
Formalising Ruby in Isabelle ZF

Ole Rasmussen
Dept� of Computer Science

Technical University of Denmark
Email� osr�id�dtu�dk

August� ����

Abstract

This paper describes a formalisation of the relation based language Ruby in Zermelo�
Fraenkel set theory �ZF� using the Isabelle theorem prover� We show how a very small
subset of Ruby� called Pure Ruby� easily can be formalised as a conservative extension of
ZF and how many useful structures used in connection with VLSI design can be de�ned
from Pure Ruby� The inductive package of Isabelle is used to characterise the Pure Ruby
subset by an inductive de�nition� to allow proofs to be performed by structural induction
over the Pure Ruby elements� Finally we demonstrate how various kinds of proofs may
be automated and the explicit type checking of ZF hidden by the de�nition of specialised
tactics�

� Introduction

Ruby ��� is a relation based language intended for specifying VLSI circuits� A circuit is
described by a binary relation between appropriate� possibly complex domains of values�
and simple relations can be combined into more complex relations by a variety of combining
forms� The Ruby relations generate an algebra which de�nes a set of equivalences� These
equivalences are used in the Ruby design process which typically involves a transformation
from a �speci�cation� to an �implementation� both expressed in Ruby� The implementation
describes the same �or a smaller	 relation as the speci�cation but in another form� which in
a given interpretation is said to be implementable� This design style is referred to as design
by calculation and is demonstrated in �
� �� ���

To support this style of design we have constructed a tool called TRuby� which is based
on a formalisation of Ruby as a language of functions and relations ����� The TRuby system
enables the user to perform the desired transformations in the course of a design� to simulate
the behaviour of a class of implementable relations� and to translate the �nal Ruby description
of such relations into a VHDL description for subsequent synthesis by a highlevel synthesis
tool�

This paper describes a formalisation of Ruby� called RubyZF� within the Isabelle theorem
prover ��� using a formulation of ZermeloFraenkel set theory �ZF	� The work follows the line
started by Rossen ��� and continued in the TRuby system� The development of RubyZF serves
three purposes in connection with TRuby� to give Ruby a machine veri�ed semantics� to prove
general transformation rules for inclusion in TRuby�s database� and to prove conditions and
conjectured rewrite rules originating from a concrete series of transformations used in a design�

Naturally RubyZF may in itself serve as a platform for further Ruby developments as e�g� by
proofs of various re�nement steps�

ZF was a natural choice for Ruby since the basic objects of Ruby are relations� which are
conventionally modelled as sets of pairs� The basic objects of ZF are in fact sets in contrast
to for example HOL ��� where the basic objects are functions� Set theory has a tremendous
expressive power and its few basic concepts are well understood� Usually it is regarded as
clumsy and not very well suited for doing automated proofs but with the extensive work of
e�g� Larry Paulson� it has become possible to use ZF� This means that from a Ruby point of
view ZF is natural and from a ZF point of view Ruby is feasible�

Several factors favoured the use of the Isabelle theorem prover� Naturally having the de
velopment of ZF in the standard distribution of Isabelle meant that the formalisation of Ruby
could start at a reasonable high level� Secondly� the fairly high degree of automation available
in Isabelle was interesting as many of the proofs in Ruby follow the same pattern �equality
proofs	� Finally Isabelle�s advanced parsing and pretty printing features were important since
RubyZF is meant to be used directly in connection with TRuby� The user should not be
bothered with too may syntax variations�

� Introduction to Ruby

The de�nition of Ruby used in this work is based on the socalled Pure Ruby subset as
introduced by Rossen ���� This makes use of the observation that a very large class of the
relations which are useful for describing VLSI circuits can be expressed in terms of four
basic elements� two relations and two combining forms� which are usually de�ned in terms of
synchronous streams of data as shown in Figure �� These four are binary relations and the
notation aRb means that a is related to b by R� and is synonymous with �a� b	 � R�

a �spread�f		 b
�
� � t � Z � �a�t	 f b�t		 ��	

a D b
�
� � t � Z � a�t	 � b�t� �	 ��	

a �F �G	 b
�
� � c � �aF c � cG b	 �
	

ha�� a�i �F�G� hb�� b�i
�
� a� F b� � a�Gb� ��	

Figure �� The basic elements of Pure Ruby

In the �gure the variables a� b � � � are of type sig�T 	� where sig�T 	 is the type of streams of
values of type T � This is usually represented as a function of type Z� T � where we identify
Z with the time� T ranges over the possible channel types� ChTy� and when reasoning about
Ruby we are interested in making a distinction between three kinds of channel types� base
types� pairing of types� and a list of a type� Thus signals can be expressed as�

sig � time� ChTy

ChTy � BasChTy

j ChTy � ChTy

j nlist�n��ChTy	

where nlist�n�� are lists of length n� Since nlists are parameterised in n� Ruby relations may
have dependent product types� The base types� BasChTy� will typically be natural numbers�
bits etc� but no explicit restriction is made� Note that Ruby relations are binary relations
on single signals such that composite signals are always represented as a function from time
to the composite type� Thus in equation � above ha�� a�i does not stand for a conventional
ordered pair of two signals but rather for the paring of two signals into one signal�

Viewed as relations spread�f	 is the lifting to streams of the pointwise relation described
by f � If f is a relation of type � � � �the type of binary relations between values of type � and
type �	 then spread�f	 is of type sig��	 � sig��	� For notational convenience� and to stress
the idea that it describes the lifting to streams of a pointwise relation of type � � �� this type
will be denoted �

sig
� �� D � the delay element � relates a stream to another stream which

has an o�set of one time tick� �F � G	 describes relational composition and �F�G� relational
product�

If we view the four Pure Ruby elements as circuits then spread�f	 describes the syn
chronously clocked combinational circuit with the functionality of f � D describes the basic
sequential circuit �a latch	� �F �G	 sequential composition of two circuits and �F�G� parallel
composition�

R� �

R � spread�f	

�
�

D

F G

F �G

F

G

�F�G�

Figure �� Graphical interpretations of the four Pure Ruby elements

A feature of Ruby is that relations and combinators not only have an interpretation in
terms of circuit elements� but also have a natural graphical interpretation� corresponding
to an abstract �oorplan for the circuits which they describe� The conventional graphical
interpretation of spread �or� in fact� of any other circuit whose internal details we do not wish
to show	 is as a labelled rectangular box� The components of the domain and range are drawn
as wire stubs� whose number re�ects the types of the relations in an obvious manner� a simple
type gives a single stub� a pair type two and so on� The components of the domain are drawn
up the left hand side and the components of the range up the right� The remaining elements
of Pure Ruby are drawn in an intuitively obvious way� as illustrated in Figure ��

� Introduction of Isabelle�ZF and RubyZF

The purpose of this section is to give a brief introduction to the Isabelle logical framework
and the concrete logic used in this work� A thorough presentation of the system is given in ����
Isabelle is a generic logical framework meant for de�ning di�erent proof systems� The user
must distinguish between two levels of abstraction� the meta�level and the object�level� where
the former is used to de�ne a particular object logic� The basic Isabelle system de�nes the
meta logic which is a fragment of intuitionistic highorder logic and the meta language which
is the simple typed lambda calculus� Inference rules and axioms in Isabelle are all theorems
of the meta logic� usually containing a meta implication�

Isabelle is implemented in Standard ML �SML	 and the proof commands are SML fun
ctions changing the current proof state� The major proof method is backward proof applying
tactics to the current proof state� The main tactics apply lists of rules to a subgoal using
various forms of resolution� Tactics can be composed into new more complex tactics using
tacticals� which are highorder SML functions� The simple tacticals are used for compo
sing tactics sequentially� alternatively� repeatedly� but also more complex tacticals exist for
expressing control structures� depth�rst search etc�

Isabelle has a built in generic parsing mechanism allowing a �exible mix�x notation of
new de�ned symbols in the object logic� Furthermore the user may de�ne translations� which
will only a�ect the appearance of an object� keeping the internal representation unchanged�

The distribution of Isabelle includes an implementation of ZermeloFraenkel set theory
built as an extension to classical �rstorder logic� A large number of theories for basic mat
hematics already exist in the standard distribution of ZF and are introduced in ���� In ZF
desired typing of variables is stated directly in the goal assumptions� The Isabelle meta type
system is used very little in ZF since only two types are de�ned� i for sets and o for proposi
tions� Figure
 shows the correspondence of mathematical and ASCII notation of a selection
of symbols used in this work �a mixture of meta and ZF symbols	� Furthermore the notation
��P������Pn�����Q is a shorthand for nested implication�

a � A a�A

A � B A	�B

�a� b	 	a
b�

A�B A � B

A� B A �� B

�x � P �x	 ALL x�Px�
 ��x�P

�x � P �x	 EX x�Px�

P 	 Q P ��� Q

�x�A � b�x	 lam x�A�bx�
 �x�b

f�a	 f�a
 fa�

Figure
� ASCII notation of selected symbols

��� Generic Packages

Three generic packages have been used extensively in this work and are all set up in the
standard distribution of ZF� the simpli�er� the classical reasoning package and the inductive
de�nition package�

The simpli�er performs conditional and unconditional rewriting using contextual infor
mation and takes a simpli�cation set as argument� The set contains a number of rewrite rules
and possibly the speci�cation of tactics to be applied in speci�c cases� The simpli�er can
both rewrite the assumptions and the conclusion�

The classical reasoning package provides a number of tactics to prove theorems in the
style of the sequent calculus� They take a classical rule set as argument� which contains a
collection of introduction and elimination rules divided into either safe and unsafe rules� Safe
rules can be applied blindly but unsafe rules must be handled more carefully� For example
fast tac tries to solve a goal completely using depth�rst search�

The inductive package is based on a �xedpoint approach and permits the formalisation of
all monotone inductive de�nitions ���� The inductive de�nitions are expressed as a subset of
an existing set given the desired inference rules as Isabelle meta implications� The package is
used in Section ����

��� Customising ZF to Ruby Proofs

Setting up rule lists of related rules to a speci�c domain speeds up the process of developing
proofs considerably� Furthermore it is a great help for the user to be able to lift the reasoning
to a more general level� In RubyZF three main lists of rules are de�ned� Ruby type� RubyI
and RubyE containing Ruby type rules� introduction rules and elimination rules respectively�
Additionally the type list includes type theorems for nlistconstructors� signalconstructors
and arithmetic operations� as Ruby proofs generally involve reasoning about these� Finally
a classical rule set� RubyZF cs� is set up as an extension to the rule set ZF cs provided in
Isabelle� The rules from RubyI are added to ZF cs as introduction rules and the rules from
RubyE are added as safe elimination rules�

����� Type Checking Tactics

ZF is basically untyped� but types can of course be modelled as sets of values� This means
there is no distinction between typegoals and other goals� However� type checking is tedious
and would take up a large amount of time working in ZF� Therefore a number of specialised
tactics have been developed in RubyZF to solve type goals automatically� If normal resolution
is used� the type checking tactics may instantiate variables inappropriately� thus leading to
unsolvable proofs� Type checking therefore makes use of the tactic typechk tac �included
in ZF	 which solves any subgoal in the complete proof state of the form a � A� where a is
not a schematic variable� To be able to update the type information interactively and enable
the tactics to use the updated information� all the rules from Ruby type are also stored in
an SML reference variable called basictypeinfo� The following type checking tactics are
provided�

typeit trls uses typechk tac with the supplied theorems trls plus the theorems contained
in basictypeinfo�

typchk trls tac �rst applies tac and then type checks the proof state as typeit�

resolve tac c trls thms i performs a �resolve tac thms i � and then type checks the proof
state as above�

eresolve tac c trls thms i performs a �eresolve tac thms i � and then type checks the proof
state as above�

Typically the tactics are applied with no extra type information �trls is empty	 since all
necessary type information is contained in basictypeinfo�

Special versions of the classical tactics are provided to make these tactics more useful
in proofs with many type conditions� The original names of the tactics are kept but now
su�xed with an ��t� and take an extra argument containing the extra type rules to be used
�apart from the rules in basictypeinfo	� For example the typed version of fast�tac is called
fast�tac�t�

� Formalising Pure Ruby

This section will take us through the formalisation of Ruby in standard ZermeloFraenkel set
theory implemented in Isabelle� We describe a semantical embedding of the Ruby algebra

in ZF� i�e� we de�ne new Ruby constructors directly as a conservative extension of ZF� We
formalise the basic concepts of Pure Ruby and �rst de�ne a theory of signals� then the four
Pure Ruby elements and �nally construct a set containing all Pure Ruby relations of certain
types�

Much work has been put into hiding the implementation and most of the settheoretical
reasoning� for example by exploiting the advanced parsing and prettyprinting features in
Isabelle� We follow the same style of development as described by Paulson ��� and introduce
standard introduction and elimination rules for all new constructors and a large number of
rewrite rules to lift the reasoning close to the Rubylevel�

��� Signals

The theory of signals de�nes the set of streams and a number of functions to combine and
destruct signals� The theory is based on a theory de�ning the �xed length lists� nlists� which
is not presented in this paper� However� nlists are de�ned in terms of listn from the ZF
distribution together with the usual operations on nlists such as� nnil� the nilelement� ncons�
to concatenate an element to the front of the list� and nsnoc� to concatenate an element to
the back of the list� The need for nsnoc will be apparent in connection with the recursive
combinators in Section ��
� The de�nition of the theory signal is shown in Figure ��

Signal � Nlist � Univ �

consts

time�ChTy�BasChTy�ChEl�snil �� �i�

sig�pri�sec �� �i �� i�

spair �� ��i�i���i� ���	
��
��

scons �� ��i�i�i���i� ����
��
��
��

ssnoc �� ��i�i�i���i� ����
	�
��
��

translations

�sig�A� �� �time �� A�

defs

time
def �time �� integ�

snil
def �snil �� �lam t�time�nnil�

spair
def �	a � b� �� �lam t�time�	a�t�b�t��

scons
def ��a��l�n� �� �lam t�time�ncons�n�a�t�l�t�

ssnoc
def ��l	�a�n� �� �lam t�time�nsnoc�n�l�t�a�t�

pri
def �pri�a �� �lam t�time�fst�a�t �

sec
def �sec�a �� �lam t�time�snd�a�t �

chel
def �ChEl �� univ�Union�BasChTy�

chty
def �ChTy �� Pow�ChEl�

rules

nat
in
base �nat�BasChTy�

end

Figure �� De�nition of signals

Signals make use of the Isabelle facility to de�ne translations and are represented as
functions from time to a type� where time is integers �from the standard distribution	� Four
constructor functions are de�ned for signals� snil constructs a signal from nnil� spair pairs

two signals and scons and ssnoc concatenates a signal to a signal list from the front or the
back respectively� Type rules for each of them are proved automatically by the tactic typeit�

snil
type snil�sig�nlist���A

spair
type ��a�sig�A�b�sig�B�� ��� 	a�b��sig�A�B

scons
type ��a�sig�A�l�sig�nlist�n�A����� �a��l�n��sig�nlist�succ�n�A

ssnoc
type ��a�sig�A�l�sig�nlist�n�A����� �l	�a�n��sig�nlist�succ�n�A

In the subsequent Ruby proofs we need elimination rules for four di�erent cases of signals
corresponding to the constructors above� The elimination rule for signal pairs is proved for
example by exploiting extensionality of functions and pairs� The other three are proved in a
similar fashion�

sig
pairE �� c�sig�A�B�

��a b��� c�	a�b��a�sig�A�b�sig�B �����P ����� P

sig
nlist�E �� c�sig�nlist���A� c�snil���P ����� P

sig
nlistE �� c�sig�nlist�succ�n�A�

��a l��� c��a��l�n��a�sig�A�l�sig�nlist�n�A�����P�����P

sig
ssnocE �� c�sig�nlist�succ�n�A�

��a l��� c��l	�a�n��a�sig�A�l�sig�nlist�n�A�����P�����P

Two destructor functions� pri and sec� are de�ned for signal pairs and the expected
equality rules proved� Furthermore signal pairing and concatenation have the conventional
injection properties�

pri
iff a�sig�A ��� pri�	a�b� � a

sec
iff b�sig�B ��� sec�	a�b� � b

spair
inject �� 	x��x�� � 	x�a�x�a�� x��sig�A� x��sig�B�

x�a�sig�C� x�a�sig�D�

�� x� � x�a� x� � x�a �� ��� P �� ��� P

scons
inject �� �a��la�n� � �b��lb�n�� a�sig�A� b�sig�B�

la�sig�nlist�n�C� lb�sig�nlist�n�E�

�� la � lb� a � b �� ��� P �� ��� P

scons
iff �� a�sig�A� b�sig�B� la�sig�nlist�n�C�

lb�sig�nlist�n�E �� ���

�a��la�n� � �b��lb�n� 	�� la � lb � a � b

The lower part of Figure � de�nes the sets of channel elements and channel types� In
Section ��� we will need a set which is large enough to contain all Ruby channel types� in
order to de�ne the set of Pure Ruby relations inductively� The two following theorems state
that both pairs and nlists are contained in the channel types�

prod
in
chty �� A�ChTy� B�ChTy �� ��� A�B� ChTy

nlist
in
chty �� A�ChTy� n�nat �� ��� nlist�n�A� ChTy

Finally the de�ned rule nat�in�base is an example of how new types can be added to the
set of base channel types�

��� Relational de�nitions

This theory de�nes various sets describing the values of the domain and range of signal rela
tions� The de�nitions are given in Figure � together with syntactic translations for relations�
�� and signal relations� 	���

The set dtypR� de�nes a subset of A if R � A
sig
� B� These sets are needed in subsequent

