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Abstract
The purpose of this paper is to report on our experiments to use Isabelle — a
generic theorem prover — as a universal environment within which specification,

development and verification of imperative programs can be performed.

The use of a theorem prover for the programming tasks is most appropriate when the
processes of program specification, development and verification can be presented as
logical activities. In our case this is achieved by adopting pLLSD — a novel program-
ming logic.

Introduction

Hoare logic and its variants put several burdens on those who plan to use it for software speci-
fication, development and verification. Let us discuss the problems.

Example software task

There are three major programming tasks: specification, development and verification. Program
specification task is when given a program we are faced with the problem of finding a specification
for it. Program development task is when one is asked to find a program which satisfies a given
specification. We talk about verification task when both, a program and a specification are given
and the problem is to check if the former satisfies the latter.

Let us suppose that the task is to write a program ?p which computes multiplication of two
integer values stored in variables z and y. The result should be stored in variable z.

Isabelle’s notation 7p was used above to introduce a metavariable (schematic variable) which
ranges over programs. We adopt the convention also to other syntactic classes.
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Hoare logic In Hoare logic a program = is specified by two first order formulae called as-
sertions, viz.: {@}m{1}. The idea is that 7 started in a state satisfying ¢ should, whenever
it terminates, return a state satisfying 1. Thus, we concentrate on partial correctness inter-
pretation of Hoare triples. The issue of termination is being considered a separate quality of
programs, on par with program complexity, length, etc.

In Hoare logic one might try to write the following specification of the task:

{t}?p{z =z xy} (1)

Above, tt stands for the always satisfied assertion. Thus, the constraint put by (1) on a candidate
solution, call it 7, is that 7 started in an arbitrary initial state, whenever terminates, should do
so in a state in which the value of z equals the value of x multiplied by the value of ¥ in that
terminal state.

There are two problems with specification (1).

Firstly, it relates the value of z in a terminal state to the values of x and y in that state.
But nothing prevents 7 from changing z or y. This allows ‘clever’ solutions, e.g.,  := 0;z := 0.
which contradict the intuition that (1) was meant to express the relationship between the initial
values of £ and y and the value stored in z upon termination.

Secondly, (1) seems too liberal. Knowledge that a given program 7 satisfies (1) gives not
a single clue as to its effect upon variables other than z, and upon z and y in particular. Often
one would like to consider program as a black boz, and its specification as the only means of
manipulation of its contents. Then, the less one knows about what is in the box, the less often
one can use its contents.

One way to solve both problems is to use auxiliary logical variables, separate from program
variables, to ‘store’ the initial values. Let capital letters range over the logical variables. The
following specification says that the program of interest should not only change the value of z
to the multiplication of the initial values of x and y, but also that the value stored in x does
not change:

{t=MANy=N}lp{z=M*xNANz=M} (2)

Note, however, that (2) says nothing about y, nor about any other program variable appart
from those two mentioned explicitly in the postcondition.

Commands-as-predicates approach Another method is to equip the language of assertions
with the ability to refer to the values stored in a program variable in the initial and in a final
state of computation. Hehner, cf. [23], would write & and £, for the values stored in z initially
and upon termination, respectively. Another convention is to use z and z’, respectively. The
latter convention is used within the Z! community. It is also advocated by Lamport, see [29],
and adopted by Hehner, cf. [24].
In commands-as-predicates approach, and in accord to the latter convention, (2) is captured
by:
{}?p {2 =x*xy A2 =z} (3)

Actually, Hehner would not write (3) as a formalisation of our programming task. Hehner,
and also Hoare ([27]), investigated a system called predicative programming. In this approach
each command is identified with a predicate of the extended language. Programming in this
approach consists of logical manipulation of the specification so long that it becomes an image
of a command.

The subtlety of the embedding of commands into predicates is that it takes the programing
environment as a parameter. Clearly, each assertion ascribed to a command via the embedding
should capture the whole meaning of the command. For example, assignment = := =+ 1 changes
the value of variable x and leaves all the other intact. Thus, in an environment consisting of
variables z, y and z, the command corresponds to predicate z' =z + 1Ay =y A2/ = 2.



To avoid such cumbersome details the commands-as-predicates approach often goes with
convention that all variables not mentioned in a specification do not change their values. The
convention allows to hide the context. The price to pay is that now the logical formulae also
have hidden agenda, e.g., ' = x’ is not equivalent to tt.

This is the reason why the convention is not used by Lamport in his Temporal Logic of
Actions — a recent ramification of commands-as-predicates approach to cope with reactive
systems, cf. [29]. It should be mentioned that Lamport also uses logical variables, which he calls
rigid in [29].

The remaining part of paper is organised as follows. Section 1 explains the sense in which
substitutions can be used as logical formulae, and presents such a logic called PL,. Section 2
introduces logic pLSD in which formulae from PL, are used as specifications of imperative
programs. Finally, Section 3 shortly describes our interpretation of pLSD in Isabelle.

1 Logic of predicates with explicit substitutions

Substitution plays a prominent role in Hoare logic. Its assignment axiom schema

(et

says that for ¢ to be a valid postassertion for assignment x := e one should consider as a
preassertion the result of performing substitution corresponding to the assignment on . From
the consequence rule it follows that ¢ [%] is the best preassertion.

In Hoare’s axiom the schematic variable ¢ plays the role of a placeholder, a dummy. Intu-
itively, the assignment command is completely characterised by the substitution that corresponds
to it. If substitutions were admitted as specifications we could write

e

z:=e¢ sat {—} .
T

and thereby get rid of the dummy.

