
1 www.helsinki.fi/yliopisto

Measuring Large-Scale Distributed Systems:
Case of BitTorrent Mainline DHT

Liang Wang Jussi Kangasharju

Department of Computer Science, University of Helsinki, Finland

2 www.helsinki.fi/yliopisto

Why do people measure?

System measurement is crucial in computer science in terms of
following perspectives:

•  Study system performance in real world.
•  Fine-tune system parameters.
•  Detect anomalies.
•  Locate bottlenecks.
•  Study user behaviors.

3 www.helsinki.fi/yliopisto

Why do people continuously measure?

Tons of measurement papers on P2P system already exist, why
do people still continue measuring? Does it make sense?

•  Different method may lead to different “picture”.
•  System evolves, more implementations.
•  User behavior changes.
•  Environment changes (e.g. government policy).
•  Measurement methodology improves!

4 www.helsinki.fi/yliopisto

What are we doing here?

After BitTorrent has been actively studied for over a decade,
what we are doing here?

Yet another BitTorrent measurement paper?

•  Identify a systematic error in previous measurement work
which leads to over 40% estimate error!

•  Propose a new methodology which generates more accurate
result with less overheads!

5 www.helsinki.fi/yliopisto

BitTorrent Mainline DHT basics

Our measuring target is BitTorrent
Mainline DHT (MLDHT).

MLDHT implements the minimum
functionality of Kademlia, has only 4
control messages.

Node has 160-bit ID. Nodes in n-bit
zone share the same prefix of n bits
in their IDs.

Peer 11

A (Peer 29)

Peer 33

Peer 36

Peer 43

Peer 51

B (Peer 57)

Peer 65

Peer 71

Peer 78

C (Peer 82)

Peer 95

Announce Peer
(29,59)

Get Peers
(82,59)

BT Protocol

1
2

3

4

ID1: 0010111110110101……010	

ID2: 0010110011101011……000	

Example: two nodes from 6-bit zone à	

6 www.helsinki.fi/yliopisto

A seemingly trivial common technique

A common “technique”:
Take a sample from system, use it as zone density, scale up!

So what’s wrong here?

[!] Missing node issue refers to the problem that a crawler systematically
misses some nodes when it is crawling a target zone.	

n-bit zone
1

0

2 4

9

3

8

6

5

7

sample b

3 8

1 9
6

sample c

3 0

7 9
4

sample a

0 5

2 4
6

2

sampling

7 www.helsinki.fi/yliopisto

Should we recheck previous work?

Lot of previous work and demography research made their
claims on this number – network size.
•  Qualitatively correct, no big problem.
•  Quantitatively, suspicious!

What if, this fundamental number – network size, is wrong?

Further more, how to answer the following questions:
•  What is the estimate error?
•  How to reduce the estimate error?

8 www.helsinki.fi/yliopisto

Why missing node was overlooked?

All the measurements have errors, or we can forget about statistics
completely. In terms of MLDHT, it is from missing node issue.

Why it was overlooked by previous work?

1e+0
1e+1
1e+2
1e+3
1e+4
1e+5
1e+6
1e+7

 0 5 10 15 20 25 30

of

 n
od

es

n-bit zone

•  Overly optimistic and ideal assumptions
on MLDHT protocol in a imperfect world.

•  Node density in different n-bit zones. A
deceivable figure, very stable behavior
between 5 ~ 23-bit zone.

•  Can we safely scale up zone density?

Estimate error due to the missing node issue will be magnified exponentially
after simple scaling up! (So no linear-regression!) 	

9 www.helsinki.fi/yliopisto

A straightforward but strong evidence

An experiment where 20 simultaneous samples were taken
from 12-bit zone in MLDHT. Each contains 3000 ~ 3500 nodes.

of distinct nodes increases as we
merge more and more samples.
The increase rate decays fast.

Each sample only covers part of
the zone.

Estimate error originates from
missing node issue!

5 10 15 20
3000

3500

4000

4500

5000

5500

6000

of merged samples

of

 d
is

tin
ct

 n
od

es

Our contribution

Previous work

Overheads
+-

A
ccuracy

+

-

O
ver 40%

 estim
ate error!

10 www.helsinki.fi/yliopisto

Can simultaneous samples save us?

Simultaneous samples can definitely improve the accuracy, and
drive our estimate closer to the real value. However,

•  Taking simultaneous samples is expensive!

