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Abstract

Window inference is a transformational style of reasoning that provides an intuitive framework
for managing context during the transformation of subterms under transitive relations. This
report describes the design for a prototype window inference tool in Isabelle, and discusses possible
directions for the final tool.

1 Introduction

Window inference is a transformational style of reasoning that provides an intuitive framework for
managing the transformation of subterms. Like natural deduction or the sequent calculus, window
inference is a generic style of inference applicable across a wide variety of logics.

A simple window inference mechanism for the Isabelle theorem prover [14] has been developed. It is
based on a notion of proof state similar to that of Isabelle’s subgoal package. It uses Isabelle’s meta
variables to effect subterm rewriting, and Isabelle’s meta logic to represent window transformation
and window opening rules.

A brief outline of window inference is given in Section 2. Later sections will serve to further explain
window inference, but for a full explanation, see [15, 9] Section 3 details the core of the design of
the prototype window inference tool for Isabelle. The window inference style of reasoning is similar
to the standard presentation of program refinement [2, 11, 10] proofs. Because of this, window
inference is gaining popularity as a basis for the construction of refinement tools in theorem provers
— refinement tools [8, 17, 3, 4] constructed with the Hol and Ergo theorem provers are based on their
window inference facilities. The author’s intention for a window inference tool in Isabelle is to use it
as the basis of a program refinement tool. Hence in Section 4, the relevant setting of refinement as
window inference is used to present a worked example explaining window inference.

2 Window Inference

Window inference was proposed by Robinson and Staples [15] as a ‘hierarchical, problem-reduction
style of reasoning’. Window inference maintains a hierarchy of subproblems at any one point in a
proof — while a problem can be readily decomposed into smaller problems, the information present in
the original problem isn’t lost. The first versions of window inference gave a central role to equivalence
transformations (both logical equivalence and other equivalence relations) which allowed it to be used
to reason about non-formulae terms. Window inference also originally provided access to contextual
information during the transformation of subproblems, with contextual hypotheses present behind
an object logic implication. Window inference was first implemented in the theorem prover demo2,
and is now the main style of reasoning in its descendant theorem prover Ergo [16].

Window inference was later generalised by Grundy [7, 9], who relaxed the requirement on relations to
preorder (reflexive and transitive) relations. However, Grundy accessed context through derivability



rather than implication. The main reason for this seems to be that he was then able to take advantage
of the facilities of the HOL theorem prover [6] for manipulating hypotheses in the proof of theorems.

Window inference is about the transformation of a term of interest (the focus) F , under some preorder
relation R. A window

R ∗ F !H

states an intention to prove H ` R(F, F ′) for some resulting F ′.1 Theorems of the form R(F, F ′) can
be used to transform a focus F under a relation R to a focus F ′. The transformation of subterms of
a focus is justified by the use of opening rules of the form:

H ` r(f, f ′)

` R(F [f ], F [f ′])

The transformation of the subterm f under additional contextual hypotheses H also takes place using
window inference. The new subwindow representing this transformation is pushed onto a window
stack. The window stack thus records the state of the problem decomposition in the window proof,
with the top window of the stack describing the current problem, and the bottom window of the stack
describing the initial problem. Thus, although window inference provides problem decomposition, it
doesn’t lose information about the original form of the problem.

So, there are four main operations in window inference.

make an initial window Start the window proof for a specific focus F and relation R.

transform a window Transform a window using a transformation theorem as described above.

open a window Open a window at a selected subterm. The child window is pushed on the window
stack. The new focus is the selected subterm of the parent window, and the relation in the sub-
window is governed by the opening rule used. Contextual hypotheses of the parent window are
inherited by the child window. Opening rules may also justify the addition of extra contextual
hypotheses in the child window.

close a window Close back to a parent window. The focus of child window replaces the original
subterm in the parent window which was selected for opening. The child window is popped
from the window stack.

Part of the ‘user interface’ to window inference concerns hiding the choice of opening rules from
the user. It should not be necessary to specify a specific opening rule in order to open a window.
Rather, the position of a specific subterm is given, and the window opening mechanism uses that
position information to select among the possible opening rules to apply. More importantly, a user
may specify the position of a deep subterm (i.e. a subterm not directly accessible via the available
window opening rules), and the window inference mechanism will implicitly compose many opening
rules to open at that position, increasing the size of the window stack by one.