We have argued in the introduction that one would want to write simple formulae which
captures the meaning of a program completely, and independently of the programming context.
We have also argued that a logical infrastructure is needed to express that changes of values of
certain variables are restricted to a specified set of variables. It would be nice, in particular, if
there existed a formula which captures that nothing happens to the state, i.e., that all variables
retain their values.

Extending logic of predicates with explicit substitutions allows to achieve these aims.

1.1 Logic of predicates with explicit substitutions as a non-commutative sub-
structural logic

Substitution is normally considered as part of the methatheory. This applies not only to logics,
but to A-calculae and type theories as well. It has been recently realized that more efficient
implementations of functional languages can be achieved if one controls the process of performing
a substitution. This calls for theories with substitution as a primitive operation.

Indeed, a variety of A-calculae with explicit substitutions have already been considered,
cf [1, 30]. All of them are 2-sorted — there are two syntactic classes: the old class of A-terms,
and the new class of substitutions.

In case of predicate logic there already are two sorts: terms and formulae. From the dis-
cussion above it follows that we want to consider substitutions as specifications. Thus, while
extending the logic of predicates with explicit substitutions we do not add a third sort for them.
Instead, substitutions are considered as a new class of atomic formulae. From now on the old



atoms, i.e., the predicates, are called Platonic, while substitutions are referred to as dynamic
atoms.

With predicates and substitutions considered as atoms a new logical connective is needed to
express the process of application of a substitution to a predicate. Let us use the tensor symbol
® to denote the new connective. Now we can write o ® o’ to express (pending) composition of
substitutions o and o.

We can, it turns out, consider ® as a non-commutative multiplicative conjunction. Having
said that we can also add the multiplicative truth, denoted I. It turns out that I captures the
idea that “nothing happens”. Thus, I is a good specification for a “do nothing” program.

Altogether, we are led to take as the logic of specifications a fragment of intuitionistic non-
commutative linear logic. This idea was first put forward in [7]. The logic is referred to as PL,.
Formally, formulae of PL,, called specifications, are given by the following grammar.

A =0 substitutions, the dynamic atomic formulae
| a predicates (including equality), the Platonic atomic formulae
|A®A |I multiplicative conjunction and truth

|ANA | T additive conjunction and truth
|AVA |L additive disjunction and false

A sequent-style presentation of the logic is given in Table 1.

A AAANFB
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(u)%%%%% (RI) —
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om o TASS rmae

Table 1: A sequent system L for PL,.

With one exception, the rules in Table 1 are the natural generalisations of the rules sug-
gested by Girard for the commutative intuitionistic linear logic, cf. [19] and [20, 21], to the
non-commutative case, cf [14, 15].

Axiom (L) is the only exception — the expected generalisation is ', L, A F A, as in [14, 15].
However, the stronger axiom is not valid in our intended interpretation in quasi quantales, cf. [8].

Actually, quasi quantales were invented by Blikle in the 70’s. Firstly, see [10], under the name
of nets Blike reinvented quantales to study mathematical behaviour of commands. Subsequently,
cf. [11], he begun investigation of quasi nets, i.e., our quasi quantales. In an attempt to give
denotational account of divergence, as opposed to failure, he allowed the composition relation to



be non-strict on the right. The most comprehensive account on quasi nets and their applications,
including solving recursive equations in nets, can be found in [12].

1.2 PL, — a linear theory

There are numerous reasons which force us to work with theories rather than the pure logic
generated by system L.

1.2.1 Platonic sublogic

Programs are supposed to manipulate data which come from a specific domain. Hence, we must
cope with axioms which charaterise the domain of data. This calls for describing the way in
which the usual logic of predicates can be embedded into PL,.

The reader clearly noticed the lack of non-monotone connectives like implication and negation
in PL,. Since tensor is non-commutative there could be two implications in principle. Even if
both existed! none of them would semantically correspond to the usual implication. A similar
argument applies to the Platonic negation.

But then the problem is that without negation a lot of expressive power is lost. The usual
way around the problem is to consider affirmative/positive and refutative/negative predicates
for each predicate symbol. More specifically, given a predicate symbol R of arity & we consider
two predicates. The first affirmative, R"(eq,...,e;), affirms that R holds on ey, ..., e;. The
other refutative, R~ (eq,...,ex), states the converse. In case of equality predicate this is usually
written: e; = ey —an affirmative atom, and e; # ey —the corresponding refutative atom.

Now negation, and hence implication as well, becomes operation definiable on the Platonic
sublogic of PL, i.e., on formulae built without ® and I.

SRHer,oover) = Ro(en,eoien) —R(er..er) = Ri(er,...,ex)
~(PpAY) = (=9) V() -T = 1
~(PVeY) = (29) A () -L =T
Missing are the following axioms which state that the affirmative is an opposite of the refutative,
and vice versa. In R*(eq,...,ex) bellow  stands either for + or for —.

R*(e1,...,ex) N—R*(e1,...,ex) L and TtE R*(er,...,ex) VR (e1,...,ex)

Thus, the Platonic sublogic is classical.