Relation � Signal �

consts

dtyp�rtyp�ddtyp�rdtyp�

rrtyp�drtyp �� �i��i�

��rel� �� ��i�i���i� ���
��
� ������� ��

��srel� �� ��i�i���i� ���
	���
� ������� ��

translations

�A�B� �� �Pow�A � B�

�A	��B� �� �sig�A�sig�B�

defs

dtyp
def �dtyp�R �� range�Union�domain�R�

rtyp
def �rtyp�R �� range�Union�range�R�

ddtyp
def �ddtyp�R �� domain�dtyp�R�

rdtyp
def �rdtyp�R �� range�dtyp�R�

rrtyp
def �rrtyp�R �� range�rtyp�R�

drtyp
def �drtyp�R �� domain�rtyp�R�

end

Figure �� Auxiliary de�nitions on relations

proofs in connection with simple combinators� For dtyp the following properties can be
proved�

dtyp
sig �� 	x�y��R� x�sig�A �� ��� x�sig�dtyp�R

dtyp
rel �� R 	� sig�A�sig�B� x�sig�dtyp�R �� ��� x�sig�A

sub
dtyp
rtyp R�A	��B��� R�dtyp�R	��rtyp�R

Similar properties are proved for the four sets de�ned for relations on signal pairs �relations

for which R � A�B
sig
� C �D	� i�e� the sets ddtyp etc�

��� Pure Ruby

The four Pure Ruby elements introduced in Section � are de�ned in ZF as shown in Figure ��
ZF does not have a special notion of types� as for example HOL does� so all types must
be supplied explicitly� However for spread� serial and parallel composition the types can be
inferred from the relational arguments� This unfortunately is not possible in the case of the
delay element� thus the type must be given as a parameter� In contrast to conventional Ruby
notation serial composition is written as two semicolons to distinguish it from Isabelle�s no
tation for nested implication� and parallel composition is written with double square brackets
to distinguish it from ZF list notation�

For each of the four elements of Pure Ruby� type� introduction and elimination rules are
proved� For the spread element the rules are�

spread
type f�A�B ��� spread�f�A	��B

spreadI �� ALL t�time�	x�t�y�t��f� f�A�B� x�sig�A� y�sig�B �� ��� 	x�y��spread�f

spreadE �� 	x�y��spread�f� ��ALL t�time�	x�t�y�t��f ����� P �� ��� P

Similar rules are proved for the delay element �D	� Also the rules for serial and parallel
composition are very similar� The rules for parallel composition re�ect the fact that it relates

PureRuby � Relation �

consts

spread�D �� �i��i�

par �� ��i�i���i� �����
��
���

��ser� �� ��i�i���i� ���
 ���
� ������� ��

defs

spread
def �spread�f�� �xy�sig�domain�f � sig�range�f�

EX x y� xy�	x�y� � �ALL t�time�	x�t�y�t��f��

delay
def �D�A �� �xy�sig�A � sig�A�

EX x y� xy�	x�y� �

�ALL t�time�x�t � y��t � ����

comp
def �R �� S �� �xz�domain�R � range�S�

EX x z y� xz � 	x�z� � 	x�y��R � 	y�z��S��

par
def ���R�S�� �� �xy��sig�dtyp�R � dtyp�S � sig�rtyp�R � rtyp�S�

EX x y� xy � 	x�y� �

	pri�x�pri�y��R � 	sec�x�sec�y��S ��

end

Figure �� De�nition of the four Pure Ruby elements

signal pairs and not conventional pairs�

par
type �� R�A	��B� S�C	��E �� ��� ��R�S����A�C	���B�E

parI �� 	x��y���R� 	x��y���S� x��sig�A� x��sig�B�

y��sig�C� y��sig�E �� ��� 		x��x���	y��y������R�S��

parE �� 		x��x���	y��y��� ���R�S��� �� 	x��y���R� 	x��y���S ����� P�

x��sig�A� x��sig�B� y��sig�C� y��sig�E �� ��� P

To verify that the above de�nitions in ZF actually describe the same Pure Ruby con
structors as de�ned in Section �� we prove that they enjoy the mathematical properties
expected� As an example let us look at the equality rule for serial composition�

comp
iff �� R�A	��B� S�B	��C� x�sig�A� z�sig�C �� ���

	x�z�� R��S 	�� �EX y�sig�B� 	x�y��R � 	y�z��S

The theorem is proved in one step by fast�tac� It is easily seen that this theorem expresses
the same property as the de�nition of serial composition given in Section � �Equation
	 under
the assumption that the types are correct�

����� Distributivity of Serial and Parallel Composition

A useful example of the use of the typed tactics is to prove equality rules in the Ruby algebra�
Here we prove the distributivity of serial and parallel composition which can be expressed as�

�R � ��

sig
� ���S � ��

sig
� ���T � ��

sig
� ���U � ��

sig
� �� � �R�S� � �T�W � � ��R � T 	� �S �W 	�

This is entered into Isabelle as a meta implication with the relation types as premises�

� val prems � goal PureRuby�thy

��� R�A�	��B�� S�A�	��B�� T�B�	��C�� W�B�	��C� �� ���

��R�S�� �� ��T�W�� � ���R �� T��S �� W����

Level �

�� ��R�S�� �� ��T�W�� � ��R �� T�S �� W��

Many proofs in connection with Ruby consist of proving equalities of relational expressions
written in a pointfree notation� Therefore a special tactic� prove�equal� has been developed
to start such proofs� An equality is split into two implications and appropriate data values
are added to the relations and typed properly according to the premises�

� by �prove
equal prems ��

Level �

�� ��x y��� 	x� y� � ��R�S�� �� ��T�W��� x � sig�A� � A��

y � sig�C� � C� �� ��� 	x� y� � ��R �� T�S �� W��

�� ��x y��� 	x� y� � ��R �� T�S �� W��� x � sig�A� � A��

y � sig�C� � C� �� ��� 	x� y� � ��R�S�� �� ��T�W��

Both these subgoals can be solved by the typed version of the classical prover� fast tac t�
using the classical ruleset RubyZF cs�

� by �ALLGOALS �fast
tac
t RubyZF
cs prems�

No subgoals�

The goals cannot be solved by the standard version of fast tac as it will make wrong instan
tiations of type variables�

��� The Ruby Relation Type

To be able to reason about Ruby relations by structural induction over the four elements of
Pure Ruby� we construct a set containing all Pure Ruby relations� We de�ne the set pure
inductively� as shown in Figure �� using Isabelle�s inductive package� Each element of pure is
a triple containing a relation� its domain type and its range type which are subsets of signal
relations on channel elements� on channel types and channel types respectively �the domains
�eld	� The inductive set is characterised by four introduction rules� one for each Pure Ruby
element� as stated in the intrs �eld� Three specialised type rules are needed to typecheck
the inductive de�nition�

spread
chel
rel �� A�ChTy� B�ChTy� f�A�B �� ��� spread�f�ChEl	��ChEl

D
chel
rel A�ChTy ��� D�A�ChEl	��ChEl

par
chel
rel �� S�ChEl	��ChEl� R�ChEl	��ChEl����� ��R�S���ChEl	��ChEl

The above type rules together with a few others are stated in the type intrs �eld� The
inductive de�nition then returns a number of theorems e�g� the four introduction rules� an
elimination rule and an induction rule�

The set of Pure Ruby relations� 	R�� is de�ned as the subset of signal relations which
belong to the set pure� Pure Ruby type rules are proved in one step by fast tac t using the
introduction rules from above inductive de�nition�

spreadR �� A�ChTy� B�ChTy� f�A�B �� ���spread�f�A	R�B

delayR A�ChTy ��� D�A�A	R�A

compR �� R�A	R�C� S�C	R�B �� ��� R��S � A	R�B

parR �� R�A�	R�B�� S�A�	R�B� �� ��� ��R�S�� � A��A�	R�B��B�

The rule expressing structural induction over Pure Ruby relations is easily proved by the
induction theorem for pure� Note that the predicate P is a function of both the relation and

RubyType � PureRuby �

consts

pure �� �i�

��rrel� �� ��i�i���i� ���
	R��
� ������� ��

inductive

domains �pure� 	� ��ChEl	��ChEl�ChTy�ChTy�

intrs

spread ��� A�ChTy� B�ChTy� f�A�B �� ��� 	spread�f�A�B��pure�

delay �A�ChTy ��� 	D�A�A�A�� pure�

comp ��� 	R�A�B��� pure� 	S�B��C�� pure����� 	R��S�A�C��pure�

par ��� 	R�A��B���pure� 	S�A��B���pure�����

	��R�S���A��A��B��B���pure�

type
intrs ��spread
chel
rel�D
chel
rel�comp
type�

par
chel
rel�prod
in
chty��

defs

rrel
def �A	R�B�� �r�A	��B� 	r�A�B��pure��

end

Figure �� De�nition of the Pure Ruby set

its type�

rubyrel
induct ��R� A	R�B �

��f A B�f�A�B ��� P�A�B�spread�f�

��A�P�A�A�D�A�

��R S A B� B� C��� R�A	R�B�� S�B�	R�C �P�A�B��R�

P�B��C�S�� ��� P�A�C�R��S �

��R S A� A� B� B���� R�A�	R�B�� S�A�	R�B�� P�A��B��R�

P�A��B��S�� ��� P�A��A��B��B����R�S��

�� ��� P�A�B�R�

� Circuits and Combinators

This section uses the formalisation of Pure Ruby from the previous section as a platform
for de�ning various Ruby circuits and combinators commonly used in connection with VLSI
design� Circuits are generally nonparameterised signal relations and the combinators are
parameterised signal relations typically combining signal relations into new signal relations�
First we introduce a suite of relations� usually known as wiring relations� describing di�erent
kinds of wiring patterns as lifted pointwise relations� Many of these wiring relations are
used to de�ne a number of combining forms which combine one or more relations into new
relations �similar to what we have seen for serial and parallel composition	� The circuits and
combinators are de�ned solely in terms of Pure Ruby and the combinators are divided into
either simple or recursive ones�

For each circuit and combinator the same � kinds of rules are proved� a signal type rule�
a Ruby type rule� an introduction rule and an elimination rule� The two type rules state the
general signal relation type and that the relation belongs to the set of Pure Ruby relations�
The introduction and elimination rules follow the same pattern as we saw in Section ��
 for
the Pure Ruby elements�

��� Wiring Relations

In Ruby various types of component interconnections are described by lifted pointwise re
lations and are often known as wiring relations� They are typically used to �glue together�
adjacent relations by getting the respective wiring patterns to match� In this section we pre
sent a number of the basic wiring relations together with a suite of wiring relations used in
connection with nlists and thus parameterised in their size�

The relation � �IdA�	 is the polymorphic identity relation for all types A and relates two
equal signals of data� reorg describes the conversion between the two possibilities of pairing
three elements� cross relates a pair of values to the reversed pair� Finally dub relates a stream
to two copies of the same stream thus describing a conventional fork� The standard graphical
interpretations of some of the wiring relations� together with their �polymorphic	 types of the
signals� are shown in Figure � and clearly expresses their intended behaviour�

α
β α

β
α

α

α
α α

α
β

β

α

γ γ

ι reorg dubcross

Figure �� Graphical interpretation of simple wiring relations

All de�nitions of wiring relations follow the same pattern and are the lifting of a combina
tional relation by the spread element� Unlike conventional Ruby notation all wiring relations
have to be explicitly parameterised in their types� The de�nitions are shown in Figure �� The
two relations lwir and rwir describes special wiring patterns which will be used in the next
section to de�ne relational inverse�

We show a signal type rule� a Ruby type rule� an introduction rule and an elimination
rule for the wiring relation reorg�

reorg
type reorg�A�B�C� �A�B�C	��A�B�C

reorgR ��A�ChTy�B�ChTy�C�ChTy�� ��� reorg�A�B�C� �A�B�C	R�A�B�C

reorgI ��a�sig�A�b�sig�B�c�sig�C �� ���

	 		a�b��c��	a�	b�c�� ��reorg�A�B�C

reorgE �� 	 		a�b��c��	d�	e�f�� ��reorg�A�B�C ���a�d�b�e�c�f����� P�

a�sig�A!�b�sig�B!�c�sig�C!�d�sig�A!!�e�sig�B!!�

f�sig�C!!�� ��� P

Recursive combinators usually relates signals of nlists as will be seen in Section ��
 and
we therefore need to be able to concatenate single elements to either side of the nlists� Since
all de�nitions in Ruby are given in a pointfree notation these operations are also de�ned as
relations on signals�

The relation apln �append left	 relates an element a� and a list of n elements a� to a list
of n � � elements where a� is concatenated to the front of a�� The relation aprn �append
right	 is similar to apln but the element is appended to the back of the list� The graphical
interpretations of apln and aprn are depicted for a speci�c size� n� in Figure ���

The de�nitions of the nlist related wiring relations are shown in the lower part of Figure ��
The relation NNIL relates two empty signal nlists of any type� As for reorg above four rules