3 Window Inference In Isabelle

The normal representation of the state of a window inference proof in Isabelle can be viewed as a
state in a subgoal proof. In fact the interface to window inference in the prototype Isabelle window
inference tool is through the subgoal package. However, later versions of window inference may
provide an alternative interface capable of remembering other state information.

1We follow Grundy [7] in putting contextual hypotheses behind derivation rather than implication, for much the
same reasons — there is more support in Isabelle for manipulating hypotheses rather than left-hand sides of object logic
implications.



The core of the representation of window inference in Isabelle is based (in the terminology of the
Isabelle subgoal package) on the following two ideas:

• a window with focus F respecting a relation R is represented by a subgoal with conclusion
R(F, ?Goal) where ?Goal is some scheme variable; and

• after performing n window openings, the first n subgoals correspond to the window stack of
size n, with the first subgoal being the top of the window stack. Subgoals after the first n are
unproved side conditions of some kind.

Winsets (window sets) are used to maintain collections of known relations (for which there must be
reflexivity and transitivity theorems) and opening rules. Winsets also contain information used to
effect rule re-use.

The four main operations in window inference: making the initial window, window transformation,
window opening, and window closing, are described below.

3.1 Initial Window

The prototype window inference command for starting a window proof is as follows.

win proof thy ws str starts a subgoal proof of str in theory thy, and remembers the winset ws to be
implicitly used throughout the proof. The string str should parse in theory thy to a term with
conclusion R(F, ?G) for some relation R, initial focus F and scheme variable ?G. The relation
R should be present in the winset ws.

There are three kinds of support for each of the main activities of window transformation, window
opening and window closing.

1. Tactics which require the user to supply the winset to use, the number of the subgoal to affect
and possibly auxiliary arguments. These tactics are called WIN_TRANS_TAC, WIN_OPEN_TAC and
WIN_CLOSE_TAC.

2. Tactics which require the user to supply auxiliary arguments. It affects subgoal number 1 (the
top of the window stack), and uses the current winset set by win proof. These tactics are called
win_trans, win_open, and win_close.

3. Commands equivalent to by <the previous tactic>. These commands are called wt, wo, wc
in keeping with the spirit of existing Isabelle commands such as br, etc.

3.2 Window Transformation

A window represented by a subgoal with conclusion R(F, ?Goal) is transformed by using a theorem

[[H1; ...;Hn]] ⇒ R(Fu, F1)

where F and Fu are unifiable. This theorem is used in conjunction with the transitivity theorem for
R to construct a rule

[[H1; ...;Hn;R(F1, ?G)]] ⇒ R(Fu, ?G)

Resolving this rule against the window subgoal results in a transformed window represented by a
subgoal with conclusion R(F1′, ?Goal) where F1′ is the result of applying the unifier of F and Fu

to F1. If a constructed transformation rule has any hypothesis Hi, it will appear as an individual
subgoal H ′

i
in the subgoal stack after the subgoals representing the window stack.

The prototype window inference commands for window transformation are:



WIN TRANS TAC ws thl n is a tactic which transforms subgoal n by using the transitivity theorems in
the winset ws, and the transformation theorems in the list thl.

win trans thl is a tactic which transforms the top of the window stack by using the theorems in the
list thl.

wt th is equivalent to by(win_trans [th])

Windows can also be transformed by simplification using the Isabelle simplifier.2

3.3 Window Opening

A window represented by a subgoal with conclusion R(F [f ], ?Goal) is opened at f by using a theorem
of the form3

[[[[C1; ...;Cn]] ⇒ r(fu, ?f1);H1; ...;Hn]] ⇒ R(F [fu], F [?f1])

where f and fu are unifiable. This theorem is used in conjunction with the transitivity theorem for
R to construct a rule4

[[[[C1; ...;Cn]] ⇒ r(fu, ?f1);H1; ...;Hn, R(F [?f1], ?G)]] ⇒ R(F [fu], ?G)

Resolving this rule against the window subgoal results in a new window on the window stack with
conclusion r(f ′, ?f1) (where f ′ is the result of unifying f and fu) and extra contextual hypotheses
C ′

i
. The old window (now the second on the stack) will be R(F [?f1], ?Goal). If a constructed

transformation rule has any hypothesis Hi, these will appear as individual subgoals H ′

i
in the subgoal

stack after the offset indicating the number of window openings. If a parent window has any meta
level context (i.e. meta level assumptions or meta forall bound variables), this will be inherited by
the subwindow through the normal Isabelle resolution mechanism.