In first order logic the conjunction distributes over disjunction, and vice versa. Since the
additive conjunction — the one corresponding to the conjunction of the predicate logic — does
not, in general, distribute over additive disjunction, we have to add the missing axioms:

ANBVC)F(AANB)V (ANC) AV(BANC)H4(AVB)AN(AV(O)
The translation of the reflexivity of equality axiom schema to PL, is straightforward.
The=e

Xxioms characterising a particular domain of data are translated in the same straightforward
way. For instance, to state that the data are strictly linearly ordered by < one would accept the
following axioms.

r#£yFrz<yVy<z and z<yVy<zhkzxz#y

!One of the implications is not definiable in the intended model, cf. [8].



1.2.2 Dynamic axioms

The other facet of equality, that equals can be substituted for equals, brings us to the dynamic
part of PL,. Finitary simultaneous substitutions, ranged over by ¢ and ¢, have the form

_’ ceey —
Ty In

The main idea behind tensor is that it codes substitution on a predicate
o ® R*(e1,...,ex) A= R*(e10, ..., e,0)
and also composition of two substitutions,
oc®¢d-oog

where o o ¢ denotes the result of composition of the two substitutions.
We also declare that the identity substitutions are multiplicative truth.

X

A1 and I--]]

X

Next, we need a number of axioms to ensure that, effectively, substitution distributes over all
finite (equivalently, over all binary and nullary) additive conjunctions and disjunctions. Some
of the distributivity properties follow from the logical rules. Those missing are listed below.

TrFo®T and o®@ LEF_L

(c®A)AN(c®B)Fo®(AAB) and (AQC)A(BRC)F(AANB)®C
Thus, the axioms ensure that o ® ¢, with ¢ Platonic, is equivalent to a Platonic formula.

The question that remains is what it means for a predicate to act upon a formula like in
(x = y) ® B. The answer is that it is catastrophic for B: its role is totally neglected. Namely,
for any Platonic ¢ and any B we have

v p® B.
This is a consequence of accepting the following axioms.
R*(e1,...,ex) F R*(e1,...,ex) @ L and THTQ®L

Semantically, the formulae of PL, are interpreted as predicate transformers, cf. [8]. The
formulae of the Platonic sublanguage are interpreted as constant predicate transformers.

Finally, we accept an axiom which explicitly expresses the meta-property of substitutivity:
equals may be substituted for equals.
e e
2]
x x

2 pLSD — a logic for software specification, development and
verification

ep =ey A\

Let us turn now to our logic pLSD. Its connections with Hoare logic are described elsewhere,
cf. [9]. Here, we concentrate on its utility for program development.
pLSD is a Labelled Deductive System, cf. [18], built over PL,. Declarative units (judgements)
of pLLSD are of the form
m sat A



where 7 is an imperative program while A is a PL, formula.

Atomic programs include: indeterminate programs, denoted p, q; assignments, denoted «;
and “do-nothing” program skip. More complex programs can be built from already constructed
programs 7 and w using one of the following operations: binary sequential composition, m; w;
binary conditional composition, if bthen 7 else w fi; and unary loop, while b do 7 od. The boolean
conditions b mentioned above are Platonic formulae.

The tarskian consequence relation F of pLSD has sequents of the form

p1 sat Aq,...,p, sat A, + 7 sat A

where p;’s are pairwise different. The intended meaning of the sequent is that if all indeterminate
programs p1, ..., P, satisfy their respective specifications, then 7 satisfies A.

In the following sequent style presentation of pLSD metavariables C and D range over se-
quences of satisfaction assumptions about pairwise different indeterminate programs. PI(C) is
used to denote the set of all indeterminate programs in C.

Structural Rules

Reflexivity
psat Al psat A
cut C t+ t B t B,D t t A
T 8a p sat B, w 8a
PI(C) nPI(D) =
C,D + w][r/p] sat A ©) (D) =0
Exchange
C,p sat A,q sat B,D + =« sat C
C,q sat B,p sat A, D + =« sat C
Weakening
Ct msat B
Pl
C,p sat A + « sat B P& PI(C)
Contraction

C,p1 sat A,po sat A + n sat B
C,p sat A + =wlp/pi][p/p2] sat B

p & PIC)

Interaction Rule

Consequence
CkF msat A A4B
Ct nsatB
Connective Rules
Assignment
+ « sat [o]
Skip
- skip sat I

Sequential composition
CkF msat A CF w sat B

Ct+ mw sat AQ B

Conditional
CHt msat A Ct+ wsat B

C I ifbthen welse w fi sat (b A A)V (-bA B)




Loop
Ct+ msatB bANAFB®A -bANAFIT

C t while bdo 7 od sat A

2.1 pLSD — a programming logic over PL,

How formulae of PL,, and explicit substitutions in particular, can be used as specifications? To
answer that question let us turn to the programming task considered in the introduction. It can
be now specified as follows.

M oz *
Tp sat [—, L y] (4)
y' oz
The task is to find a program which, whenever terminates, sets the values of variables according

2t mky

to substitution [?, 7} More specifically it says the following.
e The terminal value of z is equal to the multiplication of the initial values of x and of y.

e The value stored in y may get changed. The metavariable 7¢ ranging over terms can be
replaced by an arbitrary term. Thus, we do not care about the final value of y.

e Variables other than z and y should not change their values.

There is an obvious similarity between (3) and (4). The use of primes in (3) is compensated
by the use of explicit substitutions in (4). But we do not need to talk about two different
incarnations of each variable.

Note also that in (4) it must be explicitly mentioned that we ‘do not care’ how variable y is
set. In (3) this is implicit.

Other fundamental difference is revealed when it comes to consider the ways in which the
different specification languages are used. A key question: Given a specification, how to find
a program that fulfills it? Our aim is to show that program development is a logical activity
governed by pLSD.

2.1.1 Trivial solution — assignment axiom

The key idea is that each assignment command corresponds to a substitution. If notational
differences are neglected one can simply identify assignments, ranged over by «, with a subclass of
substitutions, ranged over by o. Let [«] denote the substitution corresponding to assignment .

Thus, [z := 0] equals [9].

x
Now, (4) can be solved by an assignment command provided substitution [%, %] is an
assignment expressible in the programming language. This would be the case if the programming
language allows simultaneous assignments, and if expressions of the form z * y are expressible.
Then one can take program (y,z) := (?t,z x y). The corresponding (instance of) the pLSD

assignment axiom is

F (y,2) := (*t,z xy) sat [%,%y]

Let us compare the pLSD assignment axiom (left) with its counterpart in Hoare logic (right).

+ a sat [q] {ela]ta{p}

The analogy should be clear. Hoare characterises assignment « by the substitution [a] performed
on a dummy assertion . Our axiom is obtained by getting rid of the dummy.



2.1.2 Simple solution — sequential composition and consequence rules

Programming tools are constructive. Those available in specifications need not be constructive.
Specifications are always more expressive — otherwise there would be no sense in separating
program development phase from program specification phase. Hence, programming is an art
of fulfilling specifications with limited programming tools.

Consequently, let us assume that our programming language is limited in that it disallows
simultaneous assignments. Assumption that multiplication can be used to build valid expression
of the language still holds. Then a slightly more complex program, namely z := z * y;y :=7s,
adheres to the restriction, and is a solution of our task.

Indeed, assignment axiom and sequential composition rule applied to the program give the
following derivation.

 z:=zxy sat [%]  y:=?s sat [;—s]
* ? (5)
F z:=xzxy;y:=7s sat [%] ® [?5]

Let us compare the pLLSD sequential composition rule with its counterpart in Hoare logic.

ChrmnsatA Ct+ w sat B {p}m{d} {¢} w {9}
CHt mw sat AR B {o} myw {1}

Sequential composition rule in Hoare logic has serious deficiency. In backward proofs it requires,
just like CUT, inventing a lemma (assertion ¢ above). In forward proofs it imposes restriction
that the postassertion of m matches preassertion of @w. In pLSD sequential composition of
programs is characterised by multiplicative conjunction of their specifications.

We are not done yet. The consequence rule (6) introduces proof obligations to pLSD deduc-
tions. Thereby it allows to manipulate the specifications on PL-level.

Ck 7msat A A-B (6)
Ct msat B

Notice the contravariance beteen pLSD and PL, in (6). It comes about from the fact that pLSD
is based on weakest precondition rather than strongest postcondition predicate transformers.

It has been argued in section 1 that tensor applied to two substitutions corresponds to their
composition. Thus, by the relevant PL, axiom one obtains the following.

y ’ oz

L] 2] o 3]

So, consequence rule (6) applied to derivation (5) gives finally the following.

Y bz

(5) {M _y] - [z o [%]

R i el
- z:=2xzx*xy;y:=7s sat T

Thus z := x * y; y :=7s satisfies [%, mT*y} for 7t =7s [%’ky}, as required.

2.1.3 Problem decomposition — CUT rule

In general the programming language does not support directly the operations required by
the specification. In terms of our programming task (4) this would mean that the language
neither allows simultaneous assignments, nor expressions of the form x % y. Assumption that



multiplication is not defined may seem funny, but it serves as an example here. Also, on
appropriatly low level one has to implement multiplication in terms of more primitive operations.
Consequently, let us assume that the language allows expressions of the form xz + y, £ — y and
—x with their usual meaning.

At first there is nothing we could do. Then comes an idea that perhaps we could solve (4)
under additional assumptions. Then, perhaps, we could somehow meet the assumptions. All
this is rather vague. More formal explanation of this vague idea is this.

Given a programming task of the form

= ?p sat A
do the following.
1. Guess another specification B, somehow related to the original problem A.
2. Then, separately, and independently:

(a) find in a library or construct a program 7 that satisfies B;
(b) working under assumption that p sat B, find in a library or construct a program w
(over p) which satisfies the original specification A;

3. Build a program that satisfies the original specification by replacing all occurrences of p
in w by 7.

Diagramatically the above can be expressed in the form of the following instance of CUT.

= sat B p sat B + w sat A
+ w(r/p] sat A

Solving the derived task p sat B + w sat A might require another decomposition. Thus, it
is only natural to accept CUT in full generality.

Ct+ nsat B psat B,D  w sat A
C,D + w]|n/p] sat A

This step turns pLSD into a logic, i.e., into a consequence relation. Now, the following logical
characterisation of the nature of modularity in program development can be offered.

|CUT = MODULARITY |

It is fair to say, it seems, that neither Hoare logic, nor any of its variants has addressed the issue
of modularity of program development in the way just described.

Let us decompose our programming task. The idea is that the solution may be found more
easily if we assume that y > 0. Thus, let us take as the lemma the following strengthened version

of our specification.

