
Mechanizing Linear Logic in Isabelle

Sara Kalvala and Valeria de Paiva

Computer Laboratory, University of Cambridge

{sk,vcvp}@cl.cam.ac.uk

August 1995

Abstract

We present an implementation of propositional Linear Logic in the Isabelle proof system.
Previous implementations of Linear Logic have often been geared to studies of efficiency of
proof search; ours provides an environment for users to describe problems and to develop
proofs interactively. Isabelle provides many facilities for developing a useful specification and
verification environment from the basic formulation of logical systems. We briefly introduce
the logic and Isabelle, and discuss some of the issues in automatic theorem proving in Linear
Logic. We then describe the system we have built for executing proofs in Isabelle, and
illustrate its use.

1 Introduction

This paper describes a prover for propositional Linear Logic [5]. There already exist other theorem
provers for Linear Logic; developers of these provers have mostly concentrated on automatic
theorem-proving and often have been driven by a concern with timing efficiency of proof search.
These systems have been built directly in programming languages that allow the coding of fast
procedures. Our concern, on the other hand, has been to supply the community involved with
Linear Logic with a user-friendly proof system for interactively searching for proofs, and which
provides many facilities for examining proofs and building applications using the logic.

Our implementation is a straightforward application of the Isabelle methodology [13]. Isabelle is
a generic theorem prover: it provides an infra-structure onto which different logics can be added,
and theorem-proving environments can be quickly developed and used, without compromising the
rigour and security of proofs performed using it. We believe that the resulting system will be
helpful to anyone who is trying to prove a theorem in Linear Logic by hand. The concern has been
less with automation, and more with providing users with an environment where the logic can
be studied without the need for coding procedures or understanding the low-level implementation
details of the prover. But saying that, we have achieved a respectable amount of automation in
proof search, even without trying very hard.

We believe this implementation illustrates the usefulness of the “logical framework” approach to
building theorem provers: with very little effort involved, we have developed a proof system that
is easy to understand and extend. This paper can therefore be seen as a case study in the use of
Isabelle.

The paper is organised as follows. We first recall the main features of propositional Linear Logic
and discuss some of the problems in mechanizing it. Then we recall the main features of Isabelle. In
the next section we present our implementation and discuss its properties as well as our experience
using it. Finally we discuss some related work, draw some conclusions and point at some future
work.

2 Linear Logic

Traditionally, formulae in the context are considered to be permanent: once a formula is placed
in the context (either as an assumption or as a result of previous proof steps) it can be used
as many times as desired in building a proof. The basic idea of Linear Logic is that formulae
are thought of as resources that can be produced as well as consumed in the construction of a
proof. In their simplest form, each time a formula is used, it ceases to exist for further use. This
property is achieved (in a sequent calculus formulation of the logic) by the removal of the usual
rules of contraction and weakening. One consequence of this removal is that it leaves undefined
the context propagation in rules for logical connectives; thus we have two versions of all logical
connectives: the so-called multiplicatives and the additives.

The conventional use of formulae is restored with the use of exponential operators, modalities that
allow a formula to be re-used as many times as needed. This separation between consumable
and non-consumable values, and the associated power to pinpoint where in a proof a formula is
used, justifies the relevance of a linear view of logic. Exponentials allow us to recover the full
expressivity of intuitionistic logic.

In this paper, we will focus on the Intuitionistic fragment of Linear Logic (ILL). We recall the
sequent-calculus presentation of ILL in Figure 1, mostly to establish notation. The logic consists
of the multiplicative operators (the tensor (⊗) and the linear implication (−◦)), additive operators
(conjunction (&) and disjunction (⊕)), and the exponential (!).

Other formulations of ILL are also available, for example the natural-deduction style of rules [2].
The natural deduction in sequent form formulation of ILL also uses sequents, but the left-hand
side of the sequents are only used to store dependencies. Thus, there are no more ‘left’ and ‘right’
rules, as combinators only appear on the right-hand side. Instead, rules are of the ‘introduction’
and ‘elimination’ form, in typical natural deduction style.

There are several features of ILL that make it an interesting object of study. The mapping from
formulae in Intuitionistic Logic (IL) to ones in Linear Logic (which will by construction be in the
intuitionistic fragment of LL) is known as the Girard translation [4], the core part of which is the
decomposition of the usual implication A → B into the linear form !A−◦B. Another feature of
ILL is that the correspondence between proofs and λ-calculus terms has been well studied in this
fragment.