The window opening rules resemble congruence rules in the Isabelle simplifier. However, window
inference can respect relations other than meta equality. Being essentially user-directed, it can serve
purposes other than simplification. Window opening rules also resemble monotonicity theorems, but
are different in that the relation in a subwindow can be different to the relation in its parent window.

The prototype window inference tool is not dependent upon a specific representation for the position of
subterms. The only requirement of a representation of position is that the positions can be composed
to indicate the position of a deep subterm. Specific kinds of winsets can be defined which utilise
different position conventions. Positions are paired with opening rules in winsets in order to index
rules which provide access to specific subterms. It is the user’s responsibility to ensure that the
position paired with an opening rule does in fact correspond under some convention to the subterm
to be transformed.

There may be many opening rules in a winset that are applicable given a particular position in a
window. However there will usually be a ‘best’ opening rule to use, and users do no wish to exert
themselves discarding weak or inappropriate opening rules. The problem of multiple opening rules
is exacerbated by the presence of derived opening rules (see Section 3.5 below) that may merely be
weaker versions of other explicit opening rules. Grundy’s window inference package for HOL used a
heuristic to select a single ‘best’ window opening rule to apply. The approach taken in the prototype
Isabelle window inference tool follows the Isabelle subgoal package — all applicable window opening

2However, the scheme variable in the goal position of the window to be simplified needs to be frozen during
simplification.

3Like Isabelle’s elimination rules, the ‘major’ premise of an opening rule (i.e. the premise representing the subwindow)
should be the first premise.

4Actually, in order to restrict the possible unifiers during the composition (by resolution) of opening rules for deep
subterms, the right-hand side of the constructed rule is constrained to be the conclusion of the parent window’s subgoal.



rules are used. Users can then backtrack over the lazy list of resulting proof states. However, it is still
beneficial to present ‘the most useful’ opening rules first. Currently, the presentation of constructed
opening rules is sorted by the the number of base opening rules used to construct them, so that
rules which open ‘deeper’ are presented first. This heuristic for sorting is a simplified version of the
heuristic for rule selection used in Grundy’s tool.[8]

As many different opening rules may be applied throughout backtracking, this implementation of
window inference partially addresses the issue of tree-structured proofs mentioned in [15, p53]. How-
ever, the multiple branches of backtracking here are independent of each other, so these trees are not
the ‘more interesting and flexible, but more difficult’ trees alluded to there.

The prototype window inference commands for window transformation are:

WIN OPEN TAC ws pos n is a tactic which uses the transitivity theorems and opening rules in the
winset ws to open a window at position pos in subgoal number n.

win open pos is a tactic which opens at position pos of the top window.

wo pos is equivalent to by(win_open pos).

3.4 Window Closing

A window with conclusion r(f ′, ?SubGoal) is closed by resolving against the subgoal with the re-
flexivity theorem for r. This solves the subgoal and instantiates ?SubGoal to f ′. Its parent win-
dow would have been R(F [?SubGoal], ?Goal), and so we are left with a transformed parent window
R(F [f ′], ?Goal). Note that we can complete a window proof by closing the initial window, because
this instantiates the top scheme variable and solves the last subgoal on the window stack.

The prototype window inference commands for window transformation are:

WIN CLOSE TAC ws n is a tactic which closes the window at subgoal n, using reflexivity theorems in
winset ws.

win close () is a tactic which closes the top window.

wc () is equivalent to by(win_close())

3.5 Rule Re-Use

Grundy [8] proposes various ways of implementing rule re-use, including using base rules, relation
strength and lifted relations.5 The Ergo theorem prover’s window inference facility uses relation
strength, relation inverses, and also provides a wide variety of possible ways to matching against
rules.

The present prototype window inference tool in Isabelle only provides relation strength facilities for
opening rule re-use. Given a relation strength theorem R(a, b) ⇒ R ′(a, b), the opening rule

[[r(f, f ′);H1; ...;Hn]] ⇒ R(F [f ], F [f ′])

can be re-used as:
[[r(f, f ′);H1; ...;Hn]] ⇒ R′(F [f ], F [f ′])

We could similarly resolve against the major assumption, but this has not been implemented in the
prototype tool.

5Grundy also rightly considers opening rule composition (for opening at deep subterms) a form of rule re-use.
However, this paper presents it as integral to the window opening facility, as it depends upon the convention for
specifying the position of subterms.