LdéfyZO/\g where gdéf

b

Yy 4

2z 7

2.1.4 Solving the parametric subproblem — reflexivity axiom and conditional rule

Now let us move to realize the step 2b of the decomposition scenario. In particular we have to
find a program w (parametric over p) which satisfies:

psaty>0Ags 7q sat ¢ (8)



Either y > 0 or y 2 0 always holds. Thus, AV-distributivity gives the following PL, equivalence.
A W>0A) V(Y ZOA) I (y>0Ay>0Ac)V(yZ0AyZ0AS) (9)

The conditional command is characterised by the following rule.

CHt msat A Ct+ wsat B

10
C I ifbthen welse w fi sat (b A A)V (-bA B) (10)
Thus, an application of consequence and conditional rules gives the following derivation.
p sat L + 7¢; sat L psat L 7qy sat y 20 AN
p sat L 1 ify > 0then ?7q; else 7¢o fi sat (y >0ANL)V(y20AyZ0Ag) 9) (11)

p sat L t ify > 0then 7¢, else 7qs fi sat ¢

At this point the task is reduced to two subgoals.
The first one, p sat L t 7q; sat L, is solved by taking the hypothetical p for 7¢;. This
makes the subgoal an instance of pLSD’s reflexivity axiom.

psat At p sat A

The other subgoal, p sat L + 7q, sat y # 0 A ¢, requires some effort. If one negates the
value of y and applies p then it remains to modify the output stored in z. Without going into
details we state the following lemma.

Lemma 1 Program ms def Yy 1= —y; p; 2 := —z satisfies parametric specification
7t x* M x %
psatyZO/\{—, y}H—?qgsaty;_ﬁO/\{—, y}
Yy Y z

provided Tt =7t [_Ty]

The little constraint 7t =7¢ [%y] has to be met by the other thread of our program development.
Conversely, this solution has to meet all constraints developed in the other thread.
2.1.5 Proving the lemma — loop rule

Now, with accord to step 2a, we have to find a program 7 which fulfills the following task.

7t
= 7p1 sat y >0 A x*y]

)

y 4

The idea is to implement multiplication by y-times iterated addition of z to z. The value
of z should, of course, be initialized to the neutral element of addition. The program described
above may look as follows.

z:=0;whiley >0doz:=z+z;y:=y—1od

Dealing with a loop calls for an application of pLLSD’s loop rule. Below, it is compared with its
counterpart in Hoare logic.

Ct msat B bANAFB®A “bANAFT {b A p}m{p}
C I~ while bdo 7 od sat A {¢} while b do 7 od {—b A ¢}
(12)
pLSD’s loop rule has one aspect similar to pLSD’s consequence rule — both have PL, sequents
as premisses. In the consequence rule the PL, sequents allowed to manipulate the specification.
This time, however, the PL, sequents are best considered proof obligations.




There is an important pragmatic difference between the rools. The one proposed by Hoare
requires to find an invariant of the body of the loop. Its pLSD counterpart is more elaborate.
Invariance of A with respect to the body 7 is split into two subtasks: finding a specification B of
the body and proving A’s invariance with respect to B under assumption —b. Another subgoal
is to show invariability of A under assumption —b.

The following result demonstrates that the loop sugested above satisfies an appropriate
invariant. Notice that the invariablity obligation generates constraint 7¢ = 0.

Theorem 2
. 0 z=x z
= whiley >0doz:=x+z;y:=y—1od sat y >0 A [—,L}
y z

From the Theorem 2, pLSD’s sequential composition rule and consequence rule it follows
that the following can be derived.

b z:=?t;while y >0doz:=2+zy:=y—1lod sat y >0 A

0 x*y]
"oz

2.1.6 CUT, ... then paste

The final step is to combine the results obtained in both threads and to create solution of the
initial task. At this stage constraints collected in the two threads have to be verified. The second
thread requires 7t to be equal to 0. Luckily, this constraint is in no conflict with constraint of

the first thread since 0 =0 [;yq]
Thus, pLSD verifies that there exists a solution to the original specification (4).

if y > 0 then z := 0;
whiley >0do (z:=2+2z;y:=y—1) od

else (y := —y;z :=0; sat 9, 7Y
whiley >0do (z:=x+ z;y:=y —1) od; 2 := —2) y oz
fi
2.2 pLSD — summary of main features

Let us conclude this section by recalling the two main features that make pLSD different from
other variants of Hoare logic.

First, in pLSD the meaning of basic programs is fully captured by a single specification which
is independent of the programming environment.

Second, pLSD is a logic whose construction is parameterised with a logic of specifications.
The logic of specifications is responsible for manipulation of specifications. At the level of pLSD
we are talking about the logic of program development.

This feature can also be found in Abramsky’s approach to programming logics, see [3], and
its specialisations, see e.g., [2, 13, 25]. But, for obvious reasons, pLSD cannot be seen as a
specialisation of Abramsky’s framework: the later was formulated for propositional logics and
it does not allow linear theories on any level.

3 Towards an implementation of pLSD in Isabelle

Why Isabelle? As a general purpose theorem prover Isabelle provides a promissing framework
for implementation of pLSD.

Firstly, it supports backward proof method which seems most natural method of program
specification, verification and development.



Secondly, it allows to store the results of deriving parametric programs as theorems of the
form p; sat Ai,...,p, sat A, + 7w sat A. Therefore forward proof method can also be
applied, and ieven used in conjunction with backward proofs.

Thirdly, it allows quite natural interpretation of the many constituents (logics, axiomatiza-
tions) of pLSD. The only minor (7) exception to this picture is posed by substitution.

Finally, it allows to specialize logical tools to each theory contributing to interpretation of
pLSD in Isabelle. We have not made much progress in that direction yet.