Classical Linear Logic (CLL, or simply LL) is characterized by an involutive negation, which
shares many of the desirable properties of the negation in Classical Logic. However, as explained
by Girard, the linearity of the logic makes it semantically constructive [4]. The study of CLL is
therefore interesting in its own right, and mechanizations of CLL could be useful proof tools. In
fact, several researchers have presented us with theorem provers for this version, as described in
Section 3.

Linear Logic has captured the attention of many researchers. Much of the research in LL has
been concerned with the study of the logic itself, and the fact that it provides a medium to study
subtle characteristics of proof theory. The ‘essence’ of a particular proof can be captured more
precisely when the proof itself has not been obtained by just adding more and more information
to the context. Proofs in LL isolate what is ultimately needed. In particular, if there is a proof
in IL, there is a corresponding proof in ILL, which is more informative than the former in many
ways.

Among other applications, LL provides a basis for modeling functional programming and logic
programming, and can be used as a platform for reasoning about concurrency. Many people
have claimed the adequacy of Linear Logic for studying state-oriented programming and non-
monotonicity [1]. It is to be expected that some of these applications will be more easily achieved
by the existence of a robust and easy-to-use mechanization of the logic.

Identity
A ` A

Γ, A, B, ∆ ` C
Exchange

Γ, B, A, ∆ ` C

Γ ` B B, ∆ ` C
Cut

Γ, ∆ ` C

Γ ` A
(IL)

Γ, I ` A

(IR)
` I

(0L)
Γ, 0 ` A

(1R)
Γ ` 1

Γ, A, B ` C
(⊗L)

Γ, A⊗B ` C

Γ ` A ∆ ` B
(⊗R)

Γ, ∆ ` A⊗B

Γ ` A ∆, B ` C
(−◦L)

Γ, ∆, A−◦B ` C

Γ, A ` B
(−◦R)

Γ ` A−◦B

Γ, A ` C
(&L)

Γ, A&B ` C

Γ, B ` C
(&L)

Γ ` A&BC

Γ ` A Γ ` B
(&R)

Γ ` A&B

Γ, A ` C Γ, B ` C
(⊕L)

Γ, A ⊕ B ` C

Γ ` A
(⊕R)

Γ ` A ⊕ B

Γ ` B
(⊕R)

Γ ` A ⊕ B

Γ ` B
Weakening

Γ, !A ` B

Γ, !A, !A ` B
Contraction

Γ, !A ` B

Γ, A ` B
Dereliction

Γ, !A ` B

!Γ ` A
Promotion

!Γ `!A

Figure 1: Intuitionistic Linear Logic

3 Previous efforts at mechanizing linear proofs

There have been some attempts to automate the process of proof construction in Linear Logic. In
this section we describe some of the results.

The connection between proof theory and logic programming is described by Hodas and Miller
[7], where they show the applications of a logic programming version of a fragment of LL, and
address the problem of splitting the context in the goal-directed use of LL. A further extension of
this work [12] describes a meta-logic in which the usual operators of λ-Prolog coexist with linear
operators as well as primitives for describing concurrency. Linear logic is part of the meta-logic;
it is also often useful to have LL at the object level.

A well-known mechanization of Linear Logic is the one developed by Tammet [14]. He considers
Classical LL, which allows him to use one-sided sequents. The main advantages of using one-
sided sequents is that one needs a smaller set of rules, and many equivalences can be exploited.
His prover is purpose-built, being implemented in Scheme (a variant of Lisp). Proofs are found
in both bottom-up (what we call backward) or top-down (forward) ways. He makes use of the
programming language and the concrete implementation of logical terms, to obtain a very efficient
search algorithm.

Lincoln and Shankar have recently described another prover for classical first-order LL [11]. They
have also exploited modifications to the form of sequents and, by expanding the data structures
to carry lists of free variables and substitutions, have been able to deal with the quantified logic,
through a Prolog implementation. They have also performed an extended timing analysis of the
resulting implementation. Galmiche and Perrier have studied automation of proof search by using
the permutativity in the order of application of rules in a sequent calculus proof [3]. These systems
adapt the rules of LL to make the proof search more tractable. Particularly, they exploit features
of classical LL to make these changes, therefore making it difficult to isolate the intuitionistic part
of the logic.

We have decided to step back a little, and question the emphasis these systems have taken with
fast and automatic proof search. Mechanized proof systems are often equated with automated
provers: one simply formulates the background information and a supposition in the language
accepted by the program, and the program returns, in some finite amount of time, an answer of
‘yes’ or ‘no’ as to the provability of the supposition. There is however another alternative outlook
in the theorem-proving community, emphasizing the development of proof checkers. With this
approach, the creative aspects of the proof process are in the control of a person rather than a
program, by allowing user interaction if and whenever necessary. The proof system just executes
proof steps supplied by the user while maintaining logical consistency.

The accepted fact that users have to do more things means that there must be better support
for their activity—often in the form of a tactic-based interface. User control does not mean that
the user must guide the checker through each and every step: automation of large parts of proof
effort is achievable. However, often a proof depends on the human guide to be continued, and in
a proof-checking paradigm this human assistance can be given in a straightforward manner. We
believe a tool with this philosophy will be useful to the community interested in Linear Logic, and
our system is particularly geared towards the proof checking paradigm. We hope the rest of this
paper illustrates this aspect of our proof system.

4 Isabelle

Isabelle is a general purpose proof system, developed by Paulson at the University of Cambridge
[13]. It is a representative of the so-called LCF family of provers, after a prover developed in the
late 70’s [6] and now virtually extinct, but which has spawned several descendants such as HOL
and Nuprl, as well as the ML programming language.

In general, these proof systems, as well as other ones in widespread use (such as Boyer and Moore’s
system, PVS, etc.), are characterized by embodying one particular logic. Other sets of theorems
and inferences representing other logics can be embedded, but they are directly interpreted in the
underlying logic, and details of the particular logic can intrude subtly in the reasoning process.

Isabelle, on the other hand, is designed to allows users to supply their own object-level logic to
work with, in a completely separate level from the workings of the ‘meta-logic’ underlying the
representation and manipulation of terms in the object logic. Systems with this philosophy are
known collectively as logical frameworks. While the other logical frameworks have been tailored
to be suitable for reasoning about the object logic, Isabelle is very appropriate for reasoning within

the object logic, not only because of the particular meta-logic used, but also because of the tools
which make up the environment provided by Isabelle.

Isabelle uses the strong type system of the underlying programming language (Standard ML)
to restrict the mechanisms for creation of theorems. Inference rules are theorems with (one or
more) premises and a conclusion. Typically, theorems in Isabelle can be axioms or proved theo-
rems. Axioms are stated directly, and accepted without proof. Other theorems must be derived
from combinations of existing theorems, and discovering the way of combining them is the proof
construction process.

Proofs are often attempted in a backward fashion: a goal is supplied by the user, and then
successively rules are applied to the current goals to reduce them to simpler and simpler forms,
until they correspond to existing theorems. In other words, suppose the aim is to prove goal "C".
If there exists a rule "A ⇒ C", then it is enough to prove the goal "A", as the theorem "C" is
derived by combining the theorem "A" with the rule "A ⇒ C". Conversely, the same theorem can
be obtained by forward proof: obtaining theorem "A" and resolving it with the antecedent of the
rule "A ⇒ C". However, in practice the more complex the eventual proof is, the easier (relatively)
it is to find it in a backward fashion rather than forward.

To allow theorems to be combined, Isabelle makes use of higher-order matching–a polymorphic
version of Huet’s procedure [8]. Terms themselves are represented as hereditary Harrop formulae.
In practice, this level of detail is hidden from the user: axioms of the logic and goals for theorem-
proving can be entered simply as strings, and any theorem is always pretty-printed. Resolution is
handled by tactics, that leave as many of the variables free as possible, and that allow backtracking
over instantiations by maintaining a (lazy) list of all unifications.

As a system for easy construction of specialized provers, Isabelle has several facilities for adding
parsing and pretty-printing for object logics. New constants can be given mixfix notation, while
more subtle (but optional) syntax features can be added in the Standard ML. Pattern matching
is available, and in fact we use it extensively in our work to allow easy manipulation of sequents.

Rules need not be applied one by one by the user: automated procedures can take a set of rules and
apply them successively and in different combinations until the goal is solved. Several rules could
be applicable at any one point, or with several different instantiations for free variables. Proof
search procedures keep all the information necessary to backtrack over reachable proof states.
Several search algorithms are available in the system; in most cases all a user needs to do to
invoke them is to decide which set of rules should be used to generate new proof states. Also,
proof search tactics can be made to leave the proof state in a simpler condition, from which then
the user can guide the proof until the goal is solved.

5 Our prover for ILL

In our endeavor to produce a proof systems for Linear Logic, we were guided by several principles:

• We wanted to use Isabelle: it seems sensible to use an “off-the-shelf” package. There is
already some work on λ-Prolog, which provides similar use of unification, so developing a
prover in Isabelle would provide a basis for comparison between the different systems.

• We wanted to achieve as much as possible within Isabelle’s top level of interaction, and
reduce the amount of specialized coding. This seems to be the way most users would like to
use provers: not by learning how to program in (in this case) Standard ML but by proving
theorems or changing primitive rules of the logic and examining the use of these in proving
other theorems.

• Our interest is not in complete automation: we believe that, in practice, any user would be
happy to interact with the system in short periods and get a proof completed reasonably
quickly rather than have the system chug away for an hour. As such, we were interested in
‘graceful failure’ (which means that even if automated proof search fails the user can still
learn something from the search) and the possibility of ‘macro-stepping’ through a proof,
where the system speeds the proof search at tedious parts and the user guides the system in
important parts of the proof.

Based on the ideas above, ILL has been coded into Isabelle. The support for sequents is based
on the existing formalization of a variant of Gentzen’s sequent-calculus (LK), due to Philippe de
Groote. The declaration of linear operators and the addition of the rules shown in Figure 1 is
straightforward. One trivial change to the rules is that, to allow the use of pattern matching, a

sequent such as A−◦B, Γ ` C must in fact be represented as Γ, A−◦B, ∆ ` C, as in the first form
it is implicit that the first formula in the sequent is the only one to which this rule must apply,
which is not really intended.

A technical problem arises with the rule for (Promotion), where the notation !Γ means that
the operator ! is applied to each element of Γ. This is solved by representing the logical rule of
(Promotion) as an inductive collection of three Isabelle rules, which together check that each item
of the context is exponentiated. The three Isabelle rules can be written as follows:

Γ ` A
Promotion1

Γ ‖ ` A

!A, Γ ‖ ∆ ` A
Promotion2

Γ ‖!A, ∆ ` A

‖ ∆ ` A
Promotion3

∆ `!A

In the above, the ‖ symbol represents a transient way of transfering items in the context from one
part of the context to the other, where only items checked to be exponentiated are held. With
this modification in place, we have obtained a complete mechanization of ILL.

In terms of proof search automation, we tried to use as much as possible Isabelle’s in-built proof
search functions. For sequent calculii, procedures exist for two kinds of search: a ‘fast’ depth-first
search, and a kind of search where a heuristic—typically the size of the subgoal—is used to guide
the search. It becomes possible to code a sophisticated search algorithm but, in our quest to
reduce the amount of coding involved, we decided to use undifferentiated search.

However, with this first, straightforward formulation of the proof system for ILL, a problem arises
when the proof depends on rules that can cause exhaustive search to non-terminate. Three such
rules occur in Linear Logic:

• Exchange: The problem with exchange is the same one that many theorem provers face with
commutativity laws.

• Contraction: Remembering that the proof process described is backward, a using the con-
traction rule corresponds to expanding the subgoal, and this operation can be applied again
and again:

Γ, !A ` B ⇐ Γ, !A, !A ` B ⇐ Γ, !A, !A, !A ` B ⇐ . . .

• Cut: Not only is there a problem with the fact that the cut rule always applies and hence
can be applied ad infinitum as the Contraction rule, it is also not useful without information
on what to cut. While Girard has shown that the cut rule can be eliminated from proofs in
ILL, in practice it is very useful to have some form of cut for proof search.

The need to use the permutation rule can be eliminated by changing the representation of a
sequent from a list-like structure into a multiset-like one. As an illustration, the (−◦L) rule from
Figure 1 is replaced by the following one:

Γ′ ` A ∆′, B ` C Γ] ∆ = Γ′] ∆′

(−◦L)
Γ, A−◦B, ∆ ` C

where we mean that the context Γ, ∆ will be split into some contexts Γ′, ∆′, such that the multi-set
union Γ′] ∆′ is equal to Γ] ∆. The important part is to keep this context division lazy, that is,
to have the particular Γ and ∆ left unspecified until the proof tree is fully built and the leaves of
the tree solved. Then the values are filled in and the proof completed. The approach is similar to
the one proposed by Hodas and Miller [7].

The main effect of the infinite application of contractions and cuts is that, if these rules must
be used unrestrictedly, depth-first search becomes disallowed, and even other search algorithms
become prohibitively expensive. While some proofs can be completed with a search algorithm

based on the size of the subgoal, other proof searches result in the use of a huge amount of space.
Not only that, proof search in LL is undecidable, so there is no way to know that a search will
complete successfully or not.

While many researchers have tried to solve the problem by fine-tuning the search algorithm, we
decided on a different approach. The main tool for automation we have used is proof by lemmas,
whereby some of the costs and difficulties of proof search are reduced by the use of additional
lemmas, sometimes replacing primitive rules. For example, a lemma we have found to be useful
in proof search is:

Γ, ∆ ` A
−◦L lemma

Γ, !(A−◦B), ∆ ` B

which corresponds to the LL proof:

Γ, ∆ ` A B ` B
(−◦L)

Γ, A−◦B, ∆ ` B
Dereliction

Γ, !(A−◦B), ∆ ` B

This small proof appears very frequently in many proofs, and performing the steps separately
increases the branching factor considerably, mainly due to the division of context that occurs. So,
we have added this derived rule into the ‘pack’ of rules to use in proof search. Likewise, other
lemmas have been proved and used for proof search, rather than using all the original definitions1;
these lemmas are presented in Figure 2.

raa1

Γ, !B−◦0, ∆, !B, Π ` A
raa2

Γ, !B, ∆, !B−◦0, Π ` A

Γ, !((!A−◦0)&(!B−◦0)), ∆ ` C
⊗ &

Γ, !(!(A ⊕ B)−◦0), ∆ ` C

Γ, B,∆, Π ` C
mp1

Γ, A, ∆, A−◦B, Π ` C

Γ, B,∆, Π ` C
mp2

Γ, A−◦B, ∆, A, Π ` C

Γ, !A, !B, ∆ ` C
& lemma

Γ, !(A&B), ∆ ` C

Γ, ∆ ` A
−◦L lemma

Γ, !(A−◦B), ∆ ` B

A, !A, Γ ` B
−◦R lemma

Γ `!A−◦B

Γ, !A−◦0, ∆ ` B
a not a

Γ, !A−◦(!A−◦0), ∆ ` B

Figure 2: Additional lemmas for proof search

It was said above that these rules are all simply presented to the automated search procedures.
However, there is one more feature in how these rules are added. Rules can be declared as safe or
unsafe; safe rules are ones that do not cause loss of information, and therefore over which there
will be no need to backtrack.

We have explained above the principles behind the modification made to the logic to fit the needs
of automated theorem-proving. Apart from the lazy division of the context, they are all quite
straightforward, and can be believed in with a quick perusal. Even the lazy context division is
not difficult to understand, as it can be seen in the axiomatization itself and one does not need
to examine the implementation details in a different programming language. We believe that one
of the advantages of using a system such as Isabelle is to allow users to know exactly what is
going on. The concrete syntax of the rules, illustrated in Appendix A, bears witness to the ease
of supplying a set of rules to Isabelle.

1We make no claim that this set of derived rules is complete; however, as the logic itself is known to be complete,

the user can interactively use one of the rules not in the pack and finish the proof.

There were several slight variations of the above rules that we could have used. One possible
representation (used in other mechanizations of LL) is to maintain the context division into two
parts (exponentiated formulae and others) throughout, and not only for promotion as we have
done. This modification of the rule could speed several operations on contexts, but we felt that
ease of interaction with the users would not be maintained if they had to do some of the processing
(separating exponentiated and non-exponentiated terms) themselves. Another possible modifica-
tion would be to eliminate weakening and instead change the identity rule to accept any number
of exponentiated items in the context. However, this made the pattern-matching of contexts in
the context division untenable, and so we decided not to incorporate it. It should be noted that
it was easy to try these changes, as the statement of the proof rules is completely transparent.

6 Further experiments

Using the final set of rules described in the previous section, we have been able to prove many
theorems in ILL. Specifically, we have been able to prove automatically some lemmas proposed by
Troelstra [15] and the conjectures obtained by translating lemmas in intuitionistic propositional
logic obtained from Kleene [10] following the translation schema proposed by Girard [4]. While we
have been able to prove a large number of theorems automatically, the important feature of this
implementation is not automation, but its usefulness in exploring applications of the logic. We
believe that, as Linear Logic gets better known, more applications will be proposed and actually
attempted.

The use of Linear Logic as a base on which to embed other formalisms has been suggested quite
often. As an example, it was easy to add the Girard translation scheme to the Isabelle system:
it could be quickly supplied within only a few lines of uncomplicated statements (including infix
and precedence information). This meant that the goal statements for proof could be entered in
easy to read syntax. For example, the statement of lemma 60f from Kleene is readable in IL form:

val k60f = prove_il "|- - ((- A) | B) = - (- (A & (- B)))";

but substantially more unwieldy when supplied directly in ILL:

val k60f = "

|- ! (! (! (! A -o 0) ++ ! B) -o 0) -o ! (! (A && ! B -o 0) -o 0) -o 0 &&

! (! (! (A && ! B -o 0) -o 0) -o 0) -o ! (! (! A -o 0) ++ ! B) -o 0" : thm

This is an example of the fact that with the tools available in Isabelle it is easy to avoid doing
translations by hand, also avoiding doing too much programming to get encodings of applications.
This is because Isabelle is particularly geared towards embeddings, and the same facilities used to
enter the definition of a logic are available to build other syntax schemes and axioms on top of a
logic.

The implementation described can be used to model problem domains that deal with resource
creation and consumption, such as in Petri nets. A small example of such an application is the
model of a laundry machine [1], shown in Appendix B. While this is a trivial example, the code
shows how the facilities can be used for describing problems directly in ILL, and how proofs can
be developed very easily.

Another idea in using a generic framework such as Isabelle is that we can experiment with varia-
tions of the logic—ideal for studying such a relatively new system as Linear Logic. In this vein, we
have also experimented with a second implementation of ILL, this time with rules in the natural
deduction style. We are in the process of using this implementation to run the suite of Kleene
theorems, by experimenting with different packages of rules and lemmas for proof automation.
Likewise, we have an encoding of classical LL, and again we are examining the construction of a
set of rules (both axiomatic and derived) to automate proof search in it. The translation from a
table illustrating the logic to the input to Isabelle is very direct.

7 Conclusions

We hope this paper has provided a feel for our implementation of Intuitionistic Linear Logic in
Isabelle. The main point to remember is that the prover for ILL we have developed is appropriate
for interactive development of proofs and descriptions of application domains and embeddings of
other formalisms on top of Linear Logic. It also is meant to be taken as evidence of the ease of
building theorem provers using Isabelle.

It seems natural to provide some comparisons of our proof system with previous implementations
of Linear Logic. Firstly, we must reiterate that we have not built any specialized tool for proof
search; proofs are found within the logic by directly applying rules and searching for proofs of
the resulting goals. The other approach—of searching for proofs outside the logic, by means of a
program in the implementing language—automatically gives the scope for much more efficiency.
However, while we have not done a detailed analysis of our timing profile, the timings we have
obtained are not hopelessly slow, considering that efficiency was not our main goal.

An important feature of the kind of automation we have achieved with Isabelle is that it allows the
judicious mixture of automated macro steps and user control in critical steps in the proof (such
as an interesting cut) which makes for the discovery of interesting and relevant proofs. For us,
proof search is not a function that either returns a full proof for a formula or fails: one can use
the package of lemmas and primitive rules, as well as other lemmas proved by the user, to explore
the space of subgoals, and this is an important aspect of theorem-proving applications. Due to
Isabelle’s characteristics as an interactive prover, we can carry on an automatic proof for a while,
then give it some user information and finish it off automatically again, a flexibility that we hope
will be of use.

The fact that we have not implemented a completely new specialized prover but have instead
instantiated a generic proof framework, carries with it all sorts of advantages. Proof tools could
be used off-the-shelf with very little work. For example, Girard’s translation of IL into ILL was very
easily encoded in a dozen simple lines, including the mixfix notation and grammar precedences.
Even the proof search algorithm we used was already given. On the other hand, further tools
can be coded and integrated quite easily. We in fact plan to make user of other researchers’ work
in proof search and integrate their algorithms within the framework provided in our work. This
framework is the application of the LCF approach: however the proof is found, a term is only
marked as being a theorem if it follows directly from the axioms of the logic. In contrast to
programs written in untyped languages, a prover built using Isabelle provides the assurance of a
strong type system and a powerful meta-language: a lot of power is given to the user, without in
any way compromising the security of the theorems.

While we have several implementations of Linear Logic, the one described here (ILL in sequent-
calculus) is the one we have developed furthest. The main reason is that most available provers
cover classical LL, and make use of particular representation schemes that do not allow an easy
separation of the intuitionistic fragment. However, often one does want to conduct proofs restricted
to the intuitionistic fragment. Some interest among the community studying Linear Logic focuses
on finding appropriate proof terms and exploring the cut-elimination property; the implementation
described here will be very useful for studying these issues, and we have already started to add
terms to ILL.

As further work, we also plan to improve proof support for the other formulations (natural de-
duction ILL and double-sided sequent CLL). By maintaining several parallel versions of Linear
Logic, all with the same mode of interaction, it becomes possible for a user to learn more about
a particular variant of the logic. We have chosen the double-sided representation, as we believe
some users of theorem-provers for LL may find the two-sided version more intuitive, even at the
cost of efficiency. We also would like to experiment with more variations such as predicate Linear
Logic and Full Iintuitionistic Linear Logic [9].

We believe the prover described in this paper will be useful for modeling applications of Linear
Logic. Prospective users are encouraged to experiment with it. The Isabelle system itself has
extensive documentation [13] and a large group of users.

Acknowledgements

This works builds on early work by Marcus Moore. We have profited from discussions with Gavin
Bierman and Larry Paulson.

References

[1] V. Alexiev. Applications of Linear Logic to computation: An overview. Technical Report
TR93-18, University of Alberta, Edmonton, 1993.

[2] N. Benton, G. Bierman, V. de Paiva, and M. Hyland. A term calculus for intuitionistic linear
logic. In Typed Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer

Science, pages 75–90, 1993.

[3] D. Galmiche and G. Perrier. Foundations of proof search strategies design in linear logic.
In Symposium on Logical Foundations of Computer Science, volume 813 of Lecture Notes in

Computer Science. Springer Verlag, 1994.

[4] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–101, 1987.

[5] J.-Y. Girard and Y. Lafont. Linear logic and lazy computation. In Proceedings of TAP-

SOFT’87, vol. 2, volume 250 of Lecture Notes in Computer Science, pages 52–66, 1987.

[6] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized Logic of Compu-

tation. Springer-Verlag, 1979.

[7] J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic.
Journal of Information and Computation, 1994. To Appear.

[8] G. P. Huet. A unification algorithm for typed λ calculus. Theoretical Computer Science, 1,
February 1975.

[9] M. Hyland and V. de Paiva. Full intuitionistic linear logic. Annals of Pure and Applied Logic,
64, 1993.

[10] S. C. Kleene. Introduction to metamathematics, volume 1 of Bibliotheca mathematica. North-
Holland Publishing Co., 1952.

[11] P. Lincoln and N. Shankar. Proof search in first-order Linear Logic and other cut-free sequent
calculii. In Ninth Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
Society Press, 1994.

[12] D. Miller. A multiple-conclusion meta-logic. In Ninth Annual IEEE Symposium on Logic in

Computer Science. IEEE Computer Society Press, 1994.

[13] L. Paulson. Isabelle: A generic theorem prover, volume 828 of Lecture Notes in Computer

Science. Springer-Verlag, 1994.

[14] T. Tammet. Proof strategies in Linear Logic. Technical Report 70, Department of Computer
Science, Chalmers University of Technology, 1993.

[15] A. Troelstra. Lectures on linear logic. Number 29 in CSLI lecture notes. Stanford, CA: Center
for the Study of Language and Information, 1992.

A Axiomatization of LL used

The following is the text of an Isabelle ‘theory file’; it shows the formalization of ILL in Isabelle
syntax. (The representation of sequents is not shown here, for this consult the section on LK in
the Isabelle manual.

ILinear = sequents +

consts

"><" ::"[o, o] => o" (infixr 35)

"-o" ::"[o, o] => o" (infixr 45)

"o-o" ::"[o, o] => o" (infixr 45)

FShriek :: "o => o" ("! _" [100] 1000)

"&&" ::"[o, o] => o" (infixr 35)

"++" ::"[o, o] => o" (infixr 35)

zero ::"o" ("0")

top ::"o" ("1")

eye ::"o" ("I")

aneg ::"o=>o" ("~_")

(* syntax for context manipulation *)

Context :: "two_seqi"

"@Context" :: "two_seqe" ("((_)/ :=: (_))" [6,6] 5)

(* syntax for promotion rule *)

PromAux :: "three_seqi"

"@PromAux":: "three_seqe" ("{_||_||_}")

rules

identity "P |- P"

zerol "$G, 0, $H |- A"

liff_def "P o-o Q == (P -o Q) >< (Q -o P)"

aneg_def "~A == A -o 0"

derelict "$F, A, $G |- C ==> $F, !A, $G |- C"

contract "$F, !A, !A, $G |- C ==> $F, !A, $G |- C"

weaken "$F, $G |- C ==> $G, !A, $F |- C"

promote2 "{ || $H || B} ==> $H |- !B"

promote1 "{!A, $G || $H || B} ==> {$G || $H, !A || B}"

promote0 "$G |- A ==> {$G || || A}"

tensl "$H, A, B, $G |- C ==> $H, A >< B, $G |- C"

impr "A, $F |- B ==> $F |- A -o B"

conjr "[| $F |- A ; $F |- B |] ==> $F |- (A && B)"

conjll "$G, A, $H |- C ==> $G, A && B, $H |- C"

conjlr "$G, B, $H |- C ==> $G, A && B, $H |- C"

disjrl "$G |- A ==> $G |- A ++ B"

disjrr "$G |- B ==> $G |- A ++ B"

disjl "[| $G, A, $H |- C; $G, B, $H |- C |] ==> $G, A ++ B, $H |- C"

(* RULES THAT DIVIDE CONTEXT *)

tensr "[| $F, $J :=: $G; $F |- A ; $J |- B |]

==> $G |- A >< B"

impl "[| $G, $F :=: $J, $H; B, $F |- C ; $G |- A |]

==> $J, A -o B, $H |- C"

cut " [| $J1, $H1, $J2, $H3, $J3, $H2, $J4, $H4 :=: $F ;

$H1, $H2, $H3, $H4 |- A ;

$J1, $J2, A, $J3, $J4 |- B |] ==> $F |- B"

(* CONTEXT MATCHING RULES *)

context1 "$G :=: $G"

context2 "$F, $G :=: $H, !A, $G ==> $F, A, $G :=: $H, !A, $G"

context3 "$F, $G :=: $H, $J ==> $F, A, $G :=: $H, A, $J"

context4a "$F :=: $H, $G ==> $F :=: $H, !A, $G"

context4b "$F, $H :=: $G ==> $F, !A, $H :=: $G"

context5 "$F, $G :=: $H ==> $G, $F :=: $H"

end

ML

(* Setting the parser and pretty-printer to deal with sequents and

constants which use them. *)

val parse_translation = [("@Trueprop",sequents.single_tr),

("@Context",sequents.two_seq_tr "Context"),

("@PromAux", sequents.three_seq_tr "PromAux")];

val print_translation = [("Trueprop",sequents.two_seq_tr’ "@Trueprop"),

("Context",sequents.two_seq_tr’"@Context"),

("PromAux", sequents.three_seq_tr’"@PromAux")];

B A small example

B.1 Theory file defining the example

washing = ILinear +

consts

dollar,quarter,loaded,dirty,wet,clean :: "o"

rules

change "dollar |- (quarter >< quarter >< quarter >< quarter)"

load1 "quarter , quarter , quarter , quarter , quarter |- loaded"

load2 "dollar , quarter |- loaded"

wash "loaded , dirty |- wet"

dry "wet, quarter , quarter , quarter |- clean"

end

B.2 Proving a property of the example

(* first changing definitions into rules using the "cut" rule: *)

val changeI = [context1] RL ([change] RLN (2,[cut]));

val load1I = [context1] RL ([load1] RLN (2,[cut]));

val washI = [context1] RL ([wash] RLN (2,[cut]));

val dryI = [context1] RL ([dry] RLN (2,[cut]));

(* now to a proof: *)

goal thy "dollar , dollar , dirty |- clean";

by (best_tac (safe_cs add_safes (changeI @ load1I @ washI @ dryI)) 1);

(* goal proved *)