3.6 Window Side Conditions, and Windows on Context

The form of the various side conditions Hi referred to in previous subsections has not been constrained.
In particular, they have not been constrained to resemble windows. It would perhaps be desirable
to be able to prove these side conditions within the window inference framework. Indeed, in other
implementations of window inference, such a a uniform interface is the norm. This facility is not
supported in the current prototype.

Another feature of the window inference style of reasoning is the ability to open windows on contex-
tual information. This allows users to transform existing contextual information, or to derive new
contextual information. However, this facility is not supported in the current prototype.

It should be possible to support both of these activities in a slightly more sophisticated prototype.
Such a prototype would require both a logic-generic way of satisfying a subgoal (or transforming a
meta level assumption) by transforming a window to true, and support for opening windows at places
other than in the focus of the top window of the stack.

3.7 Winsets

The type winset has a predefined value empty_ws, and the following infix operations.

addrels (ws,rl) updates the winset ws by adding to it the theorems in the list of pairs of theorems
rl. Each element of rl is a pair of reflexivity and transitivity theorems for a relation.

addopens (ws,ol) updates the winset ws by adding to it the opening rule information in ol. Each
element of ol is a pair containing an opening rule and a specification of the position of the
subterm to be transformed. Unknown opening rules derivable from relation strength information
present in the winset are also added to the winset.

addstrongs (ws,sl) updates the winset ws by added to it the relation strength theorems in sl.
Unknown opening rules derivable from existing opening rules and the theorems in sl are also
added to the winset.

4 Case Study: Program Refinement

This case study has been kept trivial for the purposes of highlighting the separation of derivation and
proof of side conditions. Carrington et. al. [5] highlights the importance of the separation of concerns
between program transformation and the proof of side conditions in the refinement methodology.
Window inference is naturally suited to supporting this aspect of the refinement methodology.

The refinement theory used in this case study is in the style of Agerholm’s [1] theory of program
semantics and verification in hol88. This kind of embedding is also used in von Wright’s refinement
theory and tool [17] in hol88 and hol90. The theory here is essentially the same as in [17], but also
features specification statements and logical constants in the style of [10]. The theory is presented in
Appendix A.

4.1 Example

A specification statement [p, q] is a non-executable command where p and q are pre and post condi-
tions. (Respectively, p and q are predicates defining possible initial and allowable final states.) So,
the specification statement [λu.True, λu.u = 1 ∨ u = 2] works for all initial values of the state and
terminates by making the state variable equal to one of the allowable values 1 or 2.



We can refine this to some more directly executable program by transforming it using window infer-
ence. The transformation makes use of a theory of program refinement (MRTprog.thy is provided in
Appendix A.1), and the theory of natural numbers, so we first create a dummy theory nat_prog:

> val nat_prog = merge_theories (MRTprog.thy, Nat.thy);

Building new grammar...

val nat_prog = {ProtoPure, Pure, HOL, Ord, Set, Prod, MRTprog, Lfp, Trancl,

WF, Nat} : theory

4.2 Initial Window

We start the refinement by calling

> win_proof nat_prog MRTprog_ws "[%u. True, %u. (u=0) | (u=Suc(0))] ref ?G";

which starts a window inference proof in the theory nat_prog using the window set MRTprog_ws

(which contains theorems provided in Appendix A.2) with the initial focus [λu.True, λu.u = 0∨u = 1],
relation v and scheme variable goal ?G. This results in an initial window stack which in the subgoal
package appears as:

Level 0

[%u. True , %u. u = 0 | u = Suc(0)] ref ?G

1. [%u. True , %u. u = 0 | u = Suc(0)] ref ?G

4.3 Introduce Sequential Composition

The theorem spec_seq

[?p, ?q] v [?p, ?r]; [?r, ?q]

can be used to transform this window. The command wt spec_seq transforms the window by
resolving against it with the rule

[?p1 , ?r1]; [?r1 , ?q1] ref ?C ==> [?p1 , ?q1] ref ?C

which is automatically constructed using the argument theorem spec_seq and transitivity of v.
There is exactly one premise to this constructed transformation rule, so there are no side conditions.

Note that we could have instantiated the mid condition ?r when applying this theorem. We have in-
stead chosen to leave it uninstantiated for the moment. We can either explicitly (using read_instantiate_tac)
or implicitly (through the application of some theorem) instantiate this scheme variable at any later
stage in the proof. It also worth noting that Isabelle’s support of meta variables should allow the
development of a refinement tool incorporating ideas like those presented in [12].

The resulting window stack is represented in the subgoal package as:

[%u. True , %u. u = 0 | u = Suc(0)] ref ?G

1. [%u. True , ?r2]; [?r2 , %u. u = 0 | u = Suc(0)] ref ?G

4.4 Open on the First Command

In order to transform the first branch of the sequential composition, we first restrict our attention
to it by performing a window opening at that position by calling the command wo In_seq_left.
In_seq_left is an ML variable whose value and type is [Rator, Rand] : pos list. The datatype



pos = Rand | Rator | Body is used to describe the position convention for the winset used here.
This kind of position specification is useful because it is readily compositional (using list append) and
could be used as a basis for mechanically extracting subterms.

Using information in the top window, the theorem

?c1 v ?c′1 ⇒?c1; ?c2 v ?c′1; ?c2

is selected as an appropriate opening rule from the rules in the current winset. This rule, the
transitivity of v, and the current subgoal, are implicitly used to construct a rule:

[| ([%u. True , ?r2] ref ?c’1); (?c’1; [?r2 , %u. u = 0 | u = Suc(0)] ref ?G) |] ==>

[%u. True , ?r2]; [?r2 , %u. u = 0 | u = Suc(0)] ref ?G

which is used to resolve against the window. There are exactly two premises to this constructed
opening rule, so there are no side conditions.

This results in the window stack represented in the subgoal package as:

Level 2

[%u. True , %u. u = 0 | u = Suc(0)] ref ?G

1. [%u. True , ?r2] ref ?c’4

2. ?c’4; [?r2 , %u. u = 0 | u = Suc(0)] ref ?G

There are now two subgoals, because we have opened our initial window once. The top of the
window stack is the first subgoal. Although we won’t close the top window at this stage, note
that if we did so by applying reflexivity of v, the scheme variable ?c’4 would be instantiated to
[%u. True, %u. u = 0 | u = Suc(0)], resulting in a subgoal stack with one subgoal identical to
the one prior to opening.

4.5 Introduce Assignment

We now wish to transform the specification statement in the focus to an assignment statement. The
basis of our transformation is the theorem spec_assign:

∀u.?p(u) →?q(?e(u)) ⇒ [?p, ?q] v assign(?e)

Using the transitivity of v, we can implicitly derive a transformation theorem:

[| ! u. ?p1(u) --> ?q1(?e1(u)); assign(?e1) ref ?C |] ==>

[?p1 , ?q1] ref ?C

Note that there is an extra premise, which will become a side condition in the window stack.

Calling wt spec_assign would leave the assignment statement ?e uninstantiated. For our purposes
we wish to fix it, so we call SPEC_ASSIGN "%u. 0"6 where SPEC_ASSIGN is an auxiliary function which
transforms the top window by instantiating the assignment expression ?e in spec_assign with the
certified term constructed using the string argument and the signature of the current proof state.

The resulting window stack is:

Level 3

[%u. True , %u. u = 0 | u = Suc(0)] ref ?G

1. assign(%u. 0) ref ?c’4

2. ?c’4; [?r2 , %u. u = 0 | u = Suc(0)] ref ?G

3. ! u. True --> ?r2(0)

6i.e. u := 0 in a state with a single variable u.



Note that the first two subgoals are part of the window stack (as we have opened once), while the
third subgoal is an as yet unproved side condition. Note also that the side condition involves the still
uninstantiated scheme variable ?r which represents the mid-condition.

4.6 Close back to the Sequential Composition

The command wc() uses the reflexivity of v to solve the top subgoal and instantiate the scheme
variable in its range (?c’4) to the term in its domain assign(%u. 0). This results in the window
stack:

Level 4

[%u. True , %u. u = 0 | u = Suc(0)] ref ?G

1. assign(%u. 0); [?r2 , %u. u = 0 | u = Suc(0)] ref ?G

2. ! u. True --> ?r2(0)

4.7 Open on the Second Command

The command wo In_seq_right will open in the second position of the sequential composition.
However, this window opening uses the theorem [[c2 v c2′;monotonic c1]] ⇒ c1; c2 v c1; c2′. This
contains an extra premise which becomes a side condition in the resulting window stack:

Level 5

[%u. True , %u. u = 0 | u = Suc(0)] ref ?G

1. [?r2 , %u. u = 0 | u = Suc(0)] ref ?c’9

2. assign(%u. 0); ?c’9 ref ?G

3. ! u. True --> ?r2(0)

4. monotonic(assign(%u. 0))

Here the first two subgoals constitute the window stack, with the remaining two subgoals being as
yet unproved side conditions.