Wiring � RubyType �

consts

Id�dub �� �i��i�

NNIL�cross�lwir�rwir�apl�apr �� ��i�i���i�

reorg �� ��i�i�i� �� i�

defs

Id
def �Id�A �� spread��xy�A�A�EX x� xy�	x�x���

lwir
def �lwir�A�B �� spread��ab�A��A��B�B�

EX a b�ab � 	a�	a�	b�b�����

rwir
def �rwir�A�B �� spread��ab��A��A�B �B �

EX a b�ab � 		a�	a�b���b���

reorg
def �reorg�A�B�C�� spread��ab� ��A�B�C��A��B�C�

EX a b c�ab �			a�b��c��	a�	b�c�����

cross
def �cross�A�B �� spread��ab� ��A�B��B�A�

EX a b� ab � 		a�b��	b�a����

dub
def �dub�A �� spread��ab� �A��A�A� EX a� ab � 	a�	a�a����

NNIL
def �NNIL�A�B �� spread��ab��nlist���A � nlist���B�

ab � 	nnil�nnil���

apl
def �apl�A�n �� spread��ab��A�nlist�n�A � nlist�succ�n�A�

EX a� a��ab � 		a��a���ncons�n�a��a����

apr
def �apr�A�n �� spread��ab��nlist�n�A�A � nlist�succ�n�A�

EX a� a��ab � 		a��a���nsnoc�n�a��a����

end

Figure �� De�nition of simple wiring relations

���

�

nlist����

apl�

�

nlist����
PPP

nlist����

�

nlist����

apr�

Figure ��� Graphical interpretation of apln and aprn for n � ��

are proved as e�g� for apr�

apr
type apr�A�n�nlist�n�A � A	��nlist�succ�n�A

aprR A�ChTy ��� apr�A�n�nlist�n�A � A	R�nlist�succ�n�A

aprI ��a�sig�A� l�sig�nlist�n�A�� ��� 		l�a���l	�a�n���apr�A�n

aprE �� 		la�a���lb	�b�n���apr�A�n�a�sig�A��b�sig�A��

la�sig�nlist�n�A�� lb�sig�nlist�n�A"�

��a�b�la�lb �� ��� P �� ��� P

��� Simple Combinators

Combinators are usually highorder functions which� given appropriate relational arguments�
return signal relations� All the de�nitions are given in a pointfree notation in terms of Pure
Ruby elements� This has the advantage of maintaining the simplicity of the basic theory�
of permitting structural induction� and general transformation rules� Unfortunately it also
makes the de�nitions look very complicated and we therefore show that they are equivalent

to the more conventional de�nitions using data values� Thus for all combinators we prove the
conventional type� introduction and elimination rules plus the above equality rule�

Figure �� demonstrates how relational inverse can be de�ned in terms of Pure Ruby
using the wiring relations lwir and rwir� Furthermore the �gure illustrates the graphical
interpretation of Fst and Snd�

� �

�

�

lwir

rwir
R

�

lwir 	
��
R� �� � 	 rwir

�

�

�

�

�

R � �

� �R

Fst�R� Snd�R�

Figure ��� Graphical interpretation of inversion� Fst and Snd

In Figure �� the de�nitions of some of the simple combinators are given� As mentioned
in Section ��
 all type arguments must be given explicitly in ZF� but in many cases they can
be deduced from the relational arguments by dtyp� rtyp etc�

We �rst prove that the nonparameterised version of inversion� �� equals the type para
meterised version� inv�� I�e� that no information is lost when deducing the types from the
relations�

inv!
iff R�A	��B ��� R� � inv!�A�B�R

Using the above theorem the � conventional rules are easily proved� Clearly inverse of R
is a Pure Ruby relation if R is �stated by invR	 as it is only constructed from Pure Ruby
elements� The last theorem� inv iff� shows that the de�nition actually corresponds to the
more conventional de�nition using data values�

inv
type R�A	��B ��� R� �B	��A

invR R�A	R�B ��� R� �B	R�A

invI �� 	b�a��R� a�sig�A� b�sig�B �� ��� 	a�b��R�

invE �� 	a�b�� R��R�A	��B� �� 	b�a��R �� ��� P �� ��� P

inv
iff R�A	��B ��� 	a�b�� �R� 	�� 	b�a��R

The combinator l �called below� and written as �� in Isabelle	 describes partial composition
for two relations whose domain and range types are both pair types� in R l S� the second
component in the domain of R is connected to the �rst component of the range of S� The
graphical interpretation of this is with R below S as shown in Figure �
� The dashed lines to
the left suggest how below is constructed from Pure Ruby�

The Isabelle de�nition of below is given in the lower part of Figure ��� We �rst prove
that the nonparameterised version� ��� equals the type parameterised version� below��

below!
iff ��R �A�B	��C�De� S�E�F	��B�G �� ���

R �� S � below!�A�B�C�De�E�F�G�R�S

We prove a similar family of rules to the above� where the last rule again expresses that

SimpComb � Wiring �

consts

inv! �� ��i�i�i���i�

below! �� ��i�i�i�i�i�i�i�i�i���i�

�inv� �� �i��i� ���
�� ���� ��

Fst�Snd �� ��i�i���i�

below �� ��i�i���i� ���
 ���
� ������� ��

beside �� ��i�i���i� ���
 ���
� ������� ��

defs

inv!
def �inv!�A�B�R�� lwir�B�A����Id�B���R�Id�A������rwir�B�A�

inv
def �R� �� inv!�dtyp�R�rtyp�R�R�

Fst
def �Fst�A�R �� ��R�Id�A���

Snd
def �Snd�A�R �� ��Id�A�R���

below!
def �below!�A�B�C�De�E�F�G�R�S ��

reorg�A�E�F��Snd�A�S���reorg�A�B�G���

Fst�G�R �� reorg�C�De�G�

below
def �R �� S �� below!�ddtyp�R�rdtyp�R�drtyp�R�rrtyp�R�

ddtyp�S�rdtyp�S�rrtyp�S�R�S�

beside
def �R �� S �� ��R� �� �S���

end

Figure ��� De�nition of simple combinators

R l S

�

��

�

	

�

R

S

R
 S

	