3.1 The shape of theories

The following graph presents the hierarchy of our theories which constitute interpretation of
pLSD in Isabelle.

Pure — linlog — 1lltheory — numll — progll

The Pure theory is an Isabelle’s basic theory and contains only the meta-logic. The rest of
the theories, i.e. 1inlog, 11theory, numll, progll, implement pLSD piece by piece.

3.1.1 1linlog

The linlog theory implements sequent system L for PL, described in section 1 by adding a
new constant |- which builds these sequents. The theory also introduces:

e the new class 11form which is the class of all our target linear logic formulae;

e two new types in this class:

pll - the type of Platonic formulae
dll - the type of dynamic formulae
e the following constants:
><, I - multiplicative conjuction and truth
&&, tt — additive conjuction and truth
++, ff — additive disjuction and false.

Both tt and £f are constants of type pll, whereas I is assigned to d11.

e some other types and constants which are related to representation of sequents of PL,.
Implementation of sequents of PL, and pLSD was based on implementation of sequents
in Isabelle’s LK logic.

Details can be found in Appendix A.
Examples of theorems in the 1inlog theory?:

1. goal linlog.thy "(A && B) && C |- A && (B && C)";

2. goal linlog.thy "A, ff |- A >< B";

2All examples presented were proved with Isabelle.



3.1.2 1ltheory

The 11ltheory is an extension of linlog theory. It adds to the the linlog a new class term
and one type of this class: num. The type num is the type of objects which are used in programs
e.g. integers, reals, booleans etc. The 11theory introduces also new constants:

za : num X num —> d11 builds dynamic atoms, i.e., single substitutions
~ o pll — pll negation over platonic formulae
-> 1 pll x pll — pll implication over platonic formulae

= I num X num — pll equality over elements of type num.

This theory contains the axioms discussed in section 1. The only difference is that at present
only single substitutions are implemented. See Appendix B for details.

Formula e za x codes substitution of e for x>. Notice also that negation and implication
were defined to operate on Platonic formulae only.

Examples of theorems in the 11theory:

1. goal lltheory.thy "t1 = t2 |- t2 = t1";
2. goal 1ltheory.thy "tt |- el = e2 ==> (el za x) |- (e2 za x)";

3. goal 1ltheory.thy "(B ++ C) && A |- (B && A) ++ (C && A)";

3.1.3 numll

The numll theory implements the first order theory which is used in programs. In our case it
is (part of) the arithmetic of integers. By varying this theory we can go from integers to reals,
etc.

The theory is an extension of 11theory and adds to it the following constans:

0,1 : num zero and one
+,% 1 num X num — num plus and times
- I num — num minus
< : num X num — pll order (less) on integers

It also contains the usual rules which implement the usual axioms of integer’s arithmetic. Apart
from arithmetic axioms, in the numll theory there are two axioms which tell us how to make
substitutions on our new platonic formulae of the form m < n, where m, n :: num. Appendix C
has the details.

Examples of theorems in the numll theory:

1. goal numll.thy "tt |- a * 0 = 0";
2. goal numll.thy "(y < 0) |- (0O <y +-1) ++ (0 =y + - 1)";

3. goal numll.thy "tt |- -(x * y) = x * (-y)";

3.1.4 progll
The progll theory extends the numll theory to the pLSD logic by adding to the numl1:

e two new types of class term: progr and pLSDform,

34za” means “for” in Polish.



e new constants for program’s constructs:

!= I num X num — progr for assignment,
SKIP : progr for an empty programm,
;5 i Pprogr X progr — progr for sequential composition,
IF = pll X progr X progr — progr for conditional,
WHILE : pll X progr — progr for loop;
e the constant sat :: progrx(a’ :: 1lform) — pLSDform which encodes the satisfaction
relation;

e the constant | |- and other machinery needed to implement sequents of pLSD.

Rules of the progll theory can be found in Appendix D.
Examples of theorems in the progll theory:

1. goal progll.thy "||- z :=x *xy ;; y :=0 sat (x * y za z) >< (0 za y)";
2. goal progll.thy "||- IF (0 < y ++ 0 =y,
(z :=0) ;; WHILE(O < y, (z :=x +2) ;; y =y + - 1),
vy :==-y) ;3
((z :=0) ;; WHILE(O <y, (z :=x+ 2) ;; y:=y+-1)) ;;
z :=-2z) sat (x * y za z) >< (0 za y)";

The proof constructed to solve goal 1 above also works for the following development task:
goal progll.thy "||- ?p sat (x *x y za z) >< (0 za y)";

where 7p is Isabelle’s metavariable ranged over the type progr. As a result we obtain the same
program like in example 1.

3.2 Representation of explicit substitutions

Our implementation is strightforward, and poses no questions as far as adequacy is concerned.
It is also faithfull. Well, almost.

There are two sources of the apparent lack of faithfulness. One of them has to do with
substitutions, the other with pLLSD sequents.

Consider the following pLLSD sequent

psat At 7w sat B

We insist that p above be an indeterminate program. However, we could not find any simple
way of putting this restriction into representation. Consequently, as a result of some unifications
Isabelle puts code into assumptions. So, it is up to the user to reject such hints.