4.8 Introduce Skip

The command wt spec_skip uses the theorem [?p, ?p] v skip to transform the top window.
There are no new side conditions, but the use of this rule does instantiate the mid condition ?r to
(%u. u = 0 | u = Suc(0)). This finally fixes the assignment side condition.

Level 6

[%u. True , %u. u = 0 | u = Suc(0)] ref ?G

1. skip ref ?c’9

2. assign(%u. 0); ?c’9 ref ?G

3. ! u. True --> 0 = 0 | 0 = Suc(0)

4. monotonic(assign(%u. 0))

4.9 Close back to the Sequential Composition

The command wc() will close back to the top window, resulting in the window stack:



Level 7

[%u. True , %u. u = 0 | u = Suc(0)] ref ?G

1. assign(%u. 0); skip ref ?G

2. ! u. True --> 0 = 0 | 0 = Suc(0)

3. monotonic(assign(%u. 0))

4.10 Finish the Refinement

We can now finish the refinement by closing the top window. The command wc() will use the
reflexivity of v to solve the top window’s subgoal, and instantiate the top goal’s scheme variable ?G,
indicating that the refinement has been completed. At this stage, there are still two side conditions:

Level 8

[%u. True , %u. u = 0 | u = Suc(0)] ref assign(%u. 0); skip

1. ! u. True --> 0 = 0 | 0 = Suc(0)

2. monotonic(assign(%u. 0))

We can leave this as a conditional refinement by calling topthm() to get:

[[(∀u.True → 0 = 0∨0 = 1);monotonic(assign(λu.0))]] ⇒ [λu.True, λu.u = 0∨u = 1] v assign(λu.1); skip

Alternatively, we can prove the side conditions. The trivial assignment side condition could be
automatically be proved by the command by(fast_tac HOL_cs 1), and the monotonicity side con-
dition could then automatically proved using the command by(simp_tac MRTprog_mono_ss 1). The
monotonicity simpset MRTprog_mono_ss will prove the monotonicity of all normal commands, and in
particular contains the theorem monotonic(assign(?e)).

5 Discussion

This implementation of window inference is not complete (future work is outlined in the next section),
but nonetheless it is sufficiently complete to compare it to other implementations, and to use it as a
platform to raise some interesting issues.

5.1 Backwards and Forwards Window Inference

The development of window inference here contrasts to Grundy’s [9] in that this implementation is
more like backward proof, while Grundy’s is more forward in nature. Grundy uses reflexivity to
justify an initial theorem which is associated with a window. The window theorem is transformed in
a forward manner using transitivity, and closing rules (rather than opening rules) are used to justify
the transformation of parent windows based upon the resulting theorems proved in child windows.

The scheme variables present in Isabelle facilitate the backwards style of implementation given here.
Scheme variables are instantiated across subgoals, allowing the implicit transformation of parent
windows and side condition subgoals.

5.2 Relations: Equivalence, Preorder, Transitive, ...?

Window inference was originally proposed to use only equivalence relations [15]. A later implemen-
tation allowed for preorders [7], and recently Robinson has suggested that reflexivity need not be a
condition of relations used in window inference.



Reflexive relations are not needed for window inference. In the setting described above, a window
R(F, ?G) can been transformed to a window R(F ′, ?G) by the use of a theorem R(F, F ′). This was
done by using the transitivity of R to implicitly construct a theorem R(F ′, ?G) ⇒ R(F, ?G). We then
used the reflexivity of R to close the resulting window; satisfying the subgoal, and instantiating ?G to
F ′. However, to close a window without using reflexivity, it is enough to use the raw transformation
theorem R(F, F ′) on the initial window; satisfying the subgoal, and instantiating ?G to F ′. If we
wanted to close the window after not performing any window transformation in the subwindow, then
the subwindow needn’t have been opened in the first place!

The only remaining condition on relations is that they must be transitive. Do window inference
relations need to be transitive? Perhaps surprisingly, in general the answer is ‘no’; although the
relation in the initial window of a window proof must be transitive if more than one change to the top
term is to be justified. Transitivity is currently used both to justify the transformation of a parent
window by the transformation of a subwindow, and also to transform each subwindow. However, this
latter use of transitivity is unnecessary — similarly to the technique for avoiding the need of reflexivity
described above, a subwindow could be transformed once, thus immediately closing the subwindow,
and the same opening rule could be applied again to re-open a new subwindow at the same position.
Although to the user it would appear that they were repeatedly transforming subterms, they would
in fact merely be performing individual transformations of different terms in the same position of a
repeatedly transformed parent term.

Using transitivity and reflexivity simplifies the development of a window inference tool, and as most
of the relations considered in the immediate application of the tool are preorders7, these conditions
on relations have remained in the prototype tool.

5.3 Extended Notions of Context

The use of window inference for reasoning about program logics places new demands on window
inference, and especially on the notion of context. For example, when we open inside the ‘then’
branch of a conditional statement

if (λs.s = 1) then assign(λs.s + 1) else assign(λs.2) fi

we would like to know that the guard (λs.s = 1) is true. However, this essentially modal hypothesis
is not true in all contexts — it is only true in the context of the ‘then’ branch of the conditional. The
guard is of the wrong type to be a meta-level assumption, and we cannot say that it is true of all s,
because that would be equivalent to False.

Part of this problem arises because we have followed Grundy in placing contextual hypotheses behind
derivation rather than implication. The kinds of context structuring proposed in [5] provide access
to both sorts of hypotheses, by using derivability and modal object logic implications. So, instead of
a window transformation being represented by a proof of H ` R(F, F ′), it could be represented by a
proof of H ` Hc V R(F, F ′), with contextual hypotheses like the guards of conditionals present as
the conjunction of terms in Hc.

The context structuring suggested in [5] would provide many different forms of windows. Windows
of each form would have access to different kinds of contextual hypotheses, and the transformation of
each kind of window would be represented by the proof of different kinds of formulae. This idea could
be implemented in the style of window inference describes here by having something like winsets
local to specific windows (and hence referred to within window opening rules), rather than having
a winset global to all windows in a window proof. Winsets would then not only describe reflexivity

7One notable exception arises in the proof of loop termination for imperative programs, where conditions arise
involving the transitive irreflexive relation <.



and transitivity theorems and opening rules, but would also describe the structure and meaning of
various kinds of context.

6 Conclusions and Future Directions

The work so far constitutes a design prototype for window inference in Isabelle. While it is complete
enough to demonstrate that Isabelle’s meta variables and meta logic provide an elegant basis for the
construction of a useful tool, it does not provide all the sophistication of a complete tool.

Obvious areas for improvement are the provision of:

• An alternative interface to the subgoal package. This should at least hide the scheme variables
in the range of windows, hide lower levels of the window stack, and provide easier access to
side conditions. It may also provide a framework for heuristics in the style of the Ergo theorem
prover.

• Better heuristics for the sorting of the presentation of multiple possible opening rules.

• A facility to open windows on the context of a window.

• A GUI with selectable subterms for window opening.

• A framework for motivational goals and goal directed tactics.

• A method for manipulating lemmas and unused conjectures.

More fundamental changes could include:

• dropping the reflexivity requirement on relations, and

• implementing more sophisticated notions of context in the manner of [13]. This could be done
by providing access to different sorts of context behind object level implication and meta level
implication, and by providing winset-like facilities at the level of windows and not window
stacks.
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A Small Program Refinement Theory

No recursion or looping constructs have been defined in this theory, but this could done as in [1].

A.1 Theory Definition

MRTprog = Prod +

types

’a pred = "’a => bool"

(’a, ’b) ptrans = "’b pred => ’a pred"

(’a, ’b, ’c) eptrans = "(’a * ’c, ’a * ’b) ptrans"

consts

refines_to :: "[(’a,’b) ptrans, (’a,’b) ptrans] => bool \

\ " ("(_ ref/ _)" [7,8] 60)

monotonic :: "(’a,’a) ptrans => bool"

seq :: "[(’a,’b) ptrans, (’b,’c) ptrans] => (’a,’c) ptrans \

\ " ("(_;/ _)" [9,8] 50)

abort :: "(’a,’b) ptrans"

assert :: "’a pred => (’a,’a) ptrans" ("{_}" [8] 9)

guard :: "’a pred => (’a,’a) ptrans" ("[_]" [8] 9)

spec :: "[’a pred, ’a pred] => (’a,’a) ptrans" ("[(_ ,/ _)]" [0,0] 52)

assign :: "(’a => ’b) => (’a,’b) ptrans"

skip :: "(’a,’a) ptrans"

cond :: "[’a pred, (’a,’b) ptrans, (’a,’b) ptrans] => (’a,’b) ptrans \

\ " ("(if _/ then/(3 _)/ else/(3 _) /fi)")