�

� �

�

�R S
�� ��ll

reorg reorg�� Snd�R� Fst�S�� �reorg��

�
�

�
	 ��

�� �

�

�

	
S

R

Figure �
� Graphical interpretation of below and beside

�� has the expected mathematical properties in terms of data values�

below
type ��R �A�B	��C�De� S�E�F	��B�G����� R �� S��A�E�F	��C��De�G

belowR ��A�ChTy� B�ChTy� C�ChTy� De�ChTy� E�ChTy� F�ChTy� G�ChTy�

R �A�B	R�C�De� S�E�F	R�B�G����� R �� S��A�E�F	R�C��De�G

belowI �� a�sig�A� c�sig�C� d�sig�De� e�sig�E� f�sig�F�

g�sig�G� 		a�b��	c�d���R� 		e�f��	b�g���S� b�sig�B�����

	 		a�e��f��	c�	d�g�� � � R �� S

belowE �� 	 		a�e��f��	c�	d�g�� � � R �� S �

��b��� 		a�b��	c�d���R� 		e�f��	b�g���S� b�sig�B�����P�

R�A�B	��C�De� S�E�F	��B�H� a�sig�A!� c�sig�C!�

d�sig�De!� e�sig�E!� f�sig�F!� g�sig�G!�� ��� P

below
iff �� a�sig�A!�c�sig�C!�d�sig�De!�e�sig�E!�f�sig�F!�

g�sig�G!� R�A�B	��C�De� S�E�F	��B�G �� ���

	 		a�e��f��	c�	d�g�� � � R �� S 	��

�EX b�sig�B�		a�b��	c�d�� �R � 		e�f��	b�g�� �S

The combinator
 �beside� which is written as �� in Isabelle	 is also depicted in Fi
gure �
 and can be de�ned in terms of below and inverse� We prove that it has the expected
mathematical properties�

beside
iff �� a�sig�A!� b�sig�B!� c�sig�C!� e�sig�E!� f�sig�F!�

g�sig�G!� R�A�B	��C�De� S�De�E	��F�G �� ���

	 	a�	b�e���		c�f��g� � � R �� S 	��

�EX d�sig�De�		a�b��	c�d�� �R � 		d�e��	f�g�� �S

The Ruby relations generate a relational algebra which de�nes a large number of equiva
lences� These are used in the practical design process with Ruby usually performed in the
TRuby system� Most equality rules concerning simple combinators can be proved automa
tically by the tactic ProveSimp� which is similar to the one used to prove assoc comp in
Section ��
���

fun ProveSimp prems �

prove
equal prems �

THEN ALLGOALS �fast
tac
t RubyZF
cs prems�

where RubyZF cs contains all introduction and elimination rules for the simple combinators
and wiring relations and additionally all type rules have been added to basictypeinfo�
Equations proved by above tactic are for example�

compinv �� R�A	��B� S�B	��C ����� �R �� S� � S���R�

NNILinv NNIL�A�B� � NNIL�B�A

fstsndpar �� R�A	��B� S�C	��De ����� Fst�C�R��Snd�B�S � ��R�S��

abides �� R�A�B	��C�De� S�De�E	��F�G� T�H�I	��B�J� U�J�K	��E�L �����

�R �� S���T �� U � �R��T���S��U

To demonstrate the use of the Pure Ruby induction theorem we sketch a proof of the
socalled retiming property of Pure Ruby relations� The retiming property states that the
absolute time can be changed without a�ecting the behaviour of the circuit� In Ruby this
can be expressed by surrounding a relation with a delay and an inverse delay element�

� val prems � goal SimpComb�thy

���R�R�A	R�B ��� R � D�A �� R �� D�B���

Level �

�� ��R� R � A	R�B ��� R � D�A �� R �� D�B�

Applying the rule rubyrel�induct leads to the four subgoals below �one for each Pure Ruby

element	 which are easily proved� The actual proofs are not shown here�

� by �eresolve
tac �rubyrel
induct� ��

Level �

�� ��R f A B� f � A�B ��� spread�f � D�A �� spread�f �� D�B�

�� ��R A� D�A � D�A �� D�A �� D�A�

�� ��R Ra S A B� B� C�

�� Ra � A	R�B�� S � B�	R�C� Ra � D�A �� Ra �� D�B���

S � D�B� �� S �� D�C� �� ���

Ra �� S � D�A �� �Ra �� S �� D�C�

"� ��R Ra S A� A� B� B��

�� Ra � A�	R�B�� S � A�	R�B�� Ra � D�A� �� Ra �� D�B���

S � D�A� �� S �� D�B�� �� ���

��Ra�S�� � D�A� � A� �� ��Ra�S�� �� D�B� � B��

��� Recursive Combinators

This section shows examples of recursively de�ned combinators� typically used to describe
circuits with repetitive structures� Figure ���a	 illustrates how a combinator� mapf � which
maps a relation to each element of a list� recursively can be de�ned in terms of Pure Ruby�
The su�x f re�ects that the argument relation of mapf is a function from its position in the
structure to a signal relation� Figure ���b	 depicts the conventional graphical interpretation
of mapf �

�

�

�

�

�

�

�

�

�

�

�

�

��
�

b
bb

b
bb �

��
�
���
��
aa

a

b
bb

n n

apr��n aprn

mapfn�R�

R�n�

n� �n� �

�

�

�

�

�a�

nlist�n � ���

R���

R���

�b�

R�n�

mapfn���R�

nlist�n� ���

Figure ��� Graphical interpretation of mapfn���

The typeparameterised version of map� mapf�� is de�ned in Isabelle using the primitive
recursion operator over natural numbers� rec� It is shown in Figure �� and follows the �gure
above� As for the simple combinators we de�ne a version of map� mapf� where the type
information is deduced from R� We prove that they describe the same relation�

mapf!
iff �� n�nat� R�nat��A	��B �� ��� mapf�n�R � mapf!�A�B�n�R

The conventional rules are proved for the mapf combinator� In particular mapfR shows
that mapfn�R	 is a Pure Ruby relation if R is� and the two theorems mapf zero and mapf succ