The same story goes for substitution. za has been declared to have type num X num — d11.
Now we can implement the result of applying the substitution (e za x) on the term t(x),
which depends on x, by the A-term (%x.t(x))e. This is possible because the variable x, from
the substitution (e za x), has the same type as the expresion e. But there are also some
troubles. One can write (1 za 2 + 2) which is type correct, but doesn’t make any sense. Even
more, we can prove in the progll theory that

[I- 2+ 2 :=1 sat (1 za 2 + 2).

So again, it is up to the user to use Isabelle’s metavariables ranging over num as the second
argument of za and for the first argument of assignments. Again, steps in proof in which



Isabelle uses must be watched for unwanted unifications, but then again we can use the back()
command to refuse wrong guesses.

In all encodings of programming logics that we are aware of one introduces a new syntac-
tic class of, say, integer variables, together with explicit coercion function from variables to
expressions. In Isabelle this would look like

! :: numVar — num

Then za could be given type num X numVar — d11, where numVar is the syntactic type of
variables over num. In this way the problem with unfaithful representation of substitutions diss-
apears. But at the same time the simple implementation of substitution as function application
is lost. For instance, let t(x) = !'x + 1. Then (%x. !'x + 1)2 is not type correct because
x :: numVar while 2 :: num. Indeed, textual substitution would give something like !'2 + 1.

Thus, at present, we are happy with our solution. It works. Also, avoiding explicit coercions
makes the syntax much more readable. The price for the user is not very high.

The drowback of the simple solution is that it does not generalise to simultanous substitu-
tions.

Among other things to be done one task is particularly important. Namely, proof in PL,
and in the logics of data need to be automated as much as possible. Our experiments show that
these are the most boring parts of formal development /verification with pLSD.
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A Appendix: The linlog theory

In following rules the $ sign is conctructor of sequents which elements has the type

a’:: 1llform. E.g. $G means: any sequents of a proper formulae (even empty) which is
called G.
linlog = Pure +

classes 1llform < logic
default llform
types
dll O
pll O
sequence, seqobj, seqcont, sequ, sobj O
arities
dll :: llform
pll :: 1lform

consts
e :: "[’a, ’b] => ’c" (infixr 37)
"&&" :: "[’a, bl => ’c¢" (infixr 36)
Mg :: "[’a, ’b] => ’c" (infixr 35)
ident :: "d11" ("I")
bottom :: "pll" ("ff")
top dr "pll" ("tt")
rules
(*Structural rules*)
refl "p |- PpP"
cut "[] $G |- A ; $F, A, $H |- B |] ==> $F, $G, $H |- B"
li "$G, $D |- A ==> $G, I, $D |- A"
ri vp- 1"
1t "$G, A, B, $D |- C ==> $G, A >< B, $D |- C"
rt "[] $G |- A ; $D |- Bl]==> $G , $D |- A >< B"

landl "$G, A, $D |- C ==> $G, A && B, $D |- C"
landr "$G, B, $D |- C ==> $G, A && B, $D |- C"

rand "[l $G |- A ; $G |- Bll==> $G |- A && B"

topr "$G |- tt"

bottoml "ff, $H |- A"

lor "[] $G, A, $D |- C ; $G, B, $D |- C |] ==> $G, A ++ B, $D |- C"
rorl "$G |- A ==> $G |- A ++ B"

rorr "$G |- B ==> $G |- A ++ B"

end

ML



B Appendix: The 11ltheory

lltheory = linlog +

classes
term < logic
types
num O
arities
num :: term
consts
"za" :: "[num, num] => 411" (infixr 35)
e :: "pll => pll" ("~ _"[41] 40)
n->"  :: "[pll, pll] => pll" (infix1 35)
"="  :: "[num, num] => pll" (infixr 50)
rules
(x axiom for the equality *)
equal_num "tt |- P = P"
eq_dll "(E=F) & (Eza X ) |- (F za X )"
(x platonic axioms *)
r_imp_def "(@®) ++ Q |- P -> Q"
1_imp_def "P ->Q |- "(P) ++ Q"
1_demorg_and "“(P && Q) |- ("P) ++ ("Q"
r_demorg_and "("P) ++ ("Q) |- “(P && Q)"
1_demorg_or "“(P ++ Q) |- ("P) && ("Q)"
r_demorg_or "("P) && ("Q) |- “(P ++ Q)"
1_not_tt "Ttt |- £
r_not_tt "ff |- "t
1_not_£ff "Ef |- tt"
r_not_£ff "tt |- “ff"
and_not_1 "A && (TA) |- ff"
and_not_2 "("A) && A |- ff"
or_not "tt |- A ++ (TA)"
or_and "A && (B ++ C) |- (A && B) ++ (A && C)"
and_or "(A ++ B) &% (A ++ C) |- A ++ (B && C)"
pl_times_£ff "(A :: pll) |- A >< ff"
tt_times_ff "ttt |- tt >< ff"
plat_times "A::pll |- A >< B"
times_plat "(A::pll) >< B |- A"
(* dynamic axioms *)
id_1 "(X za X) |- 1"
id_2 "T |- (X za X)"
tt_dll "tt |- (E za X) >< tt"
ff_dll "(E za X) >< ff |- ff"

times_and "((E za X) >< A) && ((E za X) ><B) |- (E za X) >< (A && B)"

and_times_r "(A >< C) && (B >< C) |- (A && B) >< C"
and_times_1 "A && (B >< C) |- (A && B) >< (A && C)"

1_subs_subs "(E1l za X) >< (E2(X) za X) |- ((% X. E2(X)) (E1) za X)"
r_subs_subs "(((%X.E2(X)) (E1)) =za X) |- (E1l za X) >< (E2(X) za X)"