Con :: "(’a => (’b,’b) ptrans) => (’b,’b) ptrans" (binder "con " 10)

block :: "(’a,’b,’b) eptrans => (’b,’b)ptrans"

defs

refines_to_DEF "c1 ref c2 == (!q u. c1(q,u) --> c2(q,u))"

monotonic_DEF "monotonic(f) == (!p q.(!u.p(u)-->q(u))-->(!u.f(p,u)-->f(q,u)))"

abort_DEF "abort == (%q u. False)"

skip_DEF "skip == (%q u. q(u))"

assert_DEF "{p} == (%q u. p(u) & q(u))"

guard_DEF "[b] == (%q u. b(u) --> q(u))"

spec_DEF "[p, q] == (%r u. p(u) & (!v. q(v) --> r(v)))"

seq_DEF "c1; c2 == (%q. c1(c2(q)))"

assign_DEF "assign(e) == (%q u. q(e(u)))"

cond_DEF "cond(g,c1,c2) == (%q u. (g(u) & c1(q,u)) | (~g(u) & c2(q,u)))"

con_DEF "Con(C) == (%q u. ? x. C(x,q,u))"

block_DEF "block(c) == (%q u. ! x. c(%u. q(snd(u)), <x,u>))"

end



A.2 Theorems

(* Transformation Theorems: *)

spec_assign "! u. ?p(u) --> ?q(?e(u)) ==> [?p , ?q] ref assign(?e)"

spec_seq "[?p , ?q] ref [?p , ?r]; [?r , ?q]"

spec_skip "[?p , ?p] ref skip"

spec_block "[?p , ?q] ref block([%u. ?p(snd(u)) , %u. ?q(snd(u))])"

spec_con "! u. ?p(u) --> (? x. ?p’(x, u)) ==> [?p , ?q] ref con X. [?p’(X) , ?q]"

fix_initial "[?p , ?q] ref con X. [%u. X = ?x(u) & ?p(u) , ?q]"

remove_con "con X. ?c ref ?c"

simp_con "(con X. ?c) = ?c"

skip_seq_left_ident "skip; ?c ref ?c"

skip_seq_right_ident "?c; skip ref ?c"

simp_skip "?c; skip = ?c"

(* Relations --- present in MRTprog_ws *)

refines_to_refl "?A ref ?A"

refines_to_trans "[| ?A ref ?B; ?B ref ?C |] ==> ?A ref ?C"

(* Opening Rules --- present in MRTprog_ws *)

spec_weaken "(!!u. ?p(u) --> ?p’(u)) ==> [?p , ?q] ref [?p’ , ?q]"

spec_strengthen "(!!u. ?q’(u) --> ?q(u)) ==> [?p , ?q] ref [?p , ?q’]"

mono_seq_left "?c ref ?c’ ==> ?c; ?c2.0 ref ?c’; ?c2.0"

mono_seq_right "[| ?c ref ?c’; monotonic(?c1.0) |] ==> ?c1.0; ?c ref ?c1.0; ?c’"

mono_cond_then "?c ref ?c’ ==>

if ?b then ?c else ?c2.0 fi ref if ?b then ?c’ else ?c2.0 fi"

mono_cond_else "?c ref ?c’ ==>

if ?b then ?c1.0 else ?c fi ref if ?b then ?c1.0 else ?c’ fi"

mono_con_body "(!!X. ?c(X) ref ?c’(X)) ==> con X. ?c(X) ref con X. ?c’(X)"

(* Monotonicity Theorems --- present in MRTprog_mono_ss *)

mono_skip "monotonic(skip)"

mono_assert "monotonic({?p})"

mono_guard "monotonic([?p])"

mono_spec "monotonic([?p , ?q])"

mono_assign "monotonic(assign(?e))"

mono_seq "[| monotonic(?c1.0); monotonic(?c2.0) |] ==>

monotonic(?c1.0; ?c2.0)"

mono_cond "[| monotonic(?c1.0); monotonic(?c2.0) |] ==>

monotonic(if ?b then ?c1.0 else ?c2.0 fi)"

mono_con "(!!x. monotonic(?c(x))) ==> monotonic(con X. ?c(X))"