•  We still don’t know the estimate error?

•  If we don’t know how far we are to the real value, then how
many simultaneous sample we should take?

11 www.helsinki.fi/yliopisto

How to fix the problem?

Model the measurement into a simple stochastic process –
Bernoulli process. Then we can apply all the statistical analysis.

•  Conceptually, a crawler goes through all the nodes in a

target zone one by one.

•  Each node has two options: being selected or being ignored.

•  What is the probability (p) of being selected?

•  Correction factor is defined as 1/p.

12 www.helsinki.fi/yliopisto

An analogy for system measurement

Assume we have a box of black marbles, and we are only
allowed to take a “small” sample from it. We don’t know how
much percent the sample contributes to the whole population.
How are we going to estimate the number of marbles in the
box?

•  Mix certain amount of white marbles into the box.
•  Make sure they are well mixed, then take a sample.
•  Count how many white marbles in the sample.
•  Calculate correction factor (1/p).
•  Then inferring the number of black balls is trivial.

13 www.helsinki.fi/yliopisto

How do we measure in practice?

Aim: fast, accurate, low overheads, and minimum impact on the
system.

0.7 0.75 0.8 0.85 0.9 0.95
0

10

20

30

40

50

estimate of p

of

 e
st

im
at

es
 o

f p

An experiment where 500 estimates of p
were calculated. The samples were taken
from 12-bit zone, and the estimates passed
Jarque-Bera test.

•  Choose a random zone.	

•  Insert “controlled” nodes into the zone (less than 1%).	

•  Take a sample from the zone, count the “controlled” nodes and estimate p.	

•  Repeat the experiments until reaching satisfying variance.	

14 www.helsinki.fi/yliopisto

Correction factor – summarize

•  Correction factor is not a universal constant, but a simple methodology.

•  Lead to more accurate result with explicit estimate error.

•  Lower down the requirements on crawler design (performance, etc.).

•  Make the results from different crawlers consistent.

•  In a given environment, correction factor is very stable.

•  On the actual measurement platform, moving average is a good option

and only needs periodical calibration.

•  No need to choose a specific zone, but recommend (5~20)-bit zone.

15 www.helsinki.fi/yliopisto

Validation of Methodology

16 www.helsinki.fi/yliopisto

Step-by-step validation

We validated each step of our methodology from the
assumptions to the final outcome.

•  Uniform node density: We carefully examined a large set of

samples (over 32000) from the different parts.

•  Missing node: We identified and verified this by “merging
samples” and “injecting controlled nodes” experiments.

•  Validity of correction factor: We designed large-scale
emulation in controlled environment.

17 www.helsinki.fi/yliopisto

Validation in controlled environment

1:0:0 8:1:1 6:2:2 4:3:3
0.5

0.6

0.7

0.8

0.9

1

Mix Percent (MLBT:ARIA:LIBT)

p
va

lu
e

10 bit zone
12 bit zone

13-th IEEE International Conference on Peer-to-Peer Computing

App Percent (%) 10-bit 12-bit
MLBT ARIA LIBT p stdev Corr. Factor p stdev Corr. Factor

100 0 0 0.8215 0.0173 (1.1681,1.2708) 0.8437 0.0263 (1.1157,1.2641)
80 10 10 0.8045 0.0164 (1.1943,1.2958) 0.8213 0.0291 (1.1370,1.3104)
60 20 20 0.8198 0.0211 (1.1601,1.2860) 0.8501 0.0243 (1.1127,1.2477)
40 30 30 0.8109 0.0190 (1.1780,1.2938) 0.8372 0.0257 (1.1254,1.2726)

TABLE II: 10-bit and 12-bit zone’s p value with 95% confidence interval as a function of different mix percents of three
applications. (MLBT: Mainline BitTorrent; ARIA: Aria; LIBT: libtorrent)

Simultaneous samples 1 2 4 8 16 20
Without CF 13,021,184 16,642,048 19,390,464 21,254,144 22,245,376 22,540,288
With CF 21,951,659 22,077,793 22,187,636 22,328,867 22,915,635 23,195,538
Error 40.68% 24.62% 12.61% 4.81% 2.92% 2.82%

TABLE III: Estimation with and without correction factor. The numbers report the estimated size of the network when running
n simultaneous samples. (CF: Correction Factor)

12-bit zones in our controlled test, whereas we have observed
differences of 6–9% in the real MLDHT. As the zone gets
larger, p decreases which makes the accuracy of the estimate
lower, necessitating the use of the correction factor. Scaling
the node density without considering the correction factor is
guaranteed to underestimate the network size, but there is
no way to estimate how much lower it is. Our methodology
eliminates this problem.