RecComb � SimpComb �

consts

mapf �� ��i�i���i�

colf�rowf �� ��i�i�i���i�

mapf! �� ��i�i�i�i���i�

colf! �� ��i�i�i�i�i���i�

defs

mapf!
def �mapf!�A�B�n�R ��

rec�n�NNIL�A�B�

#x y� �apr�A�x��� ��y�R�x�� �� apr�B�x�

mapf
def �mapf�n�R�� mapf!�dtyp�Union�range�R�

rtyp�Union�range�R�n�R�

colf!
def �colf!�A�B�C�n�R ��

rec�n�Fst�B�NNIL�A�C �� cross�nlist���C�B�

#x y�Fst�B�apr�A�x� �� �y �� �R�x ��

Snd�B�apr�C�x�

colf
def �colf�B�n�R �� colf!�ddtyp�Union�range�R�B�

rrtyp�Union�range�R�n�R�

rowf
def �rowf�B�n�R �� �colf�B�n�lam m�nat���R�m� ��

end

Figure ��� De�nition of recursive combinators

�

�

�

�

�

�

� � � �

nlist�n� ��� nlist�n� ���

R���

R���

R�n�

�

�

nlist�n� ���

nlist�n� ���

R��� R��� R�n�
� �

rowfn���R�colfn���R�

Figure ��� Graphical interpretation of colfn�� and rowfn���

express that mapf enjoys the expected mathematical properties�

mapf
type �� n�nat� R�nat �� A	��B����� mapf�n�R� nlist�n�A	��nlist�n�B

mapfR �� n�nat� R�nat �� A	R�B����� mapf�n�R� nlist�n�A	R�nlist�n�B

mapf
zero 	snil�snil�� mapf���R

mapf
succ �� n�nat� R�nat��A	��B� a�sig�A� b�sig�B�

la�sig�nlist�n�A� lb�sig�nlist�n�B �� ���

	�la	�a�n���lb	�b�n�� � mapf�succ�n�R 	��

�	a�b��R�n � 	la�lb�� mapf�n�R

Similarly the column and row structures depicted in Figure �� can be de�ned in terms of
Pure Ruby� Their de�nition in Isabelle is given in Figure �� and the expected rules can be

proved� For example the simpli�cation rules for colf �

colf
zero b�sig�B ��� 	 	snil�b��	b�snil� � �colf�B���R

colf
succ ��n�nat� R�nat��A�B	��B�C� a�sig�A!� c�sig�C!� bs�sig�B�

b��sig�B� la�sig�nlist�n�A!�lc�sig�nlist�n�C!�� ���

	 	�la	�a�n��bs��	b���lc	�c�n�� �� colf�succ�n�R 	��

�EX bn�sig�B��		a�bs��	bn�c���R�n �

		la�bn��	b��lc���colf�n�R

Note that in the case of colfn�R	 the type B cannot be deduced from the relation� since colf is
not limited by the relation R in the zero case� Choosing the second part of the domain side
of R would be too restrictive in the zero case� Thus we could not prove that the notational
shorthand colf were equal to the full parameterised de�nition colf��

� Conclusion

ZF proved to be a wellsuited basis for a Ruby formalisation� The Pure Ruby relations could
easily be embedded� their types represented and the Pure Ruby set could be characterised by
an inductive de�nition� The whole development is made as a conservative extension of ZF
which means that it is both consistent and sound� The explicit type parameters� especially
for wiring relations� makes the RubyZF notation a little clumsy� however� types can always
easily be deduced from the context� Furthermore we demonstrated that for most combinators
�e�g� relational inverse	 a notational shorthand can be de�ned where the types can be deduced
from the relational arguments� Due to the simplicity �purity	 of ZF the system can serve as
a reference implementation of Ruby� or in other words as a �lynchpin� for implementations
of Ruby within other formalisms�

The development of specialised tactics in connection with type checking considerably
increases the productivity and clarity in doing the proofs� The user is very seldom bothered
with subgoals relating to type checking as this is all done behind the scenes� Extending
fast tac with type checking enabled us to solve a large number of goals automatically which
could not be solved with the standard version�

The parser and pretty printing mechanisms allowed us to obtain a syntax very close to
the conventional Ruby syntax� However working in a huge theory like ZF it would be useful
to be able to overwrite previous de�nitions for example such that parallel composition could
be written with single square brackets�

The development of new theories is an interactive process where the de�nitions� even in
underlying theories� are often changed� Our experience clearly shows that the use of general
rule lists and automatic proof tactics means that most proofs can be left unchanged� So even
if proofs are initially developed using lowlevel tactics it pays o� to construct a highlevel
proof later�

� Acknowledgements

Thanks to Robin Sharp for inspiring cooperation with the development of the TRuby design
system� to Larry Paulson for being very helpful answering my Isabelle�ZF questions� and
�nally to Michael Mendler for showing interest in my project and for many valuable comments�

References

��� M� J� C� Gordon and T� F� Melham� Introduction to HOL� A Theorem Proving Environ�

ment for Higher Order Logic� Cambridge University Press� ���
�

��� G� Jones and M� Sheeran� Circuit design in Ruby� In J� Staunstrup� editor� Formal

Methods for VLSI Design� Elsevier Publishers� �����

�
� G� Jones and M� Sheeran� Relations and re�nement in circuit design� In Morgan� editor�
Proc� BCS FACS Workshop on Re�nement� SpringerVerlag Workshop in Computing�
�����

��� Lawrence C� Paulson� Set theory for veri�cation� I� from foundations to functions�
Journal of Automated Reasoning� ���
	�
�
�
��� ���
�

��� Lawrence C� Paulson� A �xedpoint approach to implementing �co	inductive de�nitions�
In Alan Bundy� editor� Proceedings of the ��th International Conference on Automated

Deduction� pages �������� Nancy� France� June ����� SpringerVerlag LNAI ����

��� Lawrence C� Paulson� Isabelle� A Generic Theorem Prover� SpringerVerlag LNCS ����
�����

��� Lars Rossen� Proving �facts about	 ruby� In G� Birtwistle� editor� The IV Higher Or�

der Workshop� volume Workshops in Computing� pages Kl�uwer Academic Pub������
�
Springer Verlag Workshop in Computing� �����

��� Lars Rossen� Ruby algebra� In G� Jones and M� Sheeran� editors� Designing Correct

Circuits� Oxford ����� Workshops in Computing� pages ����
��� SpringerVerlag Wor
kshop in Computing� �����

��� Robin Sharp and Ole Rasmussen� Transformational rewriting with Ruby� In CHDL 	�
�
pages �
������ Elsevier Science Publishers �NorthHolland	� ���
�

���� Robin Sharp and Ole Rasmussen� Using a language of functions and relations for VLSI
speci�cation� In Functional programming and Computer Architecture� FPCA	��� pages
������ June �����

