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Abstract

The purpose of this paper is to report on our experiments to use Isabelle � a
generic theorem prover � as a universal environment within which speci�cation�
development and veri�cation of imperative programs can be performed�

The use of a theorem prover for the programming tasks is most appropriate when the
processes of program speci�cation� development and veri�cation can be presented as
logical activities� In our case this is achieved by adopting pLSD � a novel program�
ming logic�

Introduction

Hoare logic and its variants put several burdens on those who plan to use it for software speci�
�cation� development and veri�cation� Let us discuss the problems�

Example software task

There are three major programming tasks	 speci�cation� development and veri�cation� Program
speci�cation task is when given a program we are faced with the problem of �nding a speci�cation
for it� Program development task is when one is asked to �nd a program which satis�es a given
speci�cation� We talk about veri�cation task when both� a program and a speci�cation are given
and the problem is to check if the former satis�es the latter�

Let us suppose that the task is to write a program 
p which computes multiplication of two
integer values stored in variables x and y� The result should be stored in variable z�

Isabelle�s notation 
p was used above to introduce a metavariable �schematic variable which
ranges over programs� We adopt the convention also to other syntactic classes�
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Hoare logic In Hoare logic a program � is speci�ed by two �rst order formulae called as�
sertions� viz�	 f�g � f�g� The idea is that � started in a state satisfying � should� whenever
it terminates� return a state satisfying �� Thus� we concentrate on partial correctness inter�
pretation of Hoare triples� The issue of termination is being considered a separate quality of
programs� on par with program complexity� length� etc�

In Hoare logic one might try to write the following speci�cation of the task	

fttg
p fz � x � yg ��

Above� tt stands for the always satis�ed assertion� Thus� the constraint put by �� on a candidate
solution� call it �� is that � started in an arbitrary initial state� whenever terminates� should do
so in a state in which the value of z equals the value of x multiplied by the value of y in that
terminal state�

There are two problems with speci�cation ���
Firstly� it relates the value of z in a terminal state to the values of x and y in that state�

But nothing prevents � from changing x or y� This allows �clever� solutions� e�g�� x 	� �� z 	� ��
which contradict the intuition that �� was meant to express the relationship between the initial
values of x and y and the value stored in z upon termination�

Secondly� �� seems too liberal� Knowledge that a given program � satis�es �� gives not
a single clue as to its e�ect upon variables other than z� and upon x and y in particular� Often
one would like to consider program as a black box� and its speci�cation as the only means of
manipulation of its contents� Then� the less one knows about what is in the box� the less often
one can use its contents�

One way to solve both problems is to use auxiliary logical variables� separate from program
variables� to �store� the initial values� Let capital letters range over the logical variables� The
following speci�cation says that the program of interest should not only change the value of z
to the multiplication of the initial values of x and y� but also that the value stored in x does
not change	

fx �M � y � Ng
p fz �M �N � x �Mg ��

Note� however� that �� says nothing about y� nor about any other program variable appart
from those two mentioned explicitly in the postcondition�

Commands�as�predicates approach Another method is to equip the language of assertions
with the ability to refer to the values stored in a program variable in the initial and in a �nal
state of computation� Hehner� cf� ����� would write �x and �x� for the values stored in x initially
and upon termination� respectively� Another convention is to use x and x�� respectively� The
latter convention is used within the Z� community� It is also advocated by Lamport� see �����
and adopted by Hehner� cf� �����

In commands�as�predicates approach� and in accord to the latter convention� �� is captured
by	

fttg
p
�
z� � x � y � x� � x

�
��

Actually� Hehner would not write �� as a formalisation of our programming task� Hehner�
and also Hoare ������ investigated a system called predicative programming� In this approach
each command is identi�ed with a predicate of the extended language� Programming in this
approach consists of logical manipulation of the speci�cation so long that it becomes an image
of a command�

The subtlety of the embedding of commands into predicates is that it takes the programing
environment as a parameter� Clearly� each assertion ascribed to a command via the embedding
should capture the whole meaning of the command� For example� assignment x 	� x�� changes
the value of variable x and leaves all the other intact� Thus� in an environment consisting of
variables x� y and z� the command corresponds to predicate x� � x� � � y� � y � z� � z�



To avoid such cumbersome details the commands�as�predicates approach often goes with
convention that all variables not mentioned in a speci�cation do not change their values� The
convention allows to hide the context� The price to pay is that now the logical formulae also
have hidden agenda� e�g�� x� � x� is not equivalent to tt�

This is the reason why the convention is not used by Lamport in his Temporal Logic of

Actions � a recent rami�cation of commands�as�predicates approach to cope with reactive
systems� cf� ����� It should be mentioned that Lamport also uses logical variables� which he calls
rigid in �����

The remaining part of paper is organised as follows� Section � explains the sense in which
substitutions can be used as logical formulae� and presents such a logic called PL�� Section �
introduces logic pLSD in which formulae from PL� are used as speci�cations of imperative
programs� Finally� Section � shortly describes our interpretation of pLSD in Isabelle�

� Logic of predicates with explicit substitutions

Substitution plays a prominent role in Hoare logic� Its assignment axiom schema

�
�

�
e

x

��
x 	� e f�g

says that for � to be a valid postassertion for assignment x 	� e one should consider as a
preassertion the result of performing substitution corresponding to the assignment on �� From
the consequence rule it follows that �

�
e
x

�
is the best preassertion�

In Hoare�s axiom the schematic variable � plays the role of a placeholder� a dummy� Intu�
itively� the assignment command is completely characterised by the substitution that corresponds
to it� If substitutions were admitted as speci�cations we could write

x 	� e sat

�
e

x

�
�

and thereby get rid of the dummy�
We have argued in the introduction that one would want to write simple formulae which

captures the meaning of a program completely� and independently of the programming context�
We have also argued that a logical infrastructure is needed to express that changes of values of
certain variables are restricted to a speci�ed set of variables� It would be nice� in particular� if
there existed a formula which captures that nothing happens to the state� i�e�� that all variables
retain their values�

Extending logic of predicates with explicit substitutions allows to achieve these aims�

��� Logic of predicates with explicit substitutions as a non�commutative sub�

structural logic

Substitution is normally considered as part of the methatheory� This applies not only to logics�
but to ��calculae and type theories as well� It has been recently realized that more e�cient
implementations of functional languages can be achieved if one controls the process of performing
a substitution� This calls for theories with substitution as a primitive operation�

Indeed� a variety of ��calculae with explicit substitutions have already been considered�
cf ��� ���� All of them are ��sorted � there are two syntactic classes	 the old class of ��terms�
and the new class of substitutions�

In case of predicate logic there already are two sorts	 terms and formulae� From the dis�
cussion above it follows that we want to consider substitutions as speci�cations� Thus� while
extending the logic of predicates with explicit substitutions we do not add a third sort for them�
Instead� substitutions are considered as a new class of atomic formulae� From now on the old



atoms� i�e�� the predicates� are called Platonic� while substitutions are referred to as dynamic

atoms�
With predicates and substitutions considered as atoms a new logical connective is needed to

express the process of application of a substitution to a predicate� Let us use the tensor symbol
� to denote the new connective� Now we can write � � �� to express �pending composition of
substitutions � and ���

We can� it turns out� consider � as a non�commutative multiplicative conjunction� Having
said that we can also add the multiplicative truth� denoted I� It turns out that I captures the
idea that �nothing happens�� Thus� I is a good speci�cation for a �do nothing� program�

Altogether� we are led to take as the logic of speci�cations a fragment of intuitionistic non�

commutative linear logic� This idea was �rst put forward in ���� The logic is referred to as PL��
Formally� formulae of PL�� called speci�cations� are given by the following grammar�

A � � substitutions� the dynamic atomic formulae
j a predicates �including equality� the Platonic atomic formulae
j A�A j I multiplicative conjunction and truth
j A � A j � additive conjunction and truth
j A � A j � additive disjunction and false

A sequent�style presentation of the logic is given in Table ��

�Re 
A � A

�Cut
! � A "� A�"� � B

"�!�"� � B

�LI
!�" � A

!� I�" � A
�RI

� I

�L�
!� A�B�" � C

!� A�B�" � C
�R�

! � A " � B

!�" � A�B

�L��L
!� A�" � C

!� A � B�" � C
��

! � �

�L��R
!� B�" � C

!� A � B�" � C
�R�

! � A ! � B

! � A � B

��
��! � A

�L�
!� A�" � C !� B�" � C

!� A � B�" � C

�R��L
! � A

! � A � B
�R��R

! � B

! � A � B

Table �	 A sequent system L for PL��

With one exception� the rules in Table � are the natural generalisations of the rules sug�
gested by Girard for the commutative intuitionistic linear logic� cf� ���� and ���� ���� to the
non�commutative case� cf ���� ����

Axiom �� is the only exception � the expected generalisation is !���" � A� as in ���� ����
However� the stronger axiom is not valid in our intended interpretation in quasi quantales� cf� ����

Actually� quasi quantales were invented by Blikle in the ���s� Firstly� see ����� under the name
of nets Blike reinvented quantales to study mathematical behaviour of commands� Subsequently�
cf� ����� he begun investigation of quasi nets� i�e�� our quasi quantales� In an attempt to give
denotational account of divergence� as opposed to failure� he allowed the composition relation to



be non�strict on the right� The most comprehensive account on quasi nets and their applications�
including solving recursive equations in nets� can be found in �����

��� PL� � a linear theory

There are numerous reasons which force us to work with theories rather than the pure logic
generated by system L�

����� Platonic sublogic

Programs are supposed to manipulate data which come from a speci�c domain� Hence� we must
cope with axioms which charaterise the domain of data� This calls for describing the way in
which the usual logic of predicates can be embedded into PL��

The reader clearly noticed the lack of non�monotone connectives like implication and negation
in PL�� Since tensor is non�commutative there could be two implications in principle� Even if
both existed� none of them would semantically correspond to the usual implication� A similar
argument applies to the Platonic negation�

But then the problem is that without negation a lot of expressive power is lost� The usual
way around the problem is to consider a�rmative#positive and refutative#negative predicates
for each predicate symbol� More speci�cally� given a predicate symbol R of arity k we consider
two predicates� The �rst a�rmative� R��e�� � � � � ek� a�rms that R holds on e�� � � � � ek� The
other refutative� R��e�� � � � � ek� states the converse� In case of equality predicate this is usually
written	 e� � e� $an a�rmative atom� and e� �� e� $the corresponding refutative atom�

Now negation� and hence implication as well� becomes operation de�niable on the Platonic
sublogic of PL�� i�e�� on formulae built without � and I�

�R��e�� � � � � ek � R��e�� � � � � ek �R��e�� � � � � ek � R��e�� � � � � ek
��� � � � ��� � ��� �� � �
��� � � � ��� � ��� �� � �

Missing are the following axioms which state that the a�rmative is an opposite of the refutative�
and vice versa� In R��e�� � � � � ek bellow � stands either for � or for 	�

R��e�� � � � � ek � �R
��e�� � � � � ek � � and � � R��e�� � � � � ek � �R

��e�� � � � � ek

Thus� the Platonic sublogic is classical�

In �rst order logic the conjunction distributes over disjunction� and vice versa� Since the
additive conjunction � the one corresponding to the conjunction of the predicate logic � does
not� in general� distribute over additive disjunction� we have to add the missing axioms	

A � �B � C � �A � B � �A � C A � �B � C a �A � B � �A � C

The translation of the re exivity of equality axiom schema to PL� is straightforward�

� � e � e

Xxioms characterising a particular domain of data are translated in the same straightforward
way� For instance� to state that the data are strictly linearly ordered by � one would accept the
following axioms�

x �� y � x � y � y � x and x � y � y � x � x �� y

�One of the implications is not de�niable in the intended model� cf� �
��



����� Dynamic axioms

The other facet of equality� that equals can be substituted for equals� brings us to the dynamic
part of PL�� Finitary simultaneous substitutions� ranged over by � and 	� have the form

�
e�
x�
� � � � �

en
xn

�

The main idea behind tensor is that it codes substitution on a predicate

� �R��e�� � � � � ek a� R
��e��� � � � � ek�

and also composition of two substitutions�

� � 	 a� � 
 	

where � 
 	 denotes the result of composition of the two substitutions�
We also declare that the identity substitutions are multiplicative truth�

�
x

x

�
a� I and I a� � �

Next� we need a number of axioms to ensure that� e�ectively� substitution distributes over all
�nite �equivalently� over all binary and nullary additive conjunctions and disjunctions� Some
of the distributivity properties follow from the logical rules� Those missing are listed below�

� � � �� and � �� � �

�� �A � �� �B � � � �A � B and �A� C � �B �C � �A � B� C

Thus� the axioms ensure that � � �� with � Platonic� is equivalent to a Platonic formula�

The question that remains is what it means for a predicate to act upon a formula like in
�x � y � B� The answer is that it is catastrophic for B	 its role is totally neglected� Namely�
for any Platonic � and any B we have

� a� ��B�

This is a consequence of accepting the following axioms�

R��e�� � � � � ek � R
��e�� � � � � ek�� and � � ���

Semantically� the formulae of PL� are interpreted as predicate transformers� cf� ���� The
formulae of the Platonic sublanguage are interpreted as constant predicate transformers�

Finally� we accept an axiom which explicitly expresses the meta�property of substitutivity	
equals may be substituted for equals�

e� � e� �

�
e�
x

�
�

�
e�
x

�

� pLSD � a logic for software speci�cation� development and

veri�cation

Let us turn now to our logic pLSD� Its connections with Hoare logic are described elsewhere�
cf� ���� Here� we concentrate on its utility for program development�

pLSD is a Labelled Deductive System� cf� ����� built over PL�� Declarative units �judgements
of pLSD are of the form

� sat A



where � is an imperative program while A is a PL� formula�
Atomic programs include	 indeterminate programs� denoted p� q� assignments� denoted 
�

and �do�nothing� program skip� More complex programs can be built from already constructed
programs � and � using one of the following operations	 binary sequential composition� ����
binary conditional composition� if b then � else � �� and unary loop� while b do � od� The boolean
conditions b mentioned above are Platonic formulae�

The tarskian consequence relation �� of pLSD has sequents of the form

p� sat A�� � � � � pn sat An �� � sat A

where pi�s are pairwise di�erent� The intended meaning of the sequent is that if all indeterminate
programs p�� � � � � pn satisfy their respective speci�cations� then � satis�es A�

In the following sequent style presentation of pLSD metavariables C and D range over se�
quences of satisfaction assumptions about pairwise di�erent indeterminate programs� PI�C is
used to denote the set of all indeterminate programs in C�

Structural Rules

Re exivity

p sat A �� p sat A

CUT
C �� � sat B p sat B�D �� � sat A

C�D �� � ���p� sat A
PI�C � PI�D � �

Exchange
C� p sat A� q sat B�D �� � sat C

C� q sat B� p sat A�D �� � sat C

Weakening
C �� � sat B

C� p sat A �� � sat B
p � PI�C

Contraction
C� p� sat A� p� sat A �� � sat B

C� p sat A �� � �p�p�� �p�p�� sat B
p � PI�C

Interaction Rule

Consequence
C �� � sat A A a B

C �� � sat B

Connective Rules

Assignment

�� 
 sat �
�

Skip

�� skip sat I

Sequential composition
C �� � sat A C �� � sat B

C �� ��� sat A�B

Conditional
C �� � sat A C �� � sat B

C �� if b then � else � � sat �b � A � ��b � B



Loop
C �� � sat B b � A � B �A �b � A � I

C �� while b do � od sat A

��� pLSD � a programming logic over PL�

How formulae of PL�� and explicit substitutions in particular� can be used as speci�cations
 To
answer that question let us turn to the programming task considered in the introduction� It can
be now speci�ed as follows�


p sat

�

t

y
�
x � y

z

�
��

The task is to �nd a program which� whenever terminates� sets the values of variables according

to substitution
h
�t
y
� x�y

z

i
� More speci�cally it says the following�

� The terminal value of z is equal to the multiplication of the initial values of x and of y�

� The value stored in y may get changed� The metavariable 
t ranging over terms can be
replaced by an arbitrary term� Thus� we do not care about the �nal value of y�

� Variables other than z and y should not change their values�

There is an obvious similarity between �� and ��� The use of primes in �� is compensated
by the use of explicit substitutions in ��� But we do not need to talk about two di�erent
incarnations of each variable�

Note also that in �� it must be explicitly mentioned that we �do not care� how variable y is
set� In �� this is implicit�

Other fundamental di�erence is revealed when it comes to consider the ways in which the
di�erent speci�cation languages are used� A key question	 Given a speci�cation� how to �nd
a program that ful�lls it
 Our aim is to show that program development is a logical activity
governed by pLSD�

����� Trivial solution � assignment axiom

The key idea is that each assignment command corresponds to a substitution� If notational
di�erences are neglected one can simply identify assignments� ranged over by 
� with a subclass of
substitutions� ranged over by �� Let �
� denote the substitution corresponding to assignment 
�

Thus� �x 	� �� equals
h
�
x

i
�

Now� �� can be solved by an assignment command provided substitution
h
�t
y
� x�y

z

i
is an

assignment expressible in the programming language� This would be the case if the programming
language allows simultaneous assignments� and if expressions of the form x � y are expressible�
Then one can take program �y� z 	� �
t� x � y� The corresponding �instance of the pLSD
assignment axiom is

�� �y� z 	� �
t� x � y sat

h
�t
y
� x�y

z

i �

Let us compare the pLSD assignment axiom �left with its counterpart in Hoare logic �right�

�� 
 sat �
� f� �
�g
 f�g

The analogy should be clear� Hoare characterises assignment 
 by the substitution �
� performed
on a dummy assertion �� Our axiom is obtained by getting rid of the dummy�



����� Simple solution � sequential composition and consequence rules

Programming tools are constructive� Those available in speci�cations need not be constructive�
Speci�cations are always more expressive � otherwise there would be no sense in separating
program development phase from program speci�cation phase� Hence� programming is an art
of ful�lling speci�cations with limited programming tools�

Consequently� let us assume that our programming language is limited in that it disallows
simultaneous assignments� Assumption that multiplication can be used to build valid expression
of the language still holds� Then a slightly more complex program� namely z 	� x � y� y 	�
s�
adheres to the restriction� and is a solution of our task�

Indeed� assignment axiom and sequential composition rule applied to the program give the
following derivation�

�� z 	� x � y sat

h
x�y
z

i
�� y 	�
s sat

h
�s
y

i

�� z 	� x � y� y 	�
s sat

h
x�y
z

i
�
h
�s
y

i ��

Let us compare the pLSD sequential composition rule with its counterpart in Hoare logic�

C �� � sat A C �� � sat B

C �� ��� sat A�B

f�g � f�g f�g� f�g

f�g ��� f�g

Sequential composition rule in Hoare logic has serious de�ciency� In backward proofs it requires�
just like CUT� inventing a lemma �assertion � above� In forward proofs it imposes restriction
that the postassertion of � matches preassertion of �� In pLSD sequential composition of
programs is characterised by multiplicative conjunction of their speci�cations�

We are not done yet� The consequence rule �% introduces proof obligations to pLSD deduc�
tions� Thereby it allows to manipulate the speci�cations on PL��level�

C �� � sat A A a B

C �� � sat B
�%

Notice the contravariance beteen pLSD and PL� in �%� It comes about from the fact that pLSD
is based on weakest precondition rather than strongest postcondition predicate transformers�

It has been argued in section � that tensor applied to two substitutions corresponds to their
composition� Thus� by the relevant PL� axiom one obtains the following�

�
�s
�
x�y
z

�
y

� x�y
z

�
�
h
x�y
z

i
�
h
�t
y

i

So� consequence rule �% applied to derivation �� gives �nally the following�

��
�
�s
�
x�y
z

�
y

� x�y
z

�
�
h
x�y
z

i
�
h
�s
y

i

�� z 	� x � y� y 	�
s sat

�
�s
�
x�y
z

�
y

� x�y
z

�

Thus z 	� x � y� y 	�
s satis�es
h
�t
y
� x�y

z

i
for 
t �
s

h
x�y
z

i
� as required�

����� Problem decomposition � CUT rule

In general the programming language does not support directly the operations required by
the speci�cation� In terms of our programming task �� this would mean that the language
neither allows simultaneous assignments� nor expressions of the form x � y� Assumption that



multiplication is not de�ned may seem funny� but it serves as an example here� Also� on
appropriatly low level one has to implement multiplication in terms of more primitive operations�
Consequently� let us assume that the language allows expressions of the form x � y� x 	 y and
	x with their usual meaning�

At �rst there is nothing we could do� Then comes an idea that perhaps we could solve ��
under additional assumptions� Then� perhaps� we could somehow meet the assumptions� All
this is rather vague� More formal explanation of this vague idea is this�

Given a programming task of the form

�� 
p sat A

do the following�

�� Guess another speci�cation B� somehow related to the original problem A�

�� Then� separately� and independently	

�a �nd in a library or construct a program � that satis�es B�

�b working under assumption that p sat B� �nd in a library or construct a program �
�over p which satis�es the original speci�cation A�

�� Build a program that satis�es the original speci�cation by replacing all occurrences of p
in � by ��

Diagramatically the above can be expressed in the form of the following instance of CUT�

�� � sat B p sat B �� � sat A

�� � ���p� sat A

Solving the derived task p sat B �� � sat A might require another decomposition� Thus� it
is only natural to accept CUT in full generality�

C �� � sat B p sat B� D �� � sat A

C�D �� � ���p� sat A

This step turns pLSD into a logic� i�e�� into a consequence relation� Now� the following logical
characterisation of the nature of modularity in program development can be o�ered�

CUT � MODULARITY

It is fair to say� it seems� that neither Hoare logic� nor any of its variants has addressed the issue
of modularity of program development in the way just described�

Let us decompose our programming task� The idea is that the solution may be found more
easily if we assume that y � �� Thus� let us take as the lemma the following strengthened version
of our speci�cation�

L
def
� y � � � 	 where 	

def
�

�

t

y
�
x � y

z

�
��

����� Solving the parametric subproblem � re�exivity axiom and conditional rule

Now let us move to realize the step �b of the decomposition scenario� In particular we have to
�nd a program � �parametric over p which satis�es	

p sat y � � � 	 �� 
q sat 	 ��



Either y � � or y �� � always holds� Thus� ���distributivity gives the following PL� equivalence�

	 a� �y � � � 	 � �y �� � � 	 a� �y � � � y � � � 	 � �y �� � � y �� � � 	 ��

The conditional command is characterised by the following rule�

C �� � sat A C �� � sat B

C �� if b then � else � � sat �b � A � ��b � B
���

Thus� an application of consequence and conditional rules gives the following derivation�

p sat L �� 
q� sat L p sat L �� 
q� sat y �� � � 	

p sat L �� if y � � then 
q� else 
q� � sat �y � � � L � �y �� � � y �� � � 	 ��

p sat L �� if y � � then 
q� else 
q� � sat 	
���

At this point the task is reduced to two subgoals�
The �rst one� p sat L �� 
q� sat L� is solved by taking the hypothetical p for 
q�� This

makes the subgoal an instance of pLSD�s re exivity axiom�

p sat A �� p sat A

The other subgoal� p sat L �� 
q� sat y �� � � 	� requires some e�ort� If one negates the
value of y and applies p then it remains to modify the output stored in z� Without going into
details we state the following lemma�

Lemma � Program ��
def
� y 	� 	y� p� z 	� 	z satis�es parametric speci�cation

p sat y � � �

�

t

y
�
x � y

z

�
�� 
q� sat y �� � �

�

t

y
�
x � y

z

�

provided 
t �
t
h
�y
y

i
�

The little constraint 
t �
t
h
�y
y

i
has to be met by the other thread of our program development�

Conversely� this solution has to meet all constraints developed in the other thread�

����� Proving the lemma � loop rule

Now� with accord to step �a� we have to �nd a program � which ful�lls the following task�

�� 
p� sat y � � �

�

t

y
�
x � y

z

�

The idea is to implement multiplication by y�times iterated addition of x to z� The value
of z should� of course� be initialized to the neutral element of addition� The program described
above may look as follows�

z 	� ��while y  � do z 	� x� z� y 	� y 	 � od

Dealing with a loop calls for an application of pLSD�s loop rule� Below� it is compared with its
counterpart in Hoare logic�

C �� � sat B b � A � B �A �b � A � I

C �� while b do � od sat A

fb � �g� f�g

f�gwhile b do � od f�b � �g
���

pLSD�s loop rule has one aspect similar to pLSD�s consequence rule � both have PL� sequents
as premisses� In the consequence rule the PL� sequents allowed to manipulate the speci�cation�
This time� however� the PL� sequents are best considered proof obligations�



There is an important pragmatic di�erence between the rools� The one proposed by Hoare
requires to �nd an invariant of the body of the loop� Its pLSD counterpart is more elaborate�
Invariance of A with respect to the body � is split into two subtasks	 �nding a speci�cation B of
the body and proving A�s invariance with respect to B under assumption �b� Another subgoal
is to show invariability of A under assumption �b�

The following result demonstrates that the loop sugested above satis�es an appropriate
invariant� Notice that the invariablity obligation generates constraint 
t � ��

Theorem �

�� while y  � do z 	� x� z� y 	� y 	 � od sat y � � �

�
�

y
�
x � y � z

z

�

From the Theorem �� pLSD�s sequential composition rule and consequence rule it follows
that the following can be derived�

�� z 	�
t�while y  � do z 	� x� z� y 	� y 	 � od sat y � � �

�
�

y
�
x � y

z

�

����	 CUT
 ��� then paste

The �nal step is to combine the results obtained in both threads and to create solution of the
initial task� At this stage constraints collected in the two threads have to be veri�ed� The second
thread requires 
t to be equal to �� Luckily� this constraint is in no con ict with constraint of

the �rst thread since � � �
h
�y
y

i
�

Thus� pLSD veri�es that there exists a solution to the original speci�cation ���

if y � � then z 	� ��
while y  � do �z 	� x� z� y 	� y 	 � od

else �y 	� 	y� z 	� ��
while y  � do �z 	� x� z� y 	� y 	 � od� z 	� 	z

�

sat

�
�

y
�
x � y

z

�

��� pLSD � summary of main features

Let us conclude this section by recalling the two main features that make pLSD di�erent from
other variants of Hoare logic�

First� in pLSD the meaning of basic programs is fully captured by a single speci�cation which
is independent of the programming environment�

Second� pLSD is a logic whose construction is parameterised with a logic of speci�cations�
The logic of speci�cations is responsible for manipulation of speci�cations� At the level of pLSD
we are talking about the logic of program development�

This feature can also be found in Abramsky�s approach to programming logics� see ���� and
its specialisations� see e�g�� ��� ��� ���� But� for obvious reasons� pLSD cannot be seen as a
specialisation of Abramsky�s framework	 the later was formulated for propositional logics and
it does not allow linear theories on any level�

� Towards an implementation of pLSD in Isabelle

Why Isabelle
 As a general purpose theorem prover Isabelle provides a promissing framework
for implementation of pLSD�

Firstly� it supports backward proof method which seems most natural method of program
speci�cation� veri�cation and development�



Secondly� it allows to store the results of deriving parametric programs as theorems of the
form p� sat A�� � � � � pn sat An �� � sat A� Therefore forward proof method can also be
applied� and ieven used in conjunction with backward proofs�

Thirdly� it allows quite natural interpretation of the many constituents �logics� axiomatiza�
tions of pLSD� The only minor �
 exception to this picture is posed by substitution�

Finally� it allows to specialize logical tools to each theory contributing to interpretation of
pLSD in Isabelle� We have not made much progress in that direction yet�

��� The shape of theories

The following graph presents the hierarchy of our theories which constitute interpretation of
pLSD in Isabelle�

Pure� linlog� lltheory� numll� progll

The Pure theory is an Isabelle�s basic theory and contains only the meta�logic� The rest of
the theories� i�e� linlog� lltheory� numll� progll� implement pLSD piece by piece�

����� linlog

The linlog theory implements sequent system L for PL� described in section � by adding a
new constant �� which builds these sequents� The theory also introduces	

� the new class llform which is the class of all our target linear logic formulae�

� two new types in this class	

pll $ the type of Platonic formulae
dll $ the type of dynamic formulae

� the following constants	

��� I $ multiplicative conjuction and truth
��� tt $ additive conjuction and truth
��� ff $ additive disjuction and false�

Both tt and ff are constants of type pll� whereas I is assigned to dll�

� some other types and constants which are related to representation of sequents of PL��
Implementation of sequents of PL� and pLSD was based on implementation of sequents
in Isabelle�s LK logic�

Details can be found in Appendix A�
Examples of theorems in the linlog theory�	

�� goal linlog�thy ��A �� B	 �� C �� A �� �B �� C	�


�� goal linlog�thy �A� ff �� A �� B�


�All examples presented were proved with Isabelle�



����� lltheory

The lltheory is an extension of linlog theory� It adds to the the linlog a new class term
and one type of this class	 num� The type num is the type of objects which are used in programs
e�g� integers� reals� booleans etc� The lltheory introduces also new constants	

za 		 num� num 	� dll builds dynamic atoms� i�e�� single substitutions
� 		 pll 	� pll negation over platonic formulae
�� 		 pll� pll 	� pll implication over platonic formulae
� 		 num� num 	� pll equality over elements of type num�

This theory contains the axioms discussed in section �� The only di�erence is that at present
only single substitutions are implemented� See Appendix B for details�

Formula e za x codes substitution of e for x�� Notice also that negation and implication
were de�ned to operate on Platonic formulae only�

Examples of theorems in the lltheory	

�� goal lltheory�thy �t � t� �� t� � t�


�� goal lltheory�thy �tt �� e � e� ��� �e za x	 �� �e� za x	�


�� goal lltheory�thy ��B �� C	 �� A �� �B �� A	 �� �C �� A	�


����� numll

The numll theory implements the �rst order theory which is used in programs� In our case it
is �part of the arithmetic of integers� By varying this theory we can go from integers to reals�
etc�

The theory is an extension of lltheory and adds to it the following constans	

��  		 num zero and one
�� � 		 num� num 	� num plus and times
� 		 num 	� num minus
� 		 num� num 	� pll order �less on integers

It also contains the usual rules which implement the usual axioms of integer�s arithmetic� Apart
from arithmetic axioms� in the numll theory there are two axioms which tell us how to make
substitutions on our new platonic formulae of the form m � n� where m� n 		 num� Appendix C
has the details�

Examples of theorems in the numll theory	

�� goal numll�thy �tt �� a � � � ��


�� goal numll�thy ��y � �	 �� �� � y � � 	 �� �� � y � � 	�


�� goal numll�thy �tt �� ��x � y	 � x � ��y	�


����� progll

The progll theory extends the numll theory to the pLSD logic by adding to the numll	

� two new types of class term	 progr and pLSDform�

��za� means �for� in Polish�



� new constants for program�s constructs	

�� 		 num� num 	� progr for assignment�
SKIP 		 progr for an empty programm�


 		 progr� progr 	� progr for sequential composition�
IF 		 pll� progr� progr 	� progr for conditional�

WHILE 		 pll� progr 	� progr for loop�

� the constant sat 		 progr��a� �� llform	 	� pLSDformwhich encodes the satisfaction
relation�

� the constant ��� and other machinery needed to implement sequents of pLSD�

Rules of the progll theory can be found in Appendix D�
Examples of theorems in the progll theory	

�� goal progll�thy ���� z �� x � y 

 y �� � sat �x � y za z	 �� �� za y	�


�� goal progll�thy ���� IF �� � y �� � � y�

�z �� �	 

 WHILE�� � y� �z �� x � z	 

 y �� y � � 	�

�y �� � y	 



��z �� �	 

 WHILE�� � y� �z �� x � z	 

 y �� y � � 		 



z �� � z	 sat �x � y za z	 �� �� za y	�


The proof constructed to solve goal � above also works for the following development task	

goal progll�thy ���� �p sat �x � y za z	 �� �� za y	�


where �p is Isabelle�s metavariable ranged over the type progr� As a result we obtain the same
program like in example ��

��� Representation of explicit substitutions

Our implementation is strightforward� and poses no questions as far as adequacy is concerned�
It is also faithfull� Well� almost�

There are two sources of the apparent lack of faithfulness� One of them has to do with
substitutions� the other with pLSD sequents�

Consider the following pLSD sequent

p sat A �� � sat B

We insist that p above be an indeterminate program� However� we could not �nd any simple
way of putting this restriction into representation� Consequently� as a result of some uni�cations
Isabelle puts code into assumptions� So� it is up to the user to reject such hints�

The same story goes for substitution� za has been declared to have type num� num 	� dll�
Now we can implement the result of applying the substitution �e za x	 on the term t�x	�
which depends on x� by the ��term ��x�t�x		e� This is possible because the variable x� from
the substitution �e za x	� has the same type as the expresion e� But there are also some
troubles� One can write � za � � �	 which is type correct� but doesn�t make any sense� Even
more� we can prove in the progll theory that

��� � � � ��  sat � za � � �	�

So again� it is up to the user to use Isabelle�s metavariables ranging over num as the second
argument of za and for the �rst argument of assignments� Again� steps in proof in which



Isabelle uses must be watched for unwanted uni�cations� but then again we can use the back�	
command to refuse wrong guesses�

In all encodings of programming logics that we are aware of one introduces a new syntac�
tic class of� say� integer variables� together with explicit coercion function from variables to
expressions� In Isabelle this would look like

� 		 numVar 	� num

Then za could be given type num � numVar 	� dll� where numVar is the syntactic type of
variables over num� In this way the problem with unfaithful representation of substitutions diss�
apears� But at the same time the simple implementation of substitution as function application
is lost� For instance� let t�x	 � �x � � Then ��x� �x � 	� is not type correct because
x 		 numVar while � 		 num� Indeed� textual substitution would give something like �� � �

Thus� at present� we are happy with our solution� It works� Also� avoiding explicit coercions
makes the syntax much more readable� The price for the user is not very high�

The drowback of the simple solution is that it does not generalise to simultanous substitu�
tions�

Among other things to be done one task is particularly important� Namely� proof in PL�

and in the logics of data need to be automated as much as possible� Our experiments show that
these are the most boring parts of formal development#veri�cation with pLSD�
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A Appendix� The linlog theory

In following rules the � sign is conctructor of sequents which elements has the type
a��� llform� E�g� �G means	 any sequents of a proper formulae �even empty which is
called G�

linlog � Pure �

classes llform � logic

default llform

types

dll �

pll �

sequence� seqobj� seqcont� sequ� sobj �

arities

dll �� llform

pll �� llform

consts

���� �� ���a� �b� �� �c� �infixr ��	

���� �� ���a� �b� �� �c� �infixr ��	

���� �� ���a� �b� �� �c� �infixr ��	

ident �� �dll� ��I�	

bottom �� �pll� ��ff�	

top �� �pll� ��tt�	

rules

��Structural rules�	

refl �P �� P�

cut ��� �G �� A 
 �F� A� �H �� B �� ��� �F� �G� �H �� B�

li ��G� �D �� A ��� �G� I� �D �� A�

ri ��� I�

lt ��G� A� B� �D �� C ��� �G� A �� B� �D �� C�

rt ��� �G �� A 
 �D �� B����� �G � �D �� A �� B�

landl ��G� A� �D �� C ��� �G� A �� B� �D �� C�

landr ��G� B� �D �� C ��� �G� A �� B� �D �� C�

rand ��� �G �� A 
 �G �� B����� �G �� A �� B�

topr ��G �� tt�

bottoml �ff� �H �� A�

lor ��� �G� A� �D �� C 
 �G� B� �D �� C �� ��� �G� A �� B� �D �� C�

rorl ��G �� A ��� �G �� A �� B�

rorr ��G �� B ��� �G �� A �� B�

end

ML



B Appendix� The lltheory

lltheory � linlog �

classes

term � logic

types

num �

arities

num �� term

consts

�za� �� ��num� num� �� dll� �infixr ��	

��� �� �pll �� pll� ��� ����� ��	

���� �� ��pll� pll� �� pll� �infixl ��	

��� �� ��num� num� �� pll� �infixr ��	

rules

�� axiom for the equality �	

equal�num �tt �� P � P�

eq�dll ��E � F	 �� �E za X 	 �� �F za X 	�

�� platonic axioms �	

r�imp�def ���P	 �� Q �� P �� Q�

l�imp�def �P �� Q �� ��P	 �� Q�

l�demorg�and ���P �� Q	 �� ��P	 �� ��Q	�

r�demorg�and ���P	 �� ��Q	 �� ��P �� Q	�

l�demorg�or ���P �� Q	 �� ��P	 �� ��Q	�

r�demorg�or ���P	 �� ��Q	 �� ��P �� Q	�

l�not�tt ��tt �� ff�

r�not�tt �ff �� �tt�

l�not�ff ��ff �� tt�

r�not�ff �tt �� �ff�

and�not� �A �� ��A	 �� ff�

and�not�� ���A	 �� A �� ff�

or�not �tt �� A �� ��A	�

or�and �A �� �B �� C	 �� �A �� B	 �� �A �� C	�

and�or ��A �� B	 �� �A �� C	 �� A �� �B �� C	�

pl�times�ff ��A �� pll	 �� A �� ff�

tt�times�ff �tt �� tt �� ff�

plat�times �A��pll �� A �� B�

times�plat ��A��pll	 �� B �� A�

�� dynamic axioms �	

id� ��X za X	 �� I�

id�� �I �� �X za X	�

tt�dll �tt �� �E za X	 �� tt�

ff�dll ��E za X	 �� ff �� ff�

times�and ���E za X	 �� A	 �� ��E za X	 �� B	 �� �E za X	 �� �A �� B	�

and�times�r ��A �� C	 �� �B �� C	 �� �A �� B	 �� C�

and�times�l �A �� �B �� C	 �� �A �� B	 �� �A �� C	�

l�subs�subs ��E za X	 �� �E��X	 za X	 �� ��� X� E��X		 �E	 za X	�

r�subs�subs �����X�E��X		 �E		 za X	 �� �E za X	 �� �E��X	 za X	�

l�eq�subs ���E za X	 �� �P�X	 � Q�X			 ��  

 ����� X�P�X		 �E		 � ��� X�Q�X		 �E				�

r�eq�subs ��� X�P�X		 �E	 � �� X�Q�X		 �E	 �� �E za X	 �� �P�X	 � Q�X		�



l�neg�subs ��E za X	 �� �� P�X		 �� ����X�P�X		�E		�

r�neg�subs �����X�P�X		�E		 �� �E za X	 �� �� P�X		�

l�imp�subs ��E za X	 �� �P�X	 �� Q�X		 �� ���X�P�X		�E		 �� ���X�Q�X		�E		�

r�imp�subs ����X�P�X		�E		 �� ���X�Q�X		�E		 �� �E za X	 �� �P�X	 �� Q�X		�

change�subst �� �� �� X � Y		 ���  

 �G � ��X�F�X		�E		 �� �E � ��Y�H�Y		�G		 ��  

 ��E za X	 �� �F�X	 za Y	 	 �� �G za Y	 �� �H�Y	 za X	�

end

C Appendix� The numll theory

numll � lltheory �

consts

��� �� ��num� num� �� pll� �infixr ��	

��� �� �num� ����	

�� �� �num� ���	

��� �� ��num� num� �� num� �infixr ��	

��� �� ��num� num� �� num� �infixr !�	

��� �� �num �� num� ��� �� �"� "�	

rules

�� arithmetic�s axioms �	

plus�ass �tt �� �x � y	 � z � x � �y � z	�

times�ass �tt �� �x � y	 � z � x � �y � z	�

plus�comm �tt �� x � y � y � x�

times�comm �tt �� x � y � y � x�

un�� �tt �� � � x � x�

un� �tt ��  � x � x�

opp�plus �tt �� x � �� x	 � ��

distr �tt �� x � �y � z	 � �x � y	 � �x � z	�

trich��l ���x � y	 �� ��x � y	 �� �y � x		�

trich��r ���x � y	 �� �y � x		 �� ��x � y	�

trich���l ���x � y	 �� ��x � y	 �� �y � x		�

trich���r ���x � y	 �� �y � x		 �� ��x � y	�

trans ���x � y	 �� �y � z		 �� �x � z	�

le�plus�r ��x � y	 �� �x � z � y � z	�

le�plus�l � �x � z � y � z	 �� �x � y	�

le�times� ���� � z	 �� �x � y		 �� �x � z � y � z	�

le�times� ���� � z	 �� �x � z � y � z		 �� �x � y	�

pl�congru ��a � y	 �� �b � z	 �� �a � b	 � �y � z	�

tm�congru ��a � y	 �� �b � z	 �� �a � b	 � �y � z	�

eq�le� ��g � e	 �� �e � f	 �� �g � f	�

eq�le�� ��f � g	 �� �g � e	 �� �f � e	�

dyskr ��x � y � 	 �� ��y � x	�

�� substitutions �	

l�le�subs ���E za X	 �� �P�X	 � Q�X			 ��  

 ����� X�P�X		 �E		 � ��� X�Q�X		 �E				�

r�le�subs ��� X�P�X		 �E	 � �� X�Q�X		 �E	 ��  

 �E za X	 �� �P�X	 � Q�X		�

end



D Appendix� The progll theory

progll � numll �

types

progr� pLSDform �

arities

progr� pLSDform �� term

consts

�� programs �	

���� �� ��num� num� �� progr� ��� �� �� ��!� �"� ��	

�SKIP� �� �progr� ��SKIP�	

�

� �� ��progr� progr� �� progr� �infixr ��	

IF �� ��pll� progr� progr� �� progr�

WHILE �� ��pll� progr� �� progr�

�sat� �� ��progr� �b �� llform� �� pLSDform� �����	# sat ��		� �"� "� !	

rules

�� program rules �	

ass ���� �x �� e	 sat �e za x 	�

skip ���� SKIP sat I�

comp ����C ��� P sat A
 �C ��� Q sat B�� ���  

 �C ��� �P 

 Q	 sat �A �� B	�

cond ����C ��� P sat A
 �C ��� Q sat B�� ��� 

 �C ��� IF�d�P�Q	 sat ��d �� A	 �� ���d	 �� B		�

loop ����C ��� P sat B 
 �d �� pll	 �� A �� B �� A
  

 �� d	 �� A �� I�� ���  

 �C ��� WHILE�d�P	 sat A�

�� Structural rules �	

�� ��� NOTE� without side conditions ��� �	

p�refl �P sat A ��� P sat A�

cut�p ����C ��� P sat B
 �E� �Q sat B	� �D ��� R�Q	 sat A�� ��� 

 �E� �C� �D ��� � ��Q�R�Q		 �P	 	 sat A�

exchange ��C� �P sat A	� �Q sat B	� �D ��� R sat E ��� 

 �C� �Q sat B	� �P sat A	� �D ��� R sat E�

weakening ��C ��� P sat B ��� �C� �Q sat A	 ��� P sat B�

contraction ��C� �Q sat A	� �R sat A	 ��� P�Q�R	 sat B ��� 

 �C� �T sat A	 ��� ���R Q�P�Q�R		�T		�T	 sat B�

consequence ����C ��� P sat A
 B �� A�� ��� �C ��� P sat B�

end