The correction factor is independent of the underlying
crawling method and can be applied to any existing crawler.
Using a very large number of simultaneous samplers in parallel
obviates the need for the correction factor, but requires a con-
siderable expenditure in resources for crawling. The correction
factor strikes a trade-off, by allowing a much lower use of
measurement resources and still obtaining the same level of
accuracy as a large number of simultaneous samples would
provide. Table III shows the network size estimated by using
a different number of simultaneous parallel samplers with and
without the correction factor. As we see, using only 1 or 2
samplers, as seems common in literature, will yield an error on
the order of 20–40%. Naturally, as shown in Table III multiple
parallel samplers improve the accuracy of our method as well,
although the error between 1 and 20 parallel samplers is only
on the order of 5%. However, correction factor does not give
an answer for exact causes of missing node issue which can
be manifold. Finding those causes will be our future work.

IV. EXPERIMENTS

We now present the implementation of our crawler and
discuss practical aspects related to data collection.

A. System Architecture

Figure 6 shows the four principal components of our system.
An efficient Crawler lies at the core of the whole system.
It can finish a crawl within 5 seconds, trying to gather
as many nodes as possible in a target zone. Beneath the
crawler, the Maintainer component maintains a set of over
3000 active nodes, and randomly provides 100 nodes among
these long-lived nodes to bootstrap the crawler. The Injector
component is responsible for injecting controlled nodes into
the monitored target zone. Then the sample will be sent to

MLDHT Monitor System

Maintainer

Crawler

Injector

Analyzer

Visualizer

Fig. 6: Principal components of monitoring system

Analyzer component, where the p value will be calculated
by checking the occurrence of controlled nodes. Finally, the
estimate and other relevant information will be stored in the
database and visualized by Visualizer component.

As mentioned before, for each crawl, obtaining several
hundreds of simultaneous samples to calculate p is expensive.
So in practice, p is the moving average of all available
measurements and is calculated and refreshed in each crawl
by putting more weight on the new value. The formula we
use is p = 0.2 ∗ pold + 0.8 ∗ pnew. It turns out p value in our
system is rather stable, always around 82%.

B. Deployment
We use two nodes for sampling, both Dual Intel Xeon E5440

@ 2.83GHz with quad cores, 32 GB memory and Gigabit
connection to the Internet. The operating system is Debian
SMP with Linux 2.6 kernel. On each node, we set up a crawler
with its own sampling policy. One is called Fixpoint Crawler,
which always uses the same target ID when sampling. The
other is called Randompoint Crawler, which generates a new
random target ID whenever it takes a sample. The sampling
frequency is twice per hour, and there is 15-minute difference
between the two crawlers.

There are two reasons for setting up a pair of crawlers.
The first reason is to prevent the sample gaps due to the

7

•  A high performance computing cluster of
240 nodes was used to deploy a million-
peer emulation.	

•  Different mixes of three implementations to
mimic a realistic ecosystem.	

	

•  Small variation, estimates are consistent

after applying correction factor.	

18 www.helsinki.fi/yliopisto

Validation in open environment

•  In open environment, we don’t know the true network size, but we can
validate effectiveness of CF by comparing how two methods converge.	

•  Small number of simultaneous (without CF) samples leads to big error.	

•  CF effectively reduces the error even with small amount of samples.	

	

1 2 4 8 16 20
Without CF 13021184 16642048 19390464 21254144 22245376 22540288
With CF 21951659 22077793 22187636 22328867 22915635 23195538

0

5000000

10000000

15000000

20000000

25000000
Es

tim
at

e
of

 n
et

w
or

k
si

ze

Estimate with and without CF

13-th IEEE International Conference on Peer-to-Peer Computing

App Percent (%) 10-bit 12-bit
MLBT ARIA LIBT p stdev Corr. Factor p stdev Corr. Factor

100 0 0 0.8215 0.0173 (1.1681,1.2708) 0.8437 0.0263 (1.1157,1.2641)
80 10 10 0.8045 0.0164 (1.1943,1.2958) 0.8213 0.0291 (1.1370,1.3104)
60 20 20 0.8198 0.0211 (1.1601,1.2860) 0.8501 0.0243 (1.1127,1.2477)
40 30 30 0.8109 0.0190 (1.1780,1.2938) 0.8372 0.0257 (1.1254,1.2726)