1l eg_subs "((E za X) >< (P(X) = QX)) |-\
\ (CCCh X.P(X)) (E)) = ((% X.Q(X)) (E)))N"

r_eq_subs "(% X.P(X)) (E) = (% X.Q(X)) (E) |- (E za X) >< (P(X) = Q(X))"



1_neg_subs
r_neg_subs
1_imp_subs
r_imp_subs

change_subst "( |- “( X = Y)) ==>\
(G = (WX.F(X))(E)) && (E = (AY.H(Y))(G)) && \
((E za X) >< (F(X) za Y) ) |- (G za Y) >< (H(Y) za X)"

\
\

end

C Appendix: The numll theory

numll = lltheory +

consts

"g" :: "[num, num] => pll" (infixr 50)

"o"  :: "npum" o™

"t :: "pum" ()

"+ :: "[num, num] => num" (infixr 70)

"x" :: "[num, num] => num" (infixr 80)

M-t :: "pum => num" ("= _" [91] 90)
rules

(x arithmetic’s axioms *)

plus_ass "tt |- (x+y) +z=x+ (y +2)
times_ass "tt |- (x * y) *x z =x *x (y * 2)"
plus_comm "tt |- x +y =7y + x"

times_comm "tt |- x * y =y * x"

un_0 "tt |- 0 + x = x"

un_1 "tt |- 1 * x = x"

opp_plus "tt |- x + (- x) = 0"

distr "tt - x x (y+2) = (x xy) + (x *
trich_ 1.1 ""(x=y) |- ((x <y) ++ (y < x))"
trich_1_r "((x<y) ++ (y <x)) |- "(x=y)"
trich_.2_.1 ""(x<y) |- ((x =y) ++ (y < x))"
trich 2. r "((x=y) ++ (y <x)) |- "(x<y)"
trans "((x <y) & (y <2z)) |- (x <z)"
le plus.r "(x<y)|l-@EE+z<y+2)"
le_plus_1 "(xtz<y+tz) |- (<"
le_times_ "((0<z) & (x<y)) |- (x*xz<y
le_times_ "((0 < 2z) && (x * z <y *x 2z)) |- (x
pl_congru "(a =1y) && (b =2) |- (a +b) = (y
tm_congru "(a =y) & (b =2) |- (a *b) = (y
eq_le_1 "(g=e) & (e < f) |- (g < £)"
eq_le_2 "(f<g) && (g=¢e) |- (f <e)"
dyskr "(x <y +1) |- "(y <)

(* substitutions *)

1_le_subs

\

r_le_subs

\

end

"((E za X) >< (P(X) < Q(X))) |-\

"(E za X) >< (7 P(X)) |- "(CX.P(X))(E))"
" ((WX.P(X))(E)) |- (E za X) >< (7 P(X))"
"(E za X) >< (P(X) -> QX)) |- ((RX.P(X))(E)) —> ((4X.Q(X))(E))"
"((®X.P(X))(E)) —-> ((%X.Q(X))(E)) |- (E za X) >< (P(X) —> Q(X))"

z)ll

z)"
)"
z)"
z)"

* + A *

(CCCh X.P(X)) (E)) < ((h X.Q(X)) (E))))"

(E za X) >< (P(X) < QX))

"(% X.P(X)) (E) < (% X.Q(X)) (E) |-\



D Appendix: The progll theory

progll = numll +

types
progr, pLSDform O

arities
progr, pLSDform :: term
consts
(* programs *)
"e=n :: "[num, num] => progr" ("_ .= _" [28, 29] 20)
"SKIP" :: "progr" ("SKIP")
R :: "[progr, progr] => progr" (infixr 20)
IF :: "[pll, progr, progrl => progr"
WHILE :: "[pll, progr] => progr"
"sat" :: "[progr, ’b :: 1llform] => pLSDform" ("((_)/ sat (_))" [19, 19] 18)
rules
(* program rules *)
ass "Il- (x := e) sat (e za x )"
skip  "||- SKIP sat I"
comp "[I$C |- P sat A; $C ||- Q sat B|] ==> \
\ $C |1- (P ;; Q) sat (A >< B)"
cond "[|$C ||- P sat A; $C ||- Q sat B|] ==>\
\ $C |- IF(d,P,Q) sat ((d && A) ++ (("d) && B))"
loop "[I$C |I- P sat B ; (d :: pll) && A |- B >< A; \
\ (" d) & A |- I|]1 ==> \
\ $C | |- WHILE(d,P) sat A"
(* Structural rules *)
(x 1!t NOTE: without side conditions !!! *)
p_refl "P sat A ||- P sat A"
cut_p "[I$C | |- P sat B; $E, (Q sat B), $D ||- R(Q) sat A|] ==>\
\ $E, $C, $D |I- C (%Q.R(Q)) (P) ) sat A"
exchange "$C, (P sat A), (Q sat B), $D |- R sat E ==>\
\ $C, (Q sat B), (P sat A), $D ||- R sat E"
weakening "$C | |- P sat B ==> $C, (Q sat A) ||- P sat B"
contraction "$C, (Q sat A), (R sat A) ||- P(Q,R) sat B ==>\
\ $C, (T sat A) ||- (%R Q.P(Q,R))(T))(T) sat B"
consequence "[|$C ||- P sat A; B |- A|] ==> $C ||- P sat B"

end



