, UK. His research interests are
machine learning in big data applications, large scale data mining,
dimensionality reduction and unsupervised learning.

Teemu Roos is an assistant professor at the
Helsinki Institute for Information Technology
(HIIT) and the Department of Computer Sci-
ence, the University of Helsinki, Finland. He re-
ceived his MSc and PhD degrees in computer
science from the same university in 2001 and
2007 respectively. Teemu’s research interests in-
clude the theory and applications of probabilistic
graphical models, information theory, and ma-
chine learning.

Jussi Kangasharju received his MSc from
Helsinki University of Technology in 1998. He
received his Diplome d’Etudes Approfondies
(DEA) from the Ecole Superieure des Sciences
Informatiques (ESSI) in Sophia Antipolis in 1998.
In 2002 he received his PhD from University of
Nice Sophia Antipolis/Institut Eurecom. In 2002
he joined Darmstadt University of Technology
(TUD), first as post-doctoral researcher, and
from 2004 onwards as assistant professor. Since
June 2007 Jussi is a professor at the department

of computer science at University of Helsinki. Between 2009 and 2012
he was the director of the Future Internet research program at Helsinki
Institute for Information Technology (HIIT). Jussi’s research interests
are information-centric networks, content distribution, opportunistic net-
works, and green ICT. He is a member of IEEE and ACM.