TABLE II: 10-bit and 12-bit zone’s p value with 95% confidence interval as a function of different mix percents of three
applications. (MLBT: Mainline BitTorrent; ARIA: Aria; LIBT: libtorrent)

Simultaneous samples 1 2 4 8 16 20
Without CF 13,021,184 16,642,048 19,390,464 21,254,144 22,245,376 22,540,288
With CF 21,951,659 22,077,793 22,187,636 22,328,867 22,915,635 23,195,538
Error 40.68% 24.62% 12.61% 4.81% 2.92% 2.82%

TABLE III: Estimation with and without correction factor. The numbers report the estimated size of the network when running
n simultaneous samples. (CF: Correction Factor)

12-bit zones in our controlled test, whereas we have observed
differences of 6–9% in the real MLDHT. As the zone gets
larger, p decreases which makes the accuracy of the estimate
lower, necessitating the use of the correction factor. Scaling
the node density without considering the correction factor is
guaranteed to underestimate the network size, but there is
no way to estimate how much lower it is. Our methodology
eliminates this problem.

The correction factor is independent of the underlying
crawling method and can be applied to any existing crawler.
Using a very large number of simultaneous samplers in parallel
obviates the need for the correction factor, but requires a con-
siderable expenditure in resources for crawling. The correction
factor strikes a trade-off, by allowing a much lower use of
measurement resources and still obtaining the same level of
accuracy as a large number of simultaneous samples would
provide. Table III shows the network size estimated by using
a different number of simultaneous parallel samplers with and
without the correction factor. As we see, using only 1 or 2
samplers, as seems common in literature, will yield an error on
the order of 20–40%. Naturally, as shown in Table III multiple
parallel samplers improve the accuracy of our method as well,
although the error between 1 and 20 parallel samplers is only
on the order of 5%. However, correction factor does not give
an answer for exact causes of missing node issue which can
be manifold. Finding those causes will be our future work.

IV. EXPERIMENTS

We now present the implementation of our crawler and
discuss practical aspects related to data collection.

A. System Architecture

Figure 6 shows the four principal components of our system.
An efficient Crawler lies at the core of the whole system.
It can finish a crawl within 5 seconds, trying to gather
as many nodes as possible in a target zone. Beneath the
crawler, the Maintainer component maintains a set of over
3000 active nodes, and randomly provides 100 nodes among
these long-lived nodes to bootstrap the crawler. The Injector
component is responsible for injecting controlled nodes into
the monitored target zone. Then the sample will be sent to

MLDHT Monitor System

Maintainer

Crawler

Injector

Analyzer

Visualizer

Fig. 6: Principal components of monitoring system

Analyzer component, where the p value will be calculated
by checking the occurrence of controlled nodes. Finally, the
estimate and other relevant information will be stored in the
database and visualized by Visualizer component.

As mentioned before, for each crawl, obtaining several
hundreds of simultaneous samples to calculate p is expensive.
So in practice, p is the moving average of all available
measurements and is calculated and refreshed in each crawl
by putting more weight on the new value. The formula we
use is p = 0.2 ∗ pold + 0.8 ∗ pnew. It turns out p value in our
system is rather stable, always around 82%.

B. Deployment
We use two nodes for sampling, both Dual Intel Xeon E5440

@ 2.83GHz with quad cores, 32 GB memory and Gigabit
connection to the Internet. The operating system is Debian
SMP with Linux 2.6 kernel. On each node, we set up a crawler
with its own sampling policy. One is called Fixpoint Crawler,
which always uses the same target ID when sampling. The
other is called Randompoint Crawler, which generates a new
random target ID whenever it takes a sample. The sampling
frequency is twice per hour, and there is 15-minute difference
between the two crawlers.

There are two reasons for setting up a pair of crawlers.
The first reason is to prevent the sample gaps due to the

7

13-th IEEE International Conference on Peer-to-Peer Computing

App Percent (%) 10-bit 12-bit
MLBT ARIA LIBT p stdev Corr. Factor p stdev Corr. Factor

100 0 0 0.8215 0.0173 (1.1681,1.2708) 0.8437 0.0263 (1.1157,1.2641)
80 10 10 0.8045 0.0164 (1.1943,1.2958) 0.8213 0.0291 (1.1370,1.3104)
60 20 20 0.8198 0.0211 (1.1601,1.2860) 0.8501 0.0243 (1.1127,1.2477)
40 30 30 0.8109 0.0190 (1.1780,1.2938) 0.8372 0.0257 (1.1254,1.2726)

TABLE II: 10-bit and 12-bit zone’s p value with 95% confidence interval as a function of different mix percents of three
applications. (MLBT: Mainline BitTorrent; ARIA: Aria; LIBT: libtorrent)

Simultaneous samples 1 2 4 8 16 20
Without CF 13,021,184 16,642,048 19,390,464 21,254,144 22,245,376 22,540,288
With CF 21,951,659 22,077,793 22,187,636 22,328,867 22,915,635 23,195,538
Error 40.68% 24.62% 12.61% 4.81% 2.92% 2.82%

TABLE III: Estimation with and without correction factor. The numbers report the estimated size of the network when running
n simultaneous samples. (CF: Correction Factor)

12-bit zones in our controlled test, whereas we have observed
differences of 6–9% in the real MLDHT. As the zone gets
larger, p decreases which makes the accuracy of the estimate
lower, necessitating the use of the correction factor. Scaling
the node density without considering the correction factor is
guaranteed to underestimate the network size, but there is
no way to estimate how much lower it is. Our methodology
eliminates this problem.

The correction factor is independent of the underlying
crawling method and can be applied to any existing crawler.
Using a very large number of simultaneous samplers in parallel
obviates the need for the correction factor, but requires a con-
siderable expenditure in resources for crawling. The correction
factor strikes a trade-off, by allowing a much lower use of
measurement resources and still obtaining the same level of
accuracy as a large number of simultaneous samples would
provide. Table III shows the network size estimated by using
a different number of simultaneous parallel samplers with and
without the correction factor. As we see, using only 1 or 2
samplers, as seems common in literature, will yield an error on
the order of 20–40%. Naturally, as shown in Table III multiple
parallel samplers improve the accuracy of our method as well,
although the error between 1 and 20 parallel samplers is only
on the order of 5%. However, correction factor does not give
an answer for exact causes of missing node issue which can
be manifold. Finding those causes will be our future work.

IV. EXPERIMENTS

We now present the implementation of our crawler and
discuss practical aspects related to data collection.

A. System Architecture

Figure 6 shows the four principal components of our system.
An efficient Crawler lies at the core of the whole system.
It can finish a crawl within 5 seconds, trying to gather
as many nodes as possible in a target zone. Beneath the
crawler, the Maintainer component maintains a set of over
3000 active nodes, and randomly provides 100 nodes among
these long-lived nodes to bootstrap the crawler. The Injector
component is responsible for injecting controlled nodes into
the monitored target zone. Then the sample will be sent to

MLDHT Monitor System

Maintainer

Crawler

Injector

Analyzer

Visualizer

Fig. 6: Principal components of monitoring system

Analyzer component, where the p value will be calculated
by checking the occurrence of controlled nodes. Finally, the
estimate and other relevant information will be stored in the
database and visualized by Visualizer component.

As mentioned before, for each crawl, obtaining several
hundreds of simultaneous samples to calculate p is expensive.
So in practice, p is the moving average of all available
measurements and is calculated and refreshed in each crawl
by putting more weight on the new value. The formula we
use is p = 0.2 ∗ pold + 0.8 ∗ pnew. It turns out p value in our
system is rather stable, always around 82%.

B. Deployment
We use two nodes for sampling, both Dual Intel Xeon E5440

@ 2.83GHz with quad cores, 32 GB memory and Gigabit
connection to the Internet. The operating system is Debian
SMP with Linux 2.6 kernel. On each node, we set up a crawler
with its own sampling policy. One is called Fixpoint Crawler,
which always uses the same target ID when sampling. The
other is called Randompoint Crawler, which generates a new
random target ID whenever it takes a sample. The sampling
frequency is twice per hour, and there is 15-minute difference
between the two crawlers.

There are two reasons for setting up a pair of crawlers.
The first reason is to prevent the sample gaps due to the

7

19 www.helsinki.fi/yliopisto

Crawler impacts the result

We chose libtorrent as an example because it has been used	

in several projects as a crawler.	

 	

•  Without tweaking, libtorrent only reports 1/6 of the actual

network size.	

	

•  After tweaking, results are improved. But still, only 1/4 to 1/3 of

the actual nodes are reported.	

	

•  Lots of things can impact the result: queue size, bucket size,

mechanism like banning suspicious nodes, abandon malformed
messages, routing table operations, etc. 	

	

20 www.helsinki.fi/yliopisto

Actual measurement platform

Five principal components

•  Visualizer: visualizes data.
•  Maintainer: maintains several

hundreds active nodes for
bootstrapping a crawl.

MLDHT Monitor System

Maintainer

Crawler

Injector

Analyzer

Visualizer

•  Injector: injects “colored” nodes into the target zone, and
replaces them periodically.	

•  Crawler: takes a sample from a target zone.	

•  Analyzer: counts the“controlled”nodes and calculates p.	

21 www.helsinki.fi/yliopisto

Actual measurement deployment

•  Measurement platform started on December 17th, 2010.

•  Two physical nodes with one crawler on each, to prevent
sample gap due to software/hardware failures.

•  Two crawlers use different sampling policies, to cross-
correlate with each other.

•  Sampling frequency was every 30 minutes, and increased to
every 10 minutes since 2013.

•  Over 32000 samples were collected.

22 www.helsinki.fi/yliopisto

Measurement – system evolution

•  P2P is not dying. 10% increase from
2011 to 2012, then remains stable.

•  Some countries had an increase,
some had a drop.

•  Strong diurnal and seasonal pattern
still exists.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
x 107 2011.01 ~ 2011.10

Month in 2011

M
on

th
ly

 a
ve

ra
ge

 #
 o

f n
od

es

Weekdays
Weekends

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 2.2e+07

 2.4e+07

 2.6e+07

 2.8e+07

 3e+07

Mon Tue Wed Thu Fri Sat Sun

Es
tim

at
e

of

 n
od

es

2011.03.07 - 2011.03.13
2012.03.05 - 2012.03.11
2013.04.08 - 2013.04.14

23 www.helsinki.fi/yliopisto

Measurement - anomaly detection

D
en

si
ty

 0.8
 1

 1.2

 0 5 10 15 20

R
TT

 0.8
 1

 1.2

 0 5 10 15 20

C
F

 0.8
 1

 1.2

 0 5 10 15 20

 0.8
 1

 1.2

 0 5 10 15 20

D
en

si
ty

 0.8
 1

 1.2

 0 5 10 15 20

R
TT

 0.8
 1

 1.2

 0 5 10 15 20

C
F

For details, refer to:	

Liang Wang; Kangasharju, J., "Real-world sybil attacks in BitTorrent Mainline DHT," GLOBECOM, 2012

A real-world Sybil-attack in MLDHT on Jan. 6, 2011. The attack was from two virtual
machines of Amazon EC2, and started from 6:00 am.

During normal time Under Sybil-attack

24 www.helsinki.fi/yliopisto

Conclusion

•  Correction factor is not only a measurement tool, but also a
technique to equip the current and future measurement.

•  Make the results from different measurement tools
consistent, and with explicit measurement error.

•  Lower down the requirements on crawlers, make the
crawling more efficient with less overheads.

•  Some other interesting applications like anomaly detection.

25 www.helsinki.fi/yliopisto

Thank you!

Questions?

26 www.helsinki.fi/yliopisto

Measurement – user behavior

10% doesn’t necessarily imply user behavior has changed.

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

Lag

Au
to
co
rre
la
tio
n

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

Lag

Au
to
co
rre
la
tio
n

•  We calculate
autocorrelation function
over the samples from
2011 (green) and 2012
(red).

•  After the noise was filtered
out, system exhibits
almost exactly the same
behavior over different
times.

27 www.helsinki.fi/yliopisto

Measurement – real world event

28 www.helsinki.fi/yliopisto

Causes for missing node issue

The possible causes for missing node issue can be manifold:

•  MLDHT protocol’s inherent problem.	

•  Network dynamics: nodes join/leave. This problem becomes

severer if crawling time is long.	

•  Lost messages due to network congestions.	

•  Some protect mechanisms: e.g. blacklist, banning suspicious node,

dropping malformed message, small bucket size, small queue size.	

•  Stale or false information in the routing table, mainly due to

implementation issues.	

•  Crawler is not efficient enough in terms of greediness and speed.	

•  Firewall issue.	

